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ABSTRACT

PERCOLATION ON GALTON-WATSON TREES

Marcus Michelen

Robin Pemantle

We consider both Bernoulli and invasion percolation on Galton-Watson trees.

In the former case, we show that the quenched survival function is smooth on the

supercritical window and smooth from the right at criticality. We also study critical

percolation conditioned to reach depth n, and construct the incipient infinite cluster

by taking n → ∞; quenched limit theorems are proven for the asymptotic size of

the layers of the incipient infinite cluster. In the case of invasion percolation, we

show that the law of the unique ray in the invasion cluster is absolutely continuous

with respect to the limit uniform measure. All results are under assumptions for

the offspring distribution of the underlying Galton-Watson tree.
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Chapter 1

Introduction

Percolation is a catch-all term for processes that randomly thin out large graphs.

The most classical instance of this is Bernoulli bond percolation: for a given number

p ∈ [0, 1], delete each edge of a graph independently with probability 1−p. Already

a large number of questions appear; a fundamental question asks if there a positive

probability that there is an infinite connected component after deleting.

Percolation is interesting from many different angles. From an applied mathe-

matics perspective, it is an oft-used model in material science for modeling how a

liquid percolates through some medium. The local properties of the medium are

modeled randomly and may be tuned in unison by the parameter p. For mathemati-

cians, percolation is interesting primarily because it exhibits a phase transition. In

the case where the underlying graph is Z2 with nearest neighbor edges, the Kesten-

Harris theorem [Kes80, Har60] states that the probability there is an infinite cluster
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in p-percolation is positive if and only if p > pc := 1
2
. This phase transition is quite

dramatic: Menshikov [Men86, MMS86] showed that for p < pc, the probability that

the percolation cluster containing the origin has radius at least n decays exponen-

tially in n. These results generalize to a wide variety of infinite graphs: there is a

critical pc above which there is a positive probability of an infinite cluster existing,

and below which percolation clusters are quite small.

Many major open problems in probability theory concern the near-critical behav-

ior in percolation as well as other processes that exhibit phase transitions [GBGL08,

Chapter IV.25]. One central open question concerns whether or not there is perco-

lation at criticality on Zd: namely, if we perform pc percolation on Zd, is there an

infinite cluster with positive probability? This has been shown to hold for d ≥ 11

[HS94, FvdH17] by showing that critical percolation exhibits mean-field behavior

in these dimensions.

The work of this thesis concerns percolation on Galton-Watson trees, a certain

class of random trees. These graphs are geometrically simple—they have no cy-

cles, by definition. However, the stochastic roughness introduced by working on a

random graph eliminates much of the symmetry typically exploited in percolation

problems. Furthermore, there is a relationship between percolation and random

walk on trees, as discussed in depth in [LP17, Chapter 5], further motivating the

study of percolation on trees.

This thesis consists of the content of three papers, each given their own chapter:
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Chapters 2, 3 and 4 correspond to the works [MPR18], [Mic19], and [MPR17]

respectively, where the first and last works are joint with Robin Pemantle and Josh

Rosenberg. The intention is for each chapter to be self-contained, and thus each

chapter retains its introduction. Many proofs are omitted for brevity, and thus a

more detail-oriented reader should refer to the paper versions for completeness. In

addition, a brief history of invasion percolation appears in Section 1.1.

1.1 A History of Invasion Percolation

Invasion percolation is a self-tuning algorithm that chooses a subgraph from a large

graph at random. Its precise description has evolved slightly since its creation

and has converged to various equivalent definitions; we take our definition from

[DHS18]: Let G = (V,E) be an infinite graph and assign independent uniform [0, 1]

variables—which are referred to as weights—to each edge. Initialize V0 to be a

single vertex and E0 to be the empty set. At time n, let en be the edge in the

boundary

∂Gn−1 = {{x, y} : x ∈ Vn−1, {x, y} /∈ En−1}

of minimal weight. We then define

Vn = Vn−1 ∪ {y}, En = En−1 ∪ {en}, Gn = (Vn, En) .

The family of graphs Gn is increasing, and the invasion percolation cluster I is

defined as the union over Gn. Importantly, there are no input parameters. In a
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sense that has been made rigorous in many settings, invasion percolation looks more

and more like critical percolation as n → ∞; this means that invasion percolation

is an example of a system that exhibits self-organized criticality.

Material Science Origins

Invasion percolation was originally developed in the material science community

to study how two different fluids interact in a porous medium. As a precursor, a

1978 work by de Gennes and Guyon [dGG78] models a porous medium as a graph

and places directed edges in both directions at each edge. We imagine a source of

water with pressure p is placed at a specified vertex 0, and the oil is placed at all

other vertices. For each edge ~ab, there is an associated quantity Φ ~ab denoting how

difficult it is for water to cross from a to b thereby invading the oil via capillary

action. The authors then assume that Φ ~ab are jointly independent random variables

with Φ ~ab and Φ ~ba having the same distribution. Given neighboring vertices a and b

with water at a and oil at b, water spreads to b provided Φ ~ab ≤ p, where we recall

that p is the pressure of the water source.

Importantly, the presence of the external parameter p distinguishes this model

from what is now known as invasion percolation. In fact, as [dGG78] note, this is

the same as performing independent directed bond percolation and restricting the

cluster only to sites reachable from 0 through open bonds. As the authors state,

Nous nous préoccupons surtout de savoir si le comportement près du
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seuil, dans des expériences d’injection ou de succion, est régi par les

mêmes exposants [critique] que ceux de la percolation.1

They note as well that similar percolation models were considered contempora-

neously by [LSD77]. The model of [dGG78] was further tweaked and studied via

Monte Carlo simulations in [LB80, LZS83, Len85]. Despite the differences between

what is now known as invasion percolation, many authors cite [dGG78] or [LB80] as

the beginnings of invasion percolation, including foundational mathematical works

on this subject [CCN85, Zha95], despite the strong differences.

Invasion percolation as it is now known was more-or-less introduced in 1980

with [CKLW82] and was given the name invasion percolation in a subsequent work

[WW83] bearing the name “Invasion percolation: a new form of percolation theory.”

Most work in this era consists of simulations and observations concerning the

results, although the work [CKLW82] contains quite a bit of mathematical content.

In particular, they examine the case of a large L×W rectangle in Z2 with periodic

boundary conditions. They impose a trapping condition: once the invasion clus-

ter traps a component of its complement, it may not further invade the trapped

component. They observe a power law for the fraction of vertices that end up in a

trapped component.

They note that these exponents roughly match the analogue in the case of critical

1Rough translation: “Our main concern is whether near-critical behavior, in injection or suction

experiments, is governed by the same [critical] exponents as percolation.”
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Bernoulli percolation and state that this matching of exponents “suggest[s] that

[invasion percolation] is indeed at a critical point.” Further, the authors heuristically

state that eventually all added bonds have weight in the range [0, pc] although this

is not quite right since no percolation occurs at criticality in Z2; in truth, for each

ε > 0, all added bonds eventually have weight in the range [0, pc + ε).

Wilkinson—an author on [CKLW82]—continued this scaling-exponent approach

with Willemsen in [WW83], and consider invasion percolation both with and with-

out the trapping condition. They compare exponents of various quantities from

their simulated data of invasion percolation with those of Bernoulli percolation.

The authors concede that their work is “essentially descriptive” and that

“It would be of interest to study [invasion percolation] in a more formal

manner, ... even the simplest problem of growing a cluster from a point

into an infinite lattice without the trapping rule appears intractable.”

They conclude by stating “The development of a mathematical framework for

discussing this structure poses a very interesting problem.”

Enter Mathematics

Mathematical analysis begins in 1983 with a work of Nickel and Wilkinson [NW83]

concerning invasion percolation on regular trees. Using a generating function ap-

proach, the authors show that the probability of adding a bond with weight larger

than pc at step n is on the order of 1/
√
n and that for any ε > 0, the probability of

6



adding a bond of weight larger than pc + ε decays exponentially. Further, they find

the scaling form for the number of invaded vertices in depth m at time n.

These results were generalized by Chayes, Chayes and Newman in 1985 [CCN85],

written contemporaneously with [NW83]. The authors state their methods work

for a many examples, but restrict their attention to Zd for simplicity. They prove

• Let Qn(x) be the portion of bonds added up to time n with weight at most

x. Then Qn(x) converges to the step function

Q(x) =


1 x < pc

0 x > pc

under since-verified hypotheses concerning Bernoulli percolation.

• For y > pc, let An(y) denote the event that the weight of the bond added at

time n is at least y. Then

− log(P(An(y))) = Θ(n(d−1)/d)

as n→∞.

• In d = 2, the invaded region has zero volume fraction.

As Chayes, Chayes and Newman observe, the last point represents a step towards

computing the fractal dimension of the invasion cluster, a problem resolved in 1995

by Zhang [Zha95].
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A follow-up work [CCN87] by the same trio of authors began a productive feed-

back loop between invasion and Bernoulli percolation; they use invasion percolation

to prove that for Bernoulli percolation on Zd

• − log(P[x and y belong to the same finite cluster]) = Θ(‖x− y‖).

• The probability that the root is contained in an infinite cluster is a smooth

function of p on the open supercritical window.

• The probability that the cluster containing the origin has exactly n vertices

is bounded above by exp
(
−cpn(d−1)/d/ log(n)

)
.

While [CCN87] using invasion percolation for theoretical results, physicists be-

gan using invasion percolation to approximate critical percolation parameters with

Monte Carlo simulations; an example of this is the work of [McC87] which studies

the case of Voronoi percolation.

Certain aspects of [CCN85, CCN87] have been generalized to quasi-transitive

and semi-transitive graphs in [HPS99]. In particular, [HPS99] uses invasion perco-

lation examine the uniqueness of infinite clusters for coupled p-percolation on these

graphs. In the process, they prove that for any p > pc, invasion percolation adds

only finitely many bonds with weight larger than p.

More work on Z2

From this point, the study of invasion percolation spread out in various different

directions. In the case of Z2, much work has been done comparing invasion perco-
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lation to critical percolation. Járai [Jár03] showed that moments of the number of

invaded vertices in the box [−n, n]2 is on the same order as critical percolation con-

ditioned to reach the boundary of this box. Similarly, Járai showed that the local

structure of the invasion cluster when viewed sufficiently far from the origin is the

same as that of the incipient infinite cluster, which is roughly critical percolation

conditioned to percolate to infinity.

More involved features were studied: [vdBJV07] showed that the size of the

first pond—the portion of the invasion cluster up until the edge of maximal total

weight is added—has tails comparable to the radius of the critical percolation clus-

ter, up to a logarithmic factor. Comparisons continued in [DSV09], which showed

that certain k-point functions for the invasion cluster match analogues for critical

percolation; however, in the same paper, it is shown that the laws of the incipient

infinite cluster and invasion cluster are mutually singular. In a similar vein, [Sap11]

showed the incipient infinite cluster doesn’t stochastically dominate the invasion

cluster. Further work on Z2 often concerns ponds and the weights connecting them

[vdBJV07, DS11, DS12]. The connections between critical and invasion percolation

are still being explored: as recently as 2018, Damron, Hanson and Sosoe [DHS18]

examine so-called arm events—the existence of a family of disjoint paths with pre-

scribed open and closed conditions connecting a given vertex to a large box—and

study which open/closed conditions yield arm events whose probabilities roughly

match in invasion percolation and critical percolation.

9



Other work on Z2 includes [DHS13] which shows that random walks on the

invasion cluster are subdiffusive. Their analysis relies on Russo-Seymore-Welsh es-

timates, and note that their results extend to planar lattices with similar estimates.

Recently, [GPS18] proved that the invasion cluster of the two-dimensional triangular

lattice has a unique scaling limit.

More work on Trees

Invasion percolation on regular trees was explored in depth by Angel, Goodman,

den Hollander, and Slade in [AGdHS08]. The authors examine the scaling behavior

of the r-point function as well as the volume at and up to a given height. An

important ingredient of their work is the representation of the invasion cluster as

an infinite non-backtracking path called the backbone with subcritical percolation

clusters added along the way. Interestingly, [AGdHS08] show that the law of the

incipient cluster stochastically dominates that of the invasion cluster on regular

trees, however the two are mutually singular. This differs quite a bit from the case

of Z2 in which there is no stochastic dominance, as shown in [Sap11].

Angel and Goodman continued their work on regular trees in a 2013 work with

Merle [AGM13] which identifies the scaling limit of both the invasion cluster and

incipient infinite cluster on regular trees. The work [MPR17]—the basis for Chap-

ter 4 of this thesis—generalizes certain facts of [AGdHS08] to Galton-Watson trees,

thereby bringing the mathematical study of invasion percolation into the realm

10



of random graphs. On almost-every Galton-Watson trees, the invasion cluster al-

most surely contains a single infinite path; [MPR17] studies the law of this path,

and shows that this law is absolutely continuous with respect to the limit uniform

measure.

The backbone decompositions central to [AGdHS08, AGM13] was taken to

a locally-infinite limit setting in [ABGK12], in which each vertex has countably

infinitely-many children, but the edge weights are no longer uniform.
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Chapter 2

Super-Critical Percolation

The present chapter is based on excerpts from [MPR18], which is joint with Robin

Pemantle and Josh Rosenberg. For brevity, proofs are omitted and abbreviated

from certain sections.

2.1 Introduction

As earlier, let GW denote the measure on locally finite rooted trees induced by the

Galton-Walton process for some fixed progeny distribution {pn} whose mean will be

denoted µ. A random tree generated according to the measure GW will be denoted

as T. Throughout, we let Z denote a random variable with distribution {pn} and

assume that P[Z = 0] = 0; passing to the reduced tree as described in [AN72,

Chapter 1.D.12], no generality is lost for any of the questions in the paper.

The growth rate and regularity properties of both random and deterministic

12



trees can be analyzed by looking at the behavior of a number of different statistics.

The Hausdorff dimension of the boundary and the escape speed of random walk are

almost surely constant for a fixed Galton-Watson measure. Quantities that are ran-

dom but almost surely well defined include the martingale limit W := limZn/µ
n,

the resistance to infinity when edges at level n carry resistance xn for a fixed x < µ,

and the probability θT(p) that T survives Bernoulli-p percolation, i.e., the proba-

bility there is a path of open edges from the root to infinity, where each edge is

declared open with independent probability p. In this paper we seek to understand

GW-almost sure regularity properties of the survival function θT(·) and to compute

its derivatives at criticality.

The properties of the Bernoulli-p percolation survival function have been studied

extensively in certain other cases, such as on the deterministic d-dimensional integer

lattice, Zd. When d = 2, the Harris-Kesten Theorem [Har60, Kes80] states that

the critical percolation parameter pc is equal to 1/2 and that critical percolation

does not survive: θZ2(1/2) = 0; more interesting is the nondifferentiability from

the right of the survival function at criticality [KZ87]. When d ≥ 3, less is known,

despite the high volume of work on the subject. The precise value of the critical

probability pc(d) is unknown for each d ≥ 3; for d ≥ 19, mean-field behavior has

been shown to hold, implying that percolation does not occur at criticality [HS94].

This has recently been upgraded with computer assistance and shown to hold for

d ≥ 11 [FvdH17], while the cases of 3 ≤ d ≤ 10 are still open. Lower bounds

13



on the survival probability of Zd in the supercritical region are an area of recent

work [DCT16], but exact behavior near criticality is not known in general. On the

question of regularity, the function θZd(p) is smooth on (pc(d), 1] for each d ≥ 2

[Gri99, Theorem 8.92].

There is less known about the behavior of θT(·) for random trees than is known

on the integer lattice. We call the random function θT(·) the quenched survival

function to distinguish it from the annealed survival function θ, where θ(x) is the

probability of survival at percolation parameter x averaged over the GW distribution.

For the regular d-ary tree, Td, the classical theory of branching processes implies

that the critical percolation parameter pc is equal to 1/d, that θTd(1/d) = 0 (that

is, there is no percolation at criticality), and that for p > pc, the quantity θTd(p) is

equal to the largest fixed point of 1 − (1 − px)d in [0, 1] (see, for instance, [AN72]

for a treatment of this theory).

For Galton-Watson trees, a comparison of the quenched and annealed survival

functions begins with the following classical result of Lyons, showing that pc is the

same in both cases.

Theorem 2.1.1 ([Lyo90]). Let T be the family tree of a Galton-Watson process with

mean E[Z] =: µ > 1, and let pc(T) = sup {p ∈ [0, 1] : θT(p) = 0}. Then pc(T) = 1
µ

almost surely. Together with the fact that θT(1/µ) = 0, this implies θT(pc) = 0

almost surely. 2

To dig deeper into this comparison, observe first that the annealed survival

14



probability θ(x) is the unique fixed point on [0, 1) of the function 1−φ(1−px) where

φ(z) = E[zZ ] is the probability generating function of the offspring distribution. In

the next section we show that the annealed survival function θ(p) is smooth on

(pc, 1) and, under moment conditions on the offspring distribution, the derivatives

extend continuously to pc. This motivates us to ask whether the same holds for

the quenched survival function. Our main results show this to be the case, giving

regularity properties of θT(p) on the supercritical region.

Let rj be the coefficients in the asymptotic expansion of the annealed function

g at pc. These are shown to exist in Proposition 2.2.6 below. In Theorem 2.3.1,

under appropriate moment conditions, we will construct for each j ≥ 1 a martingale

{M (j)
n : n ≥ 1} with an almost sure limit M (j), that is later proven to equal the

jth coefficient in the aymptotic expansion of the quenched survival function g at pc.

Throughout the analysis, the expression W denotes the martingale limit limZn/µ
n.

Theorem 2.1.2 (main results).

(i) For GW a.e. tree T, the quantity θT(x) is smooth as a function of x on (pc, 1).

(ii) If EZ2k+1+β < ∞ for some positive integer k and some β > 0, then we have

the k-th order approximation

θT(pc + ε) =
k∑
j=1

M (j)εj + o(εk)

for GW a.e. tree T, where M (j) is the quantity given explicitly in Theorem 2.3.1.

Additionally, M (1) = Wr1 and E[M (j)] = rj, where W is the martingale limit
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for T and j!rj are the derivatives of the annealed survival function, for which

explicit expressions are given in Proposition 2.2.6.

(iii) If EZ2k2+3+β <∞ for some β > 0, then GW-almost surely θT(·) is of class Ck

from the right at pc and g(j)(T, p+c ) = j!M (j) for all j ≤ k; see the beginning

of Section 2.2.1 for calculus definitions.

Remark 2.1.3. Smoothness of θT(·) on (pc, 1) does not require any moment assump-

tions, in fact even when EZ =∞ one has pc = 0 and smoothness of θT(·) on (0, 1).

The moment conditions relating to expansion at criticality given in (ii) are probably

not best possible, but are necessary in the sense that if EZk =∞ for some k then

not even the annealed survival function is smooth (see Proposition 2.2.4 below).

The proofs of the first two parts of Theorem 2.1.2 are independent of each other.

Part (ii) is proved first, in Section 2.3. Part (i) is proved in Section 2.4.2 after some

preliminary work in Section 2.4.1. Finally, part (iii) is proved in Section 2.4.3.

The key to these results lies in a number of different expressions for the probability

of a tree T surviving p-percolation and for the derivatives of this with respect to

p. The first of these expressions is obtained via inclusion-exclusion. The second,

Theorem 2.4.1 below, is a Russo-type formula [Rus81] expressing the derivative in

terms of the expected branching depth

d

dp
θT (p) =

1

p
ET |Bp|

for GW-almost every T and every p ∈ (pc, 1), where |Bp| is the depth of the deepest
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vertex Bp whose removal disconnects the root from infinity in p-percolation. The

third generalizes this to a combinatorial construction suitable for computing higher

moments.

A brief outline of the chapter is as follows. Section 2.2 contains definitions,

preliminary results on the annealed survival function, and a calculus lemma. Sec-

tion 2.3 writes the event of survival to depth n as a union over the events of survival

of individual vertices, then obtains bounds via inclusion-exclusion. Let X
(j)
n denote

the expected number of cardinality j sets of surviving vertices at level n, and let

X
(j,k)
n denote the expected kth falling factorial of this quantity. These quantities

diverge as n → ∞ but inclusion-exclusion requires only that certain signed sums

converge as n → ∞. The Bonferroni inequalities give upper and lower bounds on

θT (·) for each n. Strategically choosing n as a function of ε and using a modi-

fied Strong Law argument allows us to ignore all information at height beyond n

(Proposition 2.3.10). Each term in the Bonferroni inequalities is then individually

Taylor expanded, yielding an expansion of θT (pc + ε) with coefficients depending

on n. Letting T ∼ GW and n → ∞, the variables X
(j,k)
n separate into a martin-

gale part and a combinatorial part. The martingale part converges exponentially

rapidly (Theorem 2.3.6). The martingale property for the cofficients themselves

(Lemma 2.3.13) follows from some further analysis (Lemma 2.3.12) eliminating the

combinatorial part when the correct signed sum is taken.

Section 2.4.1 proves the above formula for the derivative of θ (Theorem 2.4.1)
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via a Markov property for the coupled percolations as a function of the percolation

parameter p. Section 2.4.2 begins with a well-known branching process description

of the subtree of vertices with infinite lines of descent. It then goes on to describe

higher order derivatives in terms of combinatorial gadgets denoted D which are

moments of the numbers of edges in certain rooted subtrees of the percolation cluster

and generalize the branching depth. We then prove an identity for differentiating

these and apply it repeatedly to θ′(T, p) = p−1EBp, to write (∂/∂p)kθ(T, p) as a

finite sum
∑

αDα of factorial moments of sets of surviving vertices. This suffices

to prove smoothness of the quenched survival function on the supercritical region

pc < p < 1.

For continuity of the derivatives at pc, an analytic trick is required. If a function

possessing an order N asymptotic expansion at the left endpoint of an interval [a, b]

ceases to be of class Ck at the left endpoint for some k, then the k + 1st derivative

must blow up faster than (x−a)−N/k (Lemma 2.2.1). This is combined with bounds

on how badly things can blow up at pc (Proposition 2.4.11) to prove continuity from

the right at pc of higher order derivatives.

The paper ends by listing some questions left open, concerning sharp moment

conditions and whether an asymptotic expansion ever exists without higher order

derivatives converging at pc.
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2.2 Constructions, preliminary results, and an-

nealed survival

2.2.1 Smoothness of real functions at the left endpoint

Conclusion (iii) glues together the conclusions of (i) and (ii) to show that the

random function θT(·) is in fact smooth on the set [pc, 1). A useful fact is the

following analytic Lemma:

Lemma 2.2.1. Let f : [a, b]→ R be C∞ on (a, b) with

f(a+ ε) = c1ε+ · · ·+ ckε
k + · · ·+ cNε

N + o(εN) (2.2.1)

for some k,N with 1 ≤ k < N , and assume

lim
ε→0

f (j)(a+ ε) = j!cj (2.2.2)

for all j such that 1 ≤ j < k. If f (k)(a+ ε) 6→ k!ck as ε→ 0+, then there must exist

positive numbers un ↓ 0 such that

∣∣f (k+1)(un)
∣∣ = ω

(
u
−N
k

n

)
.

2

2.2.2 Galton-Watson trees

Since we will be working with probabilities on random trees, it will be useful to

explicitly describe our probability space and notation. We begin with some no-

tation we use for all trees, random or not. Let U be the canonical Ulam-Harris
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tree [ABF13]. The vertex set of U is the set V :=
⋃∞
n=1Nn, with the empty se-

quence 0 = ∅ as the root. There is an edge from any sequence a = (a1, . . . , an) to

any extension at j := (a1, . . . , an, j). The depth of a vertex v is the graph distance

between v and 0 and is denoted |v|. We work with trees T that are locally finite

rooted subtrees of U . The usual notations are in force: Tn denotes the set of ver-

tices at depth n; T (v) is the subtree of T at v, canonically identified with a rooted

subtree of U , in other words the vertex set of T (v) is {w : v t w ∈ V (T )} and the

least common ancestor of v and w is denoted v ∧ w.

Turning now to Galton-Watson trees, let φ(z) :=
∑∞

n=1 pnz
n be the offspring

generating function for a supercritical branching process with no death, i.e., φ(0) =

0. We recall,

φ′(1) = EZ =: µ

φ′′(1) = E[Z(Z − 1)]

where Z is a random variable with probability generating function φ. We will work

on the canonical probability space (Ω,F ,P) where Ω = (N × [0, 1])V and F is

the product Borel σ-field. We take P to be the probability measure making the

coordinate functions ωv = (degv, Uv) i.i.d. with the law of (Z,U), where U is uniform

on [0, 1] and independent of Z. The variables {degv}, where degv is interpreted as

the number of children of vertex v, will construct the Galton-Watson tree, while

the variables {Uv} will be used later for percolation. Let T be the random rooted

subtree of U which is the connected component containing the root of the set of
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vertices that are either the root or are of the form vtj such that 0 ≤ j < degv. This

is a Galton-Watson tree with offspring generating function φ. Let T := σ({degv})

denote the σ-field generated by the tree T. The P-law of T on T is GW.

As is usual for Galton-Watson branching processes, we denote Zn := |Tn|. Ex-

tend this by letting Zn(v) denote the number of offspring of v in generation |v|+n;

similarly, extend the notation for the usual martingale Wn := µ−nZn by letting

Wn(v) := µ−nZn(v). We know that Wn(v) → W (v) for all v, almost surely and

in Lq if the offspring distribution has q moments. This is stated without proof for

integer values of q ≥ 2 in [Har63, p. 16] and [AN72, p. 33, Remark 3]; for a proof

for all q > 1, see [BD74, Theorems 0 and 5]. Further extend this notation by letting

v(i) denote the ith child of v, letting Z
(i)
n (v) denote nth generation descendants of v

whose ancestral line passes through v(i), and letting W
(i)
n (v) := µ−nZ

(i)
n (v). Thus,

for every v, W (v) =
∑

iW
(i)(v). For convenience, we define pc := 1/µ, and recall

that pc is in fact GW-a.s. the critical percolation parameter of T as per Theorem

2.1.1.

Bernoulli percolation

Next, we give the formal construction of Bernoulli percolation on random trees. For

0 < p < 1, simultaneously define Bernoulli(p) percolations on rooted subtrees T of

U by taking the percolation clusters to be the connected component containing 0

of the induced subtrees of T on all vertices v such that Uv ≤ p. Let Fn be the

21



σ-field generated by the variables {Uv, degv : |v| < n}. Because percolation is often

imagined to take place on the edges rather than vertices, we let Ue be a synonym for

Uv, where v is the farther of the two endpoints of e from the root. Write v ↔T,p w

if Ue ≤ p for all edges e on the geodesic from v to w in T . Informally, v ↔T,p w iff v

and w are both in T and are connected in the p-percolation. The event of successful

p-percolation on a fixed tree T is denoted HT (p) := {0 ↔T,p ∞}. The event of

successful p-percolation on the random tree T, is denoted HT(p) or simply H(p).

Let θT (p) := P[HT (p)] denote the probability of p-percolation on the fixed tree T .

Evaluating at T = T gives the random variable θT(p) which is easily seen to equal

the conditional expectation P(H(p) | T ). Taking unconditional expectations we see

that θ(p) = EθT(p).

2.2.3 Smoothness of the annealed survival function θ

By Lyons’ theorem, θ(pc) = EθT(pc) = 0. We now record some further properties

of the annealed survival function θ.

Proposition 2.2.2. The derivative from the right K := ∂+θ(pc) exists and is given

by

K =
2

p3cφ
′′(1)

. (2.2.3)

where 1/φ′′(1) is interpreted as limξ→1− 1/φ′′(ξ).

Proof. Let φp(z) := φ(1 − p + pz) be the offspring generating function for the

Galton-Watson tree thinned by p-percolation for p ∈ (pc, 1). The fixed point of φp
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is 1− θ(p). In other words, θ(p) is the unique s ∈ (0, 1) for which 1−φp(1− s) = s,

i.e. 1 − φ(1 − ps) = s. By Taylor’s theorem with Mean-Value remainder, there

exists a ξ ∈ (1− pθ(p), 1) so that

1− φ(1− pθ(p)) = pθ(p)φ′(1)− p2θ(p)2

2
φ′′(ξ) =

p

pc
θ(p)− p2θ(p)2

2
φ′′(ξ) .

Setting this equal to θ(p) and solving yields

θ(p)

p− pc
=

2

pcp2φ′′(ξ)
.

Taking p ↓ pc and noting ξ → 1 completes the proof.

Corollary 2.2.3. (i) The function θ is analytic on (pc, 1). (ii) If pn decays ex-

ponentially then θ is analytic on [pc, 1), meaning that for some ε > 0 there is an

analytic function θ̃ on (pc − ε, 1) such that θ(p) = θ̃(p)1p>pc.

Proof. Recall that for p ∈ (pc, 1), θ(p) is the unique positive s that satisfies s =

1− φ(1− ps). It follows that for all p ∈ (pc, 1), θ(p) is the unique s satisfying

F (p, s) := s+ φ(1− ps)− 1 = 0 .

Also note that since φ(1− ps) is analytic with respect to both variables for (p, s) ∈

(pc, 1)× (0, 1), this means F is as well.

We aim to use the implicit function theorem to show that we can parameterize

s as an analytic function of p on (pc, 1); we thus must show ∂F
∂s
6= 0 at all points

(p, θ(p)) for p ∈ (pc, 1). Direct calculation gives

∂F

∂s
= 1− pφ′(1− ps) .
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Because φ is strictly convex on (pc, 1), we see that ∂F
∂s

is positive for p ∈ (pc, 1) at

the fixed point. Therefore, θ(p) is analytic on (pc, 1).

To prove (ii), observe that φ extends analytically to a segment [0, 1 + ε], which

implies that 1−φ(1−ps) is analytic on a real neighborhood of zero. Also 1−φ(1−ps)

vanishes at s = 0, therefore ψ(p, s) := (1 − φ(1 − ps))/s is analytic near zero and

for (p, s) ∈ (pc, 1)× (0, 1), the least positive value of s satisfying ψ(p, s) = 1 yields

θ(p). Observe that

∂ψ

∂p
(pc, 0) = lim

s→0

sφ′(1− pcs)
s

= φ′(1) = µ .

By implicit differentiation,

∂+θ(pc) = −∂ψ/∂s
∂ψ/∂p

(pc, 0)

which is equal to 1/K by Proposition 2.2.2. In particular, (∂ψ/∂s)(pc, 0) = −µ/K

is nonvanishing. Therefore, by the analytic implicit function theorem, solving

ψ(p, s) = 1 for s defines an analytic function θ̃ taking a neighborhood of pc to

a neighborhood of zero, with θ̃(p) > 0 if and only if p > pc. We have seen that θ̃

agrees with θ to the right of pc, proving (ii).

In contrast to the above scenario in which Z has exponential moments and θ is

analytic at p+c , the function θ fails to be smooth at p+c when Z does not have all

moments. The next two results quantify this: no kth moment implies θ /∈ Ck from

the right at pc, and conversely, EZk <∞ implies θ ∈ Cj from the right at pc for all

j < k/2.
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Proposition 2.2.4. Assume k ≥ 2, E[Zk] <∞, and E[Zk+1] =∞. Then θ(k+1)(p)

does not extend continuously to pc from the right.

In Section 2.2.4 we will prove the following partial converse.

Proposition 2.2.5. For each k ≥ 1, if E[Z2k+1] <∞, then θ ∈ Ck from the right

at pc.

2.2.4 Expansion of the annealed survival function θ at p+c

A good part of the quenched analysis requires only the expansion of the annealed

survival function θ at p+c , not continuous derivatives. Proposition 2.2.6 below shows

that k + 1 moments are enough to give the order k expansion. Moreover, we give

explicit expressions for the coefficients. We require the following combinatorial

construction: let Cj(k) denote the set of compositions of k into j parts, i.e. ordered

j-tuples of positive integers (a1, . . . , aj) with a1 + · · · + aj = k; for a composition

a = (a1, . . . , aj), define `(a) = j to be the length of a, and |a| = a1 + · · ·+ aj to be

the weight of a. Let C(≤ k) denote the set of compositions with weight at most k.

Proposition 2.2.6. Suppose E[Zk+1] < ∞. Then there exist constants r1, . . . , rk

such that θ(pc+ε) = r1ε+· · ·+rkεk+o(εk). Moreover, the rj’s are defined recursively
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via

r1 = g′(pc) =
2

p3cφ
′′(1)

;

rj =
2

p2cφ
′′(1)

∑
a∈C(≤j)
a6=(j)

ra1 · · · ra`(a)
(
`(a) + 1

j − |a|

)
p|a|+`(a)+1−j
c (−1)`(a)

φ(`(a))+1(1)

(`(a) + 1)!
. (2.2.4)

Proof. To start, we utilize the identity 1− φ(1− pθ(p)) = θ(p) for p = pc + ε, and

take a Taylor expansion:

k+1∑
j=1

(pc + ε)jθ(pc + ε)j(−1)j−1
φ(j)(1)

j!
+ o(((pc + ε)θ(pc + ε))k+1) = θ(pc + ε) .

Divide both sides by θ(pc + ε) and bound θ(pc + ε) = O(ε) to get

k+1∑
j=1

(pc + ε)jθ(pc + ε)j−1(−1)j−1
φ(j)(1)

j!
− 1 = o(εk) . (2.2.5)

Proceeding by induction, if we assume that the proposition holds for all j < k for

some k ≥ 2, and we set

pk(ε) :=
θ(pc + ε)−

∑k−1
j=1 rjε

j

εk
,

then (2.2.5) gives us

o(εk) =
k+1∑
j=1

(pc + ε)jθ(pc + ε)j−1(−1)j−1
φ(j)(1)

j!
− 1

=
k+1∑
j=1

(pc + ε)j

(
k−1∑
i=1

riε
i + pk(ε)ε

k

)j−1

(−1)j−1
φ(j)(1)

j!
− 1 . (2.2.6)

Noting that the assumption that the proposition holds for j = k − 1 implies that

pk(ε) = o(ε−1), we find that the expression on the right hand side in (2.2.6) is the
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sum of a polynomial in ε, the value −p2cφ′′(1)
2

pk(ε)ε
k, and an error term which is

o(εk). This implies that all terms of this polynomial that are of degree less than k

must cancel, and that the sum of the term of order k and −p2cφ′′(1)
2

pk(ε)ε
k must be

o(εk). This leaves only terms of degree greater than k. It follows that pk(ε) must

be equal to C + o(1), for some constant C.

To complete the induction step, it remains to show that C = rk. To do so we

must find the coefficient of εk in each term. We use the notation [εj] to denote the

coefficient of εj. For any j, we calculate

[εk] (pc + ε)j

(
k−1∑
i=1

riε
i

)j−1

=
k∑
r=1

[εr]

(
k−1∑
i=1

riε
i

)j−1
([εk−r] (pc + ε)j

)

=
k∑
r=1

 ∑
a∈Cj−1(r)

ra1 · · · raj−1

( j

k − r

)
pj+r−kc .

Putting this together with (2.2.6) we now obtain the desired equality C = rk.

Finally, noting that the base case k = 1 follows from Proposition 2.2.2, we see that

the proposition now follows by induction.

From here, Proposition 2.2.5 follows from Proposition 2.2.6 and Lemma 2.2.1

along with careful bookkeeping. A complete proof is contained in [MPR18].
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2.3 Proof of part (ii) of Theorem 2.1.2: behavior

at criticality

This section is concerned with the expansion of θT(·) at criticality. Section 2.3.1

defines the quantities that yield the expansion. Section 2.3.2 constructs some mar-

tingales and asymptotically identifies the expected number of k-subsets of Tn that

survive critical percolation as a polynomial of degree k − 1 whose leading term is

a constant multiple of W (a consequence of Theorem 2.3.6, below). Section 2.3.3

finishes computing the `-term Taylor expansion for θT(·) at criticality.

2.3.1 Explicit expansion

Throughout the paper we use {rj} to denote the coefficients of the expansion of θ

when they exist, given by the explicit formula (2.2.4). For m ≥ 1, the mth power

of θ has a k-order expansion at p+c whenever θ does. Generalizing the notation for

rj, we denote the coefficients of the expansion of θm at p+c by {rm,j} where

θ(pc + ε)m =
∑̀
j=1

rm,jε
j + o(ε`) (2.3.1)

for any ` for which such an expansion exists.

We prove part (ii) of Theorem 2.1.2 by identifying the expansion. To do so, we

need a notation for certain expectations. Fix a tree T . For n ≥ 0, j ≥ 1 and v ∈ T ,
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define

X(j)
n (v) :=

∑
{v1,...,vj}∈(Tn(v)

j )

PT [v ↔pc v1, v2, . . . , vj]

where v ↔pc v1, v2, . . . , vj is the event that v is connected to each of v1, . . . , vj under

critical percolation. We omit the argument v when it is the root; thus X
(j)
n :=

X
(j)
n (0). Note that

X(1)
n = Wn, and X(2)

n =
∑

{u,v}∈(Tn2 )

p2n−|u∧v|c .

The former is the familiar martingale associated to a branching process, while the

latter is related to the energy of the uniform measure on Tn.

Extend this definition further: for integers j and k, define

X(j,k)
n :=

∑
{vi}∈(Tnj )

(
|T (v1, . . . , vj)|

k

)
p|T (v1,...,vj)|c

where T (v1, . . . , vj) is the smallest rooted subtree of T containing each vi and

|T (v1, . . . , vj)| refers to the number of edges this subtree contains. Note that

X
(j,0)
n = X

(j)
n .

Part (ii) of Theorem 2.1.2 follows immediately from the following expansion,

which is the main work of this section.

Theorem 2.3.1. Define

M (i)
n := M (i)

n (T ) := µi
i∑

j=1

(−1)j+1

i∑
d=j

pdcrj,dX
(j,i−d)
n . (2.3.2)

Suppose that E
[
Z(2`+1)(1+β)

]
< ∞ for some integer ` ≥ 1 and real β > 0. (i)

The quantities {M (i)
n : n ≥ 1} are a {Tn}-martingale with mean ri. (ii) For GW-
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almost every tree T the limits M (i) := limn→∞M
(i)
n exist. (iii) These limits are the

coefficients in the expansion

θT (pc + ε) =
∑̀
i=1

M (i)εi + o(ε`) . (2.3.3)

Remark 2.3.2. The quantities X
(j,i)
n do not themselves have limits as n → ∞. In

fact for fixed i and j the sum over d of X
(j,i−d)
n is of order ni−1. Therefore it is

important to take the alternating outer sum before taking the limit.

2.3.2 Critical Survival of k-Sets

To prove Theorem 2.3.1 we need to work with centered variables. Centering at the

unconditional expectation is not good enough because these mean zero differences

are close to the nondegenerate random variable ni−1W and therefore not summable.

Instead we subtract off a quantity that can be handled combinatorially, leaving a

convergent martingale.

Throughout the rest of the paper, the notation ∆ in front of a random variable

with a subscript (and possibly superscripts as well) denotes the backward difference

in the subscripted variable. Thus, for example,

∆X(j,i)
n := X(j,i)

n −X(j,i)
n−1 .

Let X
(j,i)
n = Y

(j,i)
n +A

(j,i)
n denote the Doob decomposition of the process {X(j,i)

n :

n = 1, 2, 3, . . .} on the filtration {Tn}. To recall what this means, ignoring super-

scripts for a moment, the Y and A processes are uniquely determined by requiring
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the Y process to be a martingale and the A process to be predictable, meaning that

An ∈ Tn−1 and A0 = 0. The decomposition can be constructed inductively in n by

letting A0 = 0, Y0 = EX0 and defining

∆An := E (∆Xn | Tn−1) ;

∆Yn := ∆Xn −∆An .

We begin by identifying the predictable part.

Lemma 2.3.3. Let Ci(j) denote the set of compositions of j of length i into strictly

positive parts. Let mr := E
(
Z
r

)
and define constants cj,i by

cj,i := pjc
∑

α∈Ci(j)

mα1mα2 · · ·mαi .

Then for each k ≥ 0,

∆A
(j,k)
n+1 = −X(j,k)

n +

j∑
i=1

cj,i

k∑
d=0

(
j

k − d

)
X(i,d)
n

=
k−1∑
d=0

(
j

k − d

)
X(j,d)
n +

j−1∑
i=1

k∑
d=0

cj,i

(
j

k − d

)
X(i,d)
n . (2.3.4)

Proof. For distinct vertices v1, . . . , vj in Tn+1, their set of parents u1, . . . , u` form

a subset of Tn with at most j elements. In order to sum over all j-sets of Tn+1,

one first sums over all sets of parents. For a fixed parent set u1, . . . , u` in Tn−1, the

total number of j-sets with parent set {u1, . . . , u`} is

∑
α∈C`(j)

(
Z1(u1)

α1

)
· · ·
(
Z1(u`)

α`

)
.
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Furthermore, we have

(
|T(v1, . . . , vj)|

k

)
=

(
|T(u1, . . . , u`)|+ j

k

)
=

k∑
d=0

(
j

k − d

)(
|T(u1, . . . , u`)|

d

)
.

This gives the expansion

X
(j,k)
n+1 =

∑
{vi}∈(Tn+1

j )

(
|T(v1, . . . , vj)|

k

)
p|T(v1,...,vj)|
c

=

j∑
`=1

∑
{ui}∈(Tn

` )

k∑
d=0

(
j

k − d

)(
T(u1, . . . , u`)

d

)
p|T(u1,...,u`)|
c

×
∑

α∈C`(j)

pjc

(
Z1(u1)

α1

)
· · ·
(
Z1(u`)

α`

)
.

Taking conditional expectations with respect to Tn completes the proof of the first

identity, with the second following from rearrangement of terms.

The following corollary is immediate from Lemma 2.3.3 and the fact thatX
(j,k)
0 =

Y
(j,k)
0 .

Corollary 2.3.4. For each j so that E[Zj] < ∞ and each k, the terms of the Y

martingale are given by

Y (j,k)
n = Y

(j,k)
0 +

n∑
m=1

∆Y (j,k)
m

= X(j,k)
n −

n−1∑
m=0

[
k−1∑
d=0

(
j

k − d

)
X(j,d)
m +

j−1∑
i=1

cj,i

k∑
d=0

(
j

k − d

)
X(i,d)
m

]
.

2

We want to show that these martingales converge both almost surely and in some

appropriate Lp space; this will require us to take L1+β norms for some β ∈ (0, 1].
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The following randomized version of the Marcinkiewicz-Zygmund inequality will be

useful.

Lemma 2.3.5. Let {ξk}∞k=1 be i.i.d. with E[ξ1] = 0 and E[|ξ1|1+β] < ∞ for some

β ∈ (0, 1], and let N be a random variable in N independent from all {ξk} and with

E[N ] < ∞. If we set Sn =
∑n

k=1 ξk, then there exists a constant c > 0 depending

only on β so that

E[|SN |1+β] ≤ cE[|ξ1|1+β]E[N ] .

In particular, if ξ(v) are associated to vertices v ∈ Ts, and are mutually inde-

pendent from Ts, then∥∥∥∥∥psc ∑
v∈Ts

ξ(v)

∥∥∥∥∥
L1+β

≤ c′psβ/(1+β)c ‖ξ(v)‖L1+β .

Proof. Suppose first that N is identically equal to a constant n. The Marcinkiewicz-

Zygmund inequality (e.g. [CT97, Theorem 10.3.2]) implies that there exists a con-

stant c > 0 depending only on β such that

E[|Sn|1+β] ≤ cE

( n∑
k=1

|ξk|2
)(1+β)/2

 .

Because 1+β ≤ 2 and the `p norms descend, we have ‖(ξk)nk=1‖`2 ≤ ‖(ξk)nk=1‖`1+β

deterministically; this completes the proof when N is constant. Writing

E[|SN |1+β] = E
[
E[|SN |1+β |N ]

]
and applying the bound from the constant case completes the proof.

We now show that the martingales {Y (j,k)
n : n ≥ 0} converge.
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Theorem 2.3.6. Suppose E[Zj(1+β)] <∞ for some β > 0. Then

(a) ‖∆Y (j,k)
n+1 ‖L1+β ≤ Ce−cn where C and c are positive constants depending on j, k, β

and the offspring distribution.

(b) Y
(j,k)
n converges almost surely and in L1+β to a limit, which we denote Y (j,k).

(c) There exists a positive constant c′j,k depending only on j, k and the offspring

distribution so that

X
(j,k)
n n−(j+k−1) → c′j,kW almost surely and in L1+β.

Proof.

Step 1: (a) =⇒ (b). For any fixed j and k: the triangle inequality and (a) show

that supn ‖Y
(j,k)
n ‖L1+β <∞, from which (b) follows from the Lp martingale conver-

gence theorem. Next, we prove an identity representing X
(j,k)
n as a multiple sum

over values of X(j′,k′) with (j′, k′) < (j, k) lexicographically.

Step 2: Some computation. For a set of vertices {v1, . . . , vj}, let v = v1 ∧ v2 ∧

· · · ∧ vj denote their most recent common ancestor. In order for 0 ↔pc v1, . . . , vj

to hold, we must first have 0↔pc v. For the case of j ≥ 2, looking at the smallest

tree containing v and {vi}, we must have that this tree branches into some number

of children a ∈ [2, j] immediately after v. We may thus sum over all possible v,

first by height, setting s = |v|, then choosing how many children of v will be the

ancestors of the v1, . . . , vj. We then choose those children {ur}, and choose how

to distribute the {v`} among them. In order for critical percolation to reach each
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v1, . . . , vj, it must first reach v, then survive to each child of v that is an ancestor of

some {v`} and then survive to the {v`} from there. Finally, in order to choose the

k-element subset corresponding to
(|T(v1,...,vj)|

k

)
, we may choose α0 elements from

the tree T (u1, . . . , ua) and α` elements from each subtree of u`. Putting this all

together, we have the decomposition

X(j,k)
n =

n−1∑
s=0

psc
∑
v∈Ts

j∑
a=2

∑
u∈(T1(v)

a )

pac
∑

β∈Ca(j)

k∑
α0=0

×
∑

α∈C̃a(k−α0)

(
s+ a

α0

)
X

(β1,α1)
n−s−1 (u1) · · ·X(βa,αa)

n−s−1 (ua) (2.3.5)

=
n−1∑
s=0

psc
∑
v∈Ts

Θ
(j,k)
n−s−1(v)

where Θ
(j,k)
n−s−1(v) is defined as the inner quintuple sum in the previous line and C̃a(k)

denotes the set of weak a-compositions of k; observe that the notation Θ
(j,k)
n−s−1(v)

hides the dependence on s = |v|.

The difference ∆Y
(j,k)
n can now be computed as follows:

∆Y (j,k)
n = X(j,k)

n −
j∑
i=1

k∑
d=0

(
j

k − d

)
cj,iX

(i,d)
n−1 (2.3.6)

=
n−1∑
s=0

psc
∑
v∈Ts

Θ
(j,k)
n−s−1(v)−

n−2∑
s=0

psc
∑
v∈Ts

j∑
i=1

k∑
d=0

(
j

k − d

)
cj,iΘ

(i,d)
n−s−2(v)

=
n−2∑
s=0

psc
∑
v∈Ts

(
Θ

(j,k)
n−s−1(v)−

j∑
i=2

k∑
d=0

(
j

k − d

)
cj,iΘ

(i,d)
n−s−2(v)

)

+

pn−1c

∑
v∈Tn−1

Θ
(j,k)
0 (v)− cj,1

k∑
d=0

(
j

k − d

)
X

(1,d)
n−1


=

n−2∑
s=0

psc
∑
v∈Ts

U (j,k)
n (v) + V (j,k)

n
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where

U (j,k)
n =

(
Θ

(j,k)
n−s−1(v)−

j∑
i=2

k∑
d=0

(
j

k − d

)
cj,iΘ

(i,d)
n−s−2(v)

)
; (2.3.7)

V (j,k)
n =

pn−1c

∑
v∈Tn−1

pjc

(
n+ j − 1

k

)(
Z1(v)

j

)− cj,1 k∑
d=0

(
j

k − d

)
X

(1,d)
n−1 . (2.3.8)

Step 3: Proving (a) and (c) for j = 1 and k arbitrary. Specializing (2.3.6) to

j = 1 yields

∆Y (1,k)
n =

(
n

k

)
Wn −

(
n− 1

k

)
Wn−1 −

(
n− 1

k − 1

)
Wn−1

=

(
n− 1

k

)
(Wn −Wn−1) +

(
n− 1

k − 1

)
(Wn −Wn−1) .

The quantity Wn−Wn−1 is the sum of independent contributions below each vertex

in Tn−1; Lemma 2.3.5 shows this to be exponentially small in L1+β and proving (a),

hence (b). Additionally, Y
(1,k)
n n−k → W/k!, thereby also showing (c) for j = 1 and

all k.

Step 4: V is always small. Using the identity
(
n+j−1
k

)
=
∑k

d=0

(
n−1
d

)(
j

k−d

)
and

recalling that X
(1,d)
n−1 =

(
n−1
d

)
Wn−1 shows that

V (j,k)
n =

k∑
d=0

(
j

k − d

)(
n− 1

d

)
pn−1c

∑
v∈Tn−1

pjc

[(
Z1(v)

j

)
− E

(
Z

j

)]
.

Applying Lemma 2.3.5 shows that the innermost sum, when multiplied by pn−1c , has

L1+β norm that is exponentially small in n. With k fixed and d ≤ k, the product

with
(
n−1
d

)
still yields an exponentially small variable, thus

||V (j,k)
n ||1+β ≤ cj,k,βe

−δn (2.3.9)
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for some δ = δ(j, k, β) > 0.

The remainder of the proof is an induction in two stages (Steps 5 and 6). In the

first stage we fix j > 1, assume (a)–(c) for all (j′, k′) with j′ < j, and prove (a) for

(j, k) with k arbitrary. In the second stage, we prove (c) for (j, k) by induction on

k, establishing (c) for (j, 1) and then for arbitrary k by induction, assuming (a) for

(j, k′) where k′ is arbitrary and (c) for (j, k′) where k′ < k.

Step 5: Prove (a) by induction on j. Fix j ≥ 2 and assume for induction that

(a) and (c) hold for all (j′, k) with j′ < j. The plan is this: The quantity

psc
∑

v∈Ts U
(j,k)
n (v) is Wn times the average of U

(j,k)
n (v) over vertices v ∈ Ts. Averag-

ing many mean zero terms will produce something exponentially small in s. We will

also show this quantity to be also exponentially small in n − s, whereby it follows

that the outer sum over s is exponentially small, completing the proof.

Let us first see that U
(j,k)
n (v) has mean zero. Expanding back the Θ terms gives

U (j,k)
n (v) =

j∑
a=2

∑
u∈(T1(v)

a )

pac

k∑
α0=0

(
s+ a

α0

)

×

( ∑
β∈Ca(j)

∑
α∈C̃a(k−α0)

X
(β1,α1)
n−s−1 (u1) · · ·X(βa,αa)

n−s−1 (ua) (2.3.10)

−
j∑
i=2

k∑
d=0

cj,i

(
j

k − d

) ∑
β′∈Ca(i)

∑
α′∈C̃a(d−α0)

X
(β′1,α

′
1)

n−s−2 (u1) · · ·X(β′a,α
′
a)

n−s−2 (ua)

)
.

Expanding the first product of X terms gives

X
(β1,α1)
n−s−1 (u1) · · ·X(βa,αa)

n−s−1 (ua)

=
a∏
`=1

∆Y
(β`,α`)
n−s−1 (u`) +

β∑̀
β′`=1

cβ`,β′`

α∑̀
α′`=0

(
β`

α` − α′`

)
X

(β′`,α
′
`)

n−s−2(u`)

 . (2.3.11)

37



The vertices u` are all distinct children of v. Therefore, their subtrees are jointly

independent, hence the pairs (∆Y (u`), X(u`)) are jointly independent. The prod-

uct (2.3.11) expands to the sum of a-fold products of terms, each term in each

product being either a ∆Y or a weighted sum of X’s, the a terms being jointly

independent by the previous observation. Therefore, to see that the whole thing

is mean zero, we need to check that the product of the a different sums of X

terms in (2.3.11), summed over α and β to form the first half of the summand

in (2.3.10), minus the subsequent sum over i, d, β′ and α′, has mean zero. In fact

we will show that it vanishes entirely. For given compositions β := (β1, . . . , βa)

and α := (α1, . . . , αa), the product of the double sum of X terms inside the round

brackets in (2.3.11) may be simplified:

a∏
`=1

(
β∑̀
β′`=1

cβ`,β′`

α∑̀
α′`=0

(
β`

α` − α′`

)
X

(β′`,α
′
`)

n−s−2(u`)

)

=
∑

1�β′�β

∑
0�α′�α

a∏
`=1

cβ`,β′`

(
β`

α` − α′`

)
X

(β′`,α
′
`)

n−s−2(u`) .

Applying the identity ∑
β∈Ca(j)
β�β′

(∏
`

cβ`,β′`

)
= cj,i , (2.3.12)

which follows by regrouping pieces of each composition in Ci(j) into smaller compo-

sitions each with β′` parts, then summing over α and β as in (2.3.10) and simplifying,
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using (2.3.12) in the last line, gives

∑
β∈Ca(j)

∑
1�β′�β

∑
α∈C̃a(k−α0)

∑
0�α′�α

a∏
`=1

cβ`,β′`

(
β`

α` − α′`

)
X

(β′`,α
′
`)

n−s−2(u`)

=
∑

β∈Ca(j)

∑
1�β′�β

(∏
`

cβ`,β′`

)
k∑
d=0

∑
α′∈C̃a(d−α0)

(∏
`

X
(β′`,α

′
`)

n−s−2(u`)

)

×
∑

α∈C̃a(k−α0)
α≥α′

a∏
`=1

(
β`

α` − α′`

)

=
∑

β∈Ca(j)

∑
1�β′�β

(∏
`

cβ`,β′`

)
k∑
d=0

∑
α′∈C̃a(d−α0)

(∏
`

X
(β′`,α

′
`)

n−s−2(u`)

)(
j

k − d

)

=

j∑
i=2

∑
β′∈Ca(i)

∑
β∈Ca(j)
β≥β′

(∏
`

cβ`,β′`

)
k∑
d=0

∑
α′∈C̃a(d−α0)

(∏
`

X
(β′`,α

′
`)

n−s−2(u`)

)(
j

k − d

)

=

j∑
i=2

k∑
d=0

cj,i

(
j

k − d

) ∑
β′∈Ca(i)

∑
α′∈C̃a(d−α0)

X
(β′1,α

′
1)

n−s−2 (u1) · · ·X(β′a,α
′
a)

n−s−2 (ua) .

This exactly cancels with the quadruple sum on the second line of (2.3.10), trans-

forming (2.3.10) into

U (j,k)
n (v) =

j∑
a=2

∑
u∈(T1(v)

a )

pac

k∑
α0=0

(
s+ a

α0

) ∑
β∈Ca(j)

∑
α∈C̃a(k−α0)

a∏
`=1

(∗)` ,

where (∗)` = ∆Y
(β`,α`)
n−s−1 (u`) for at least one value of ` in [1, a], and, when not equal

to that, is equal to the last double sum inside the brackets in (2.3.11).

By the induction hypothesis, the ∆Y terms have (1 + β) norm bounded above

by something exponentially small:

‖∆Y (β`,α`)
n−s−1 (u`)‖ = O (exp [−κβ`,α`(n− s− 1)]) . (2.3.13)

We note that a and each β` and α` are all bounded above by j and that in each
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product X
(β1,α1)
n−s−1 (u1) · · ·X(βa,αa)

n−s−1 (ua), the terms are independent. The inductive hy-

pothesis implies each factor X
(j,k)
n has L1+β norm that is O(nλ(j,k)).

Returning to (2.3.6), we may apply Lemma 2.3.5 to see that for each s, the

quantity psc
∑

v∈Ts U
(j,k)
n (v) is an average of |Ts| terms all having mean zero and

L1+β bound exponentially small in n − s, and that averaging introduces another

exponentially small factor, exp(−νs). Because the constants κ, λ and µ vary over

a set of bounded cardinality, the product of these three upper bounds,

O
(
exp(−κ(n− s)) · exp(−νs) · nλ(j,k)

)
decreases exponentially n.

Step 6: Prove (c) by induction on (j, k). The final stage of the induction is to

assume (a)–(c) for (j′, k′) lexicographically smaller than (j, k) and prove (c) for

(j, k). We use the following easy fact.

Lemma 2.3.7. If an →∞ and an ∼ bn then the partials sums are also asymptoti-

cally equivalent:
∑n

k=1 ak ∼
∑n

k=1 bk. 2

We begin the inductive proof of with the case k = 0. Rearranging the conclusion

of Corollary 2.3.4, we see that

X(j,0)
n = Y (j,0)

n +
n−1∑
m=0

j−1∑
i=1

X(i,0)
m .

Using Lemma 2.3.7 the induction hypothesis, and the fact that Y
(j,0)
n = O(1) sim-
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plifies this to

X(j,0)
n ∼

n−1∑
m=0

[
j−1∑
i=1

mi−1c′iW

]

∼
n−1∑
m=0

c′j−1m
j−2W

∼ c′jn
j−1W

where c′j = limn→∞
c′j−1

n

∑n−1
m=0(m/n)j−2 = c′j−1/(j − 1).

The base case k = 0 being complete, we induct on k. The same reasoning,

observing that the first inner sum is dominated by the d = k − 1 term and the

second by the i = j − 1 and d = k term, gives

X(j,k)
n = Y (j,k)

n +
n−1∑
m=0

[
k−1∑
d=0

(
j

k − d

)
X(j,d)
m +

j−1∑
i=1

cj,i

k∑
d=0

(
j

k − d

)
X(i,d)
m

]

∼
n−1∑
m=0

(
jX(j,k−1)

m + cj,j−1X
(j−1,k)
m

)
∼

n−1∑
m=0

[
jmj+k−2Wc′j,k−1 + cj,j−1c

′
j−1,kWmj+k−2]

∼ W

(
jc′j,k−1 + cj,j−1c

′
j−1,k

j + k − 1

)
nj+k−1 .

Setting c′j,k :=
jc′j,k−1 + cj,j−1c

′
j−1,k

j + k − 1
completes the almost-sure part of (c) by induc-

tion. The L1+β portion is similar, but we need one more easy fact.

Lemma 2.3.8. If an →∞ and bn → 0 then
∑n

k=1 anbn = o (
∑n

k=1 ak). 2
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This allows us to calculate

∥∥∥X(j,k)
n n−(j+k−1) −Wc′j,k

∥∥∥
L1+β

=

∥∥∥∥∥n−(j+k−1)
n−1∑
m=0

[
k−1∑
d=0

(
j

k − d

)
X(j,d)
m +

j−1∑
i=1

cj,i

k∑
d=0

(
j

k − d

)
X(i,d)
m

]

−Wc′j,k − Y (j,k)
n n−(j+k−1)

∥∥∥∥∥
L1+β

≤ o(1) + n−(j+k−1)

∥∥∥∥∥
n−1∑
m=0

(
jX(j,k−1)

m + cj,j−1X
(j−1,k)
m

)
− nj+k−1Wc′j,k

∥∥∥∥∥
L1+β

≤ o(1) + n−(j+k−1)
n−1∑
m=0

mj+k−2

(
j

∥∥∥∥∥X(j,k−1)
m

mj+k−2 −Wc′j,k−1

∥∥∥∥∥
L1+β

+ cj,j−1

∥∥∥∥∥X(j−1,k)
m

mj+k−2 −Wc′j−1,k

∥∥∥∥∥
L1+β

)

= o(1) .

This completes the induction, and the proof of Theorem 2.3.6.

2.3.3 Expansion at Criticality

An easy inequality similar to classical Harris inequality [Har60] is as follows.

Lemma 2.3.9. For finite sets of edges E1, E2, E3, define Aj to be the event that all

edges in Ej are open. Then

P[A1 ∩ A2] ·P[A1 ∩ A3] ≤ P[A1] ·P[A1 ∩ A2 ∩ A3] .

Proof. Writing each term explicitly, this is equivalent to the inequality

p|E1∪E2|+|E1∪E3| ≤ p|E1|+|E1∪E2∪E3| .

42



Because p ≤ 1, this is equivalent to

|E1 ∪ E2|+ |E1 ∪ E3| ≥ |E1|+ |E1 ∪ E2 ∪ E3| ,

which is easily proved for all triples E1, E2, E3 by inclusion-exclusion.

Before finding the expansion at criticality, we show that focusing only on the

first n levels of the tree and averaging over the remaining levels causes only a

subpolynomial error in an appropriate sense.

Proposition 2.3.10. Suppose E[Z(2k−1)(1+β)] < ∞, and set p = pc + ε. Fix δ > 0

and let n = n(ε) = dε−δe. Then for δ sufficiently small and each ` > 0,

∑
{ui}∈(Tn

k )

PT[0↔p u1, . . . , uk]
(
θT(u1)(p) · · · θT(uk)(p)− θ(p)

k
)

= o(ε`) (2.3.14)

GW-almost surely as ε→ 0+.

Proof. For sufficiently small δ > 0, we note that (pc+ε)
m ≤ 2pmc for each m ∈ [n, kn]

and for ε sufficiently small. This will be of use throughout, and is responsible for

the appearance of factors of 2 in the upper bounds.

Next, bound the variance of

∑
{ui}∈(Tn

k )

PT[0↔p u1, . . . , uk]
[
θT(u1)(q) · · · θT(uk)(q)− θ(q)

k
]

for a fixed vertex, q. This expression has mean zero conditioned on Tn. Its variance

is equal to the expected value of its conditional variance given Tn. We therefore

square and take the expectation, where the second sum in the second and third
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lines are over pairs of disjoint k-tuples of points.

E


 ∑
{ui}∈(Tn

k )

PT[0↔p u1, . . . , uk]
(
θT(u1)(q) · · · θT(uk)(q)− θ(q)

k
)

2 ∣∣∣∣∣ Tn


=
1

(k!)2

k∑
r=1

r!
∑

{ui}ki=1,{vi}ki=r+1 dist.

(
k

r

)2

×PT[0↔p u1, . . . , uk]PT[0↔p u1, . . . , ur, vr+1, . . . , vk]Cr

≤ 1

(k!)2

k∑
r=1

r!
∑

{ui}ki=1,{vi}ki=r+1 dist.

(
k

r

)2

×PT[0↔p u1, . . . , ur]PT[0↔p u1, . . . , uk, vr+1, . . . , vk]Cr

≤ 4pnc

k∑
r=1

(
2k − r
k

)(
k

r

)
CrX

(2k−r)
n .

Here we have used the bounds PT[0↔p u1, . . . , ur] ≤ 2pnc and

PT[0↔p u1, . . . , vk] ≤ 2PT[0↔pc u1, . . . , vk]

and we have defined

Cr := E
[(
θT(u1)(q) · · · θT(uk)(q)− θ(q)

k
)

×
(
θT(u1)(q) · · · θT(ur)(q)θT(vr+1)(q) · · · θT(vk)(q)− θ(q)

k
)]
.

Taking the expected value and using Theorem 2.3.6 along with Jensen’s Inequal-

ity and induction gives that the variance is bounded above by Cpncn
2k−2 for some

constant C. This is exponentially small in n, so there exist constants ck, Ck > 0 so

that the variance is bounded above by Cke
−ckn.

Define a = a(m, r) = 1
m

+ r
m`+2 and b = b(m, r) = 1

m
+ r+1

m`+2 . For each ε ∈ (0, 1)

there exists a unique pair (m, r) such that ε ∈ [1/m, 1/(m − 1)) and ε ∈ [a, b).
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Assume for now that da−δe = db−δe; the case in which the two differ is handled at

the end of the proof. For all ε ∈ [a, b) and p = pc + ε, we have

∑
{ui}∈(Tn

k )

PT [0↔p u1, . . . , uk] θT(u1)(p) · · · θT(uk)(p)

≤
∑

{ui}∈(Tn
k )

PT [0↔pc+b u1, . . . , uk] θT(u1)(pc + b) · · · θT(uk)(pc + b) .

By Chebyshev’s inequality, the conditional probability that the right-hand side is

b`+1 greater than its mean, given Tn, is at most Ck ·b−(2`+2)e−ckn. Because n = db−δe,

this is finite when summed over all possible m and r, implying that all but finitely

often

∑
{ui}∈(Tn

k )

PT [0↔pc+b u1, . . . , uk] θT(u1)(pc + b) · · · θT(uk)(pc + b)

≤ θ(pc + b)k
∑

{ui}∈(Tn
k )

PT [0↔pc+b u1, . . . , uk] + b`+1 .

By a similar argument, we obtain the lower bound

∑
{ui}∈(Tn

k )

PT [0↔pc+b u1, . . . , uk] θT(u1)(pc + b) · · · θT(uk)(pc + b)

≥ θ(pc + a)k
∑

{ui}∈(Tn
k )

PT [0↔pc+a u1, . . . , uk]− b`+1 .
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Letting (∗) denote the absolute value of the left-hand-side of (2.3.14), we see that

(∗) ≤ θ(pc + b)k
∑

{ui}∈(Tn
k )

PT [0↔pc+b u1, . . . , uk]

− θ(pc + a)k
∑

{ui}∈(Tn
k )

PT [0↔pc+a u1, . . . , uk] + 2b`+1

≤ 2(θ(pc + b)k − θ(pc + a)k)X(k)
n

+ θ(pc + b)k (PT [0↔pc+b u1, . . . , uk]−PT [0↔pc+a u1, . . . , uk]) + 2b`+1

≤ 2(θ(pc + b)k − θ(pc + a)k)X(k)
n + θ(pc + b)k

2 · n · k(b− a)

pc
X(k)
n + 2b`+1 ,

where the last inequality is via the Mean Value Theorem.

Dividing by ε` and setting Ck = 2k/pc, we have

2
θ(pc + b)k − θ(pc + a)k

ε`
X(k)
n + Ck · n · θ(pc + b)k

b− a
ε`

X(k)
n + 2b(b/ε)`

≤ 2
b− a
ε`
· θ(pc + b)k − θ(pc + a)k

b− a
X(k)
n

+ Ck · n · θ(pc + b)k
b− a
ε`

X(k)
n + 2b(b/a)`

≤ 2k
b− a
ε`

max
x∈[pc,1]

θ′(x)X(k)
n

+ Ck · n · θ(pc + b)k
b− a
ε`

X(k)
n + 2b

(
b

a

)`
again by the Mean Value Theorem.

By Theorem 2.3.6(c), n−(k−1)X
(k)
n converges as n → ∞. By definition of b, a

and n, (b−a)nk
ε`

→ 0 as ε → 0 for δ sufficiently small, thereby completing the proof

except in the case when da−δe 6= db−δe.

When da−δe and db−δe differ, we can split the interval [a, b) into subintervals

[a, c − δ′), [c − δ′, c) and [c, b), where c ∈ (a, b) is the point where dx−δe drops.
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Repeating the above argument for the first and third intervals, taking δ′ sufficiently

small, and exploiting continuity of the expression in (2.3.14) on [a, c) provides us

with desired asymptotic bounds for the middle interval, hence the proof is complete.

As a midway point in proving Theorem 2.3.1, we obtain an expansion for θT(pc+

ε) that for a given ε is measurable with respect to Tn(ε), where n(ε) grows like a

small power of ε−1.

Lemma 2.3.11. Suppose E[Z(2`+1)(1+β)] < ∞ for some ` ≥ 1 and β > 0. Define

n(ε) := dε−δe. Then for δ > 0 sufficiently small, we have GW-a.s. the following

expansion as ε→ 0+:

θT(pc + ε) =
∑̀
i=1

(
i∑

j=1

(−1)j+1

i∑
d=j

pdcrj,dX
(j,i−d)
n(ε)

)
µiεi + o(ε`).

Proof. For each j and n, define

B̃on
(j)

n (ε) :=
∑

{vi}∈(Tn
j )

PT[0↔p v1, . . . , vj]θT(v1)(p) · · · θT(vj)(p)

and Bon(j)n (ε) :=
∑

{vi}∈(Tn
j )

PT[0↔p v1, . . . , vj]θ(p)
j

where we write p = pc + ε. Applying the Bonferroni inequalities to the event

{0↔p ∞} =
⋃
v∈Tn{0↔p v ↔∞} yields

2j∑
i=1

(−1)i+1 · B̃on
(i)

n(ε)(ε) ≤ θT(pc + ε) ≤
2j±1∑
i=1

(−1)i+1 · B̃on
(i)

n(ε)(ε) (2.3.15)

for each j, where the ± may be either a plus or minus.
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For sufficiently small δ > 0, Proposition 2.3.10 allows us to replace each

B̃on
(i)

n(ε)(ε) with Bon
(i)
n(ε)(ε), introduce an o(ε`) error term, provided E[Z(2i−1)(1+β)] <

∞. Moreover, we note

Bon
(i)
n(ε)(ε) = θ(pc + ε)i

∑
{vr}∈(Tn(ε)

i
)

PT[0↔pc+ε v1, . . . , vi]

≤ Cθ(pc + ε)iX
(i,0)
n(ε) = o(εi−1) .

The constant C is introduced when we bound (1 + ε/pc)
|T(v1,...,vi)| from above by

a constant C for δ sufficiently small; the limit follows from Theorem 2.3.6(c). For

each j, apply (2.3.15) to show

θT(pc + ε) =
∑̀
j=1

(−1)j+1Bon(j)n (ε) + o(ε`) . (2.3.16)

Now expand

Bon(j)n (ε) = θ(pc + ε)j
∑

{vi}∈(Tn
j )

(pc + ε)|T(v1,...,vj)|

=

(∑̀
i=j

rj,iε
i + o(ε`)

) ∑
{vi}∈(Tn

j )

p|T(v1,...,vj)|
c (1 + ε/pc)

|T(v1,...,vj)|

=

(∑̀
i=j

rj,iε
i + o(ε`)

) ∑
{vi}∈(Tn

j )

p|T(v1,...,vj)|
c

×

(∑̀
i=0

(
|T(v1, . . . , vj)|

i

)
εi

pic
+O(n`+1ε`+1)

)

=

(∑̀
i=j

rj,iε
i + o(ε`)

)(∑̀
i=0

X(j,i)
n

εi

pic
+ o(ε`)

)

=
∑̀
i=j

µiεi

(
i∑

d=j

pdcrj,dX
(j,i−d)
n

)
+ o(ε`) . (2.3.17)

Plugging this into (2.3.16) completes the Lemma.
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We are almost ready to prove Theorem 2.3.1. We have dealt with the martingale

part. What remains is to get rid of the predictable part. The following combinatorial

identity is the key to making the predictable part disappear.

Lemma 2.3.12. Fix i ≥ 1 and suppose E[Zi+1] < ∞; then for each a, b ≤ i we

have
i∑

d=1

i∑
j=1

(−1)j−1pdcrj,dcj,a

(
j

b− d

)
= (−1)a+1pbcra,b .

Proof. Begin as in the proof of Proposition 2.2.6 with the identity

[
1− φ(1− (pc + ε)θ(pc + ε))

]a
= θ(pc + ε)a .

The idea is to take Taylor expansions of both sides and equate coefficients of εb;

more technically, taking Taylor expansions of both sides up to terms of order o(εi)

yield two polynomials in ε of degree i whose difference is o(εi) thereby showing the

two polynomials are equal. The coefficient [εb]θ(pc+ε)a of εb on the right-hand side

is ra,b, by definition. On the left-hand-side, we write

[
1− φ(1− (pc + ε)θ(pc + ε))

]a
=

[ i∑
k=1

(−1)k+1(1 + ε/pc)
kθ(pc + ε)kpkc

φ(k)(1)

k!
+ o(εi)

]a
= (−1)a

i∑
j=1

(−1)j(1 + ε/pc)
jθ(pc + ε)jcj,a + o(εi) .
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The coefficient of εb of (1 + ε/pc)
jθ(pc + ε)j is

[εb](1 + ε/pc)
jθ(pc + ε)j =

b∑
d=j

(
[εd]θ(pc + ε)j

) (
[εb−d](1 + ε/pc)

j
)

=
b∑

d=j

rj,d

(
j

b− d

)
p−(b−d)c .

Equating the coefficients of εb on both sides then gives

(−1)a
i∑

j=1

(−1)jcj,a

b∑
d=j

rj,d

(
j

b− d

)
p−(b−d)c = ra,b .

Multiplying by pbc(−1)a+1 on both sides completes the proof.

With Theorem 2.3.6 and Lemma 2.3.12 in place, the limits of M
(i)
n fall out easily.

Lemma 2.3.13. Suppose E[Zi+1] <∞ for some i and let β > 0 with E[Zi(1+β)] <

∞. Then

(a) The sequence (M
(i)
n )∞n=1 is a martingale with respect to the filtration (Tn)∞n=1.

(b) There exist positive constants C, c depending only on i, β and the progeny dis-

tribution so that ‖M (i)
n+1 −M

(i)
n ‖L1+β ≤ Ce−cn.

(c) There exists a random variable M (i) so that M
(i)
n → M (i) both almost surely

and in L1+β.

Proof. Note first that (c) follows from (a) and (b) by the triangle inequality to-

gether with the Lp martingale convergence theorem. Parts (a) and (b) are proved
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simultaneously. Write

µ−i
(
M

(i)
n+1 −M (i)

n

)
=

i∑
j=1

(−1)j+1

i∑
d=j

pdcrj,d

(
X

(j,i−d)
n+1 −X(j,i−d)

n

)

=
i∑

j=1

(−1)j+1

i∑
d=j

pdcrj,d

(
∆Y

(j,i−d)
n+1 +

j∑
a=1

cj,a

i−d∑
b=0

(
j

i− d− b

)
X(a,b)
n −X(j,i−d)

n

)

=
i∑

j=1

i∑
d=j

(−1)j+1pdcrj,d∆Y
(j,i−d)
n+1

+
i∑

j=1

i∑
d=j

(−1)j+1pdcrj,d

(
j∑

a=1

i−d∑
b=0

cj,a

(
j

i− d− b

)
X(a,b)
n −X(j,i−d)

n

)
.

(2.3.18)

By Theorem 2.3.6, we have that ∆Y
(j,i−d)
n+1 is exponentially small in L1+β. This

means that we simply need to handle the second sum in (2.3.18). We claim that it

is identically equal to zero. This is equivalent to the claim that

i∑
j=1

i∑
d=j

j∑
a=1

i−d∑
b=0

(−1)j+1pdcrj,dcj,a

(
j

i− d− b

)
X(a,b)
n =

i∑
a=1

i∑
b=a

(−1)a+1pbcra,bX
(a,i−b)
n .

(2.3.19)

To prove this, we rearrange the sums in the left-hand-side of (2.3.19). In order

to handle the limits of each sum, we recall that cj,a = 0 for j < a and rj,d = 0 for
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d < j. Relabeling and swapping gives

i∑
j=1

i∑
d=j

j∑
a=1

i−d∑
b=0

(−1)j+1pdcrj,dcj,a

(
j

i− d− b

)
X(a,b)
n

=
i∑

j=1

i∑
d=j

j∑
a=1

i∑
b=d

(−1)j+1pdcrj,dcj,a

(
j

b− d

)
X(a,i−b)
n

=
i∑

a=1

i∑
b=a

X(a,i−b)
n

(
i∑

d=1

i∑
j=1

(−1)j−1pdcrj,dcj,a

(
j

b− d

))
.

Lemma 2.3.12 shows that the term in parentheses is equal to (−1)a+1pbcra,b, thereby

showing (2.3.19).

Proof of Theorem 2.3.1: Apply Lemma 2.3.11 to obtain some δ > 0 suffi-

ciently small so that

θT(pc + ε) =
∑̀
i=1

M (i)
n εi + o(ε`) (2.3.20)

with n = dε−δe. The exponential convergence of M
(i)
n from Lemma 2.3.13 together

with Markov’s inequality and Borel-Cantelli shows that

|M (i)
n −M (i)|nN → 0

almost surely for any fixed N > 0. Because n = dε−δe implies n−N = o(ε`) for N

sufficiently large, (2.3.20) can be simplified to

θT(pc + ε) =
∑̀
i=1

M (i)εi + o(ε`) .

It remains only to show that EM (i) = ri. Because M
(i)
n converges in L1+β, it

also converges in L1, implying E[M (i)] = E[M
(i)
1 ]. Noting that E[X

(j,k)
1 ] =

(
j
k

)
cj,1,
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we use Lemma 2.3.12 with a = 1 and b = i in the penultimate line to obtain

picE[M
(i)
1 ] +

i∑
j=1

i∑
d=j

(−1)j+1pdcrj,dE[X
(j,i−d)
1 ] =

i∑
j=1

i∑
d=j

(−1)j+1pdcrj,d

(
j

i− d

)
cj,i

= (−1)1+1picr1,i

= picri .

2

2.4 Regularity on the Supercritical Region

In this section we prove Russo-type formulas expressing the derivatives of θT (p)

as expectations of quantities measuring the number of pivotal bonds. The first

and simplest of these is Theorem 2.4.1, expressing θ′T (p) as the expected number

of pivotal bonds multiplied by p−1. In Section 2.4.2 we define some combinatorial

gadgets to express more general expectations (Definitions 2.4.7) and show that

these compute successive derivatives (Proposition 2.4.9). In Section 2.4.3, explicit

estimates on these expectations are given in Proposition 2.4.11, which under suitable

moment conditions lead to continuity of the first k derivatives at p+c , which is

Theorem 2.4.10.

2.4.1 Smoothness on (pc, 1)

To study regularity of θT (p), we obtain Russo-type formulas for the derivatives of

θT (p) as expectations of quantities measuring the number of pivotal bonds. For
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brevity, we only sketch the proof that θ is continuously differentiable in (pc, 1), and

give a birds-eye-view of the picture for higher derivatives.

Given T and p, let Tp = Tp(ω) denote the tree obtained from the p-percolation

cluster at the root by removing all vertices v not connected to infinity in T (v).

Formally, v ∈ Tp if and only if 0 ↔T,p v and v ↔T (v),p ∞. On the survival event

HT (p) let Bp denote the first node at which Tp branches. The event {Bp = v} is

the intersection of three events Open(v),NoBranch(v) and Branch(v) where:

• Open(v) is the event 0↔T,p v of the path from the root to v being open

• NoBranch(v) is the event that for each ancestor w < v, no child of w other

than the one that is an ancestor of v is in Tp

• Branch(v) is the event that v has at least two children in Tp .

We call |Bp| the branching depth. The main result of this subsection is the following.

Theorem 2.4.1. The derivative of the quenched survival function is given by

θ′T (p) = p−1ET |Bp| ,

which is finite and continuous on (pc, 1).

We provide a road-map to the proof of Theorem 2.4.1. From the classical theory

of branching processes, we have:

Proposition 2.4.2. For any p > pc define an offspring generating function

φp(z) :=
φ(1− pθ(p)(1− z))− φ(1− pθ(p))

θ(p)
. (2.4.1)

54



Then the conditional distribution of Tp given H(p) is Galton-Watson with offspring

generating function φp, which we will denote GWp. 2

This gives us exponential moments for |Bp|.

Lemma 2.4.3 (annealed branching depth has exponential moments). Let

Ap = Ap(φ) := φ′p(0) (2.4.2)

denote the probability under GWp that the root has precisely one child. Suppose r > 0

and p > pc satisfy (1 + r)Ap < 1. Then E(1 + r)|Bp| <∞.

Next we recast the p-indexed stochastic process {Tp : p ∈ [0, 1]} as a Markov

chain. Define a filtration {Gp : 0 ≤ p ≤ 1} by Gp = σ(T , {Ue ∨ p}). Clearly if p > p′

then Gp ⊆ Gp′ , thus {Gp} is a filtration when p decreases from 1 to 0. Informally,

Gp knows the tree, knows whether each edge e is open at “time” p, and if not,

“remembers” the time U(e) when e closed. The key is to note that {Tp} is in fact

Markovian:

Lemma 2.4.4. Fix any tree T . The edge processes {1U(e)≤p} are independent left-

continuous two-state continuous time Markov chains. They have initial state 1 when

p = 1 and terminal state 0 when p = 0, and they jump from 1 to 0 at rate p−1. The

process {Tp} is a function of these and is also Markovian on {Gp}.

Next we define the quantity β as β := inf{p : Tp is infinite}. Thus θT (p) = PT (β ≤

p) and θ′T (p) is the density, if it exists, of the PT -law of β. Before establishing

Theorem 2.4.1, we will need one additional lemma.
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Lemma 2.4.5. With probability 1, at p = β the root of Tp is connected to infinity,

|Bp| <∞ (i.e. Tp does branch somewhere for p = β), and there is a vertex v ≤ Bp

with Uv = β. Consequently, the event H(p) is, up to measure 0, a disjoint union of

the events {Bβ = v} ∩ {β ≤ p}.

Proof of Theorem 2.4.1: By Lemma 2.4.5 HT (p) is equal to the union of the

disjoint events {Bβ = v} ∩HT (p). On {Bβ = v} the indicator 1H(p) jumps to zero

precisely when Open(v) does so, which occurs at rate p−1|v|. Because all jumps

have the same sign, it now follows that

d

dp
θT (p) =

1

p

∑
v∈T

|v|P(Bp = v) =
1

p
E|Bp| ,

which may be +∞. Summing by parts, we also have

d

dp
θT (p) =

1

p

∑
v 6=0

P(Bp ≥ v) (2.4.3)

where Bp ≥ v denotes Bp = w for some descendant w of v.

To see that this is finite and continuous on (pc, 1), consider any p′ > pc and

r > 0 with (1 + r)p′Ap′ < 1. For any p ∈ (p′, (1 + r)p′) we have

PT (Bp ≥ v) = PT (Open(v))P(NoBranch(v, p))θT (v)(p)

≤ (1 + r)|v|(p′)|v|PT (NoBranch(v, p′)) .

Taking the expectation of the expression on the right and multiplying by θ(p′)
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we observe that

θ(p′)E

[∑
v∈T

(1 + r)|v|(p′)|v|PT(NoBranch(v, p′))

]

= E

[∑
v∈T

(1 + r)|v|(p′)|v|PT(NoBranch(v, p′))θT(v)(p
′)

]

= E

[
∞∑
n=0

(1 + r)nP(Bp′ ≥ n)

]
<∞

where the last inequality follows from Lemma 2.4.3. This now implies that for GW-

almost every T , the right-hand-side of (2.4.3) converges uniformly for p ∈ (p′, (1 +

r)p′), thus implying continuity on this interval. Covering (pc, 1) by countably many

intervals of the form (p′, (1 + r)p′), the theorem follows by countable additivity. 2

2.4.2 Smoothness of θ on the Supercritical Region

Building on the results from the previous subsection, we establish the main result

concerning the behavior of the quenched survival function in the supercritical region.

Theorem 2.4.6. For GW-a.e. T , θT (p) ∈ C∞((pc, 1)).

In order to prove this result, we define quantities generalizing the quantity

ET |Bp| and show that the derivative of a function in this class remains in the

class. We present the central definitions and key ideas, although the longer proofs

are omitted.

Throughout the remainder of this chapter, our trees are rooted and ordered,

meaning that the children of each vertex have a specified order (usually referred
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to as left-to-right rather than smallest-to-greatest) and isomorphisms between trees

are understood to preserve the root and the orderings.

Definition 2.4.7.

(i) Collapsed trees. Say the tree V is a collapsed tree if no vertex of V except

possibly the root has precisely one child.

(ii) Initial subtree. The tree T̃ is said to be an initial subtree of T if it has the

same root, and if for every vertex v ∈ T̃ ⊆ T , either all children of v are in

T̃ or no children of v are in T̃ , with the added proviso that if v has only one

child in T then it must also be in T̃ .

(iii) The collapsing map Φ. For any ordered tree T , let Φ(T ) denote the iso-

morphism class of ordered trees obtained by collapsing to a single edge any

path along which each vertex except possibly the last has only one child in T

(see figure below).

(iv) Notations T (V) and V � T . It follows from the above definitions that any

collapsed tree V is isomorphic to Φ(T̃ ) for at most one initial tree T̃ ⊆ T . If

there is one, we say that V � T and denote this subtree by T (V). We will

normally use this for T = Tp. For example, when V is the tree with one edge

then V � Tp if and only if Tp has precisely one child of the root, in which case

Tp(V) is the path from the root to Bp.

(v) The embedding map ι. If e is an edge of V and V � T , let ι(e) denote the
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path in T (V) that collapses to the edge carried to e in the above isomorphism.

For a vertex v ∈ V let ι(v) denote the last vertex in the path ι(e) where e is

the edge between e and its parent; if v is the root of V then by convention

ι(v) is the root of T .

(vi) Edge weights. If V � T and e ∈ E(V), define d(e) = dT,V(e) to be the

length of the path ι(e).

(vii) Monomials. A monomial in (the edge weights of) a collapsed tree V is a

set of nonnegative integers {F (e) : e ∈ E(V)} indexed by the edges of V ,

identified with the product

〈T,V , F 〉 :=


∏

e∈E(V) d(e)F (e) if V � T ,

0 otherwise.

. (2.4.4)

A monomial F is only defined in reference to a weighted collapsed tree V .

Definition 2.4.8 (monomial expectations). Given T, p, a positive real number r,

a finite collapsed tree V , and a monomial F , define functions R = R(T, r,V , p) and

D = D(T, F,V , p) by

R := ET

[
(1 + r)|E(Tp(V))|1V�Tp

]
(2.4.5)

D := ET [〈Tp,V , F 〉] . (2.4.6)

For example, if V1 is the tree with a single edge e and F1(e) = 1, then

〈Tp,V1, F1〉 = |Bp| and the conclusion of Theorem 2.4.1 is that for p > pc,

d

dp
θT (p) =

1

p
ET |Bp| =

1

p
D(T, F1,V1, p) . (2.4.7)
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The main result of this section, from which Theorem 2.4.6 follows without too much

further work, is the following representation.

Proposition 2.4.9. Let V be a collapsed tree and let F be a monomial in the

variables dT,V(e). Then there exists a collection of collapsed trees V1, . . . ,Vm for

some m ≥ 1 and monomials F1, . . . , Fm, such that

d

dp
ET 〈Tp,V , F 〉 =

1

p

m∑
i=1

ET 〈Tp,Vi, Fi〉 (2.4.8)

on (pc, 1) and is finite and continuous on (pc, 1) for GW-a.e. tree T . Furthermore,

each monomial Fi on the right-hand side of (2.4.8) satisfies deg(Fi) = 1 + deg(F )

and each of the edge sets E(Vi) satisfies |E(Vi)| ≤ 2 + |E(V)|.

From here, Theorem 2.4.6 follows from (2.4.7) and Proposition 2.4.9 by induc-

tion.

2.4.3 Continuity of the derivatives at pc

We now address the part of Theorem 2.1.2 concerning the behavior of the derivatives

of g near criticality. We restate this result here as the following Theorem.

Theorem 2.4.10. If E[Z(2k2+3)(1+β)] <∞ for some β > 0, then

lim
p→p+c

θ
(j)
T (p) = j!M (j)

for every j ≤ k GW-a.s. where M (j) are as in Theorem 2.3.1.
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To prove Theorem 2.4.10 we need to bound how badly the monomial expecta-

tions D(T, F,V , pc + ε) can blow up as ε ↓ 0, then use Lemma 2.2.1 to see that they

can’t blow up at all.

Proposition 2.4.11. Let V be a collapsed tree with ` leaves and E edges and let

F be a monomial in the edges of V. Suppose that the offspring distribution has at

least m moments, where m ≥ maxe F (e) and also m ≥ 3. Then

D(T, F,V , pc + ε) = O
(
ελ
)

for any λ < 2`− E − deg(F ) and GW-almost every T .
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Chapter 3

Critical Percolation and the

Incipient Infinite Cluster

This chapter is based on [Mic19], and contains the entire paper verbatim.

3.1 Introduction

We consider percolation on a locally finite rooted tree T : each edge is open with

probability p ∈ (0, 1), independently of all others. Let 0 denote the root of T and

Cp be the open p-percolation cluster of the root. We may consider the survival

probability θT (p) := P[|Cp| = +∞] and note that θT is an increasing function of

p. There thus exists a critical percolation parameter pc ∈ [0, 1] so that θT (p) = 0

for all p ∈ [0, pc) and θT (p) > 0 for p ∈ (pc, 1]. If T is a regular tree where each

non-root vertex has degree d+1—i.e. each vertex has d children—then the classical
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theory of branching processes shows that pc = 1
d

and θT (pc) = 0 (see, for instance,

[AN72]). Since critical percolation does not occur, we may consider the incipient

infinite cluster (IIC), in which we condition on critical percolation reaching depth

M of T and take M to infinity.

The IIC for regular trees was first constructed and considered by Kesten in

[Kes86b]. In that work, along with [BK06], the primary focus was on simple random

walk on the IIC for regular trees. Our focus is on three elementary quantities for

random T : the probability that critical percolation reaches depth n; the number

of vertices of Cp at depth n conditioned on percolation reaching depth n; and the

number of vertices in the IIC at depth n. For regular trees, these questions were

answered in the study of critical branching processes. In fact, these classical results

apply to annealed critical percolation on Galton-Watson trees. If we generate a

Galton-Watson tree T with progeny distribution Z ≥ 1 with E[Z] > 1, we may

perform pc = 1/E[Z] percolation at the same time as we generate T ; this is known

at the annealed process—in which we generate T and percolate simultaneously—

and is equivalent to generating a Galton-Watson tree with offspring distribution

Z̃ := Bin(Z, pc). Since E[Z̃] = 1, this is a critical branching process and thus the

classical theory can be used:

Theorem 3.1.1 ([KNS66]). Suppose E[Z2] <∞, and set Yn to be the set of vertices

at depth n of T connected to the root in pc = 1/E[Z] percolation. Then
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(a) The annealed probability of surviving to depth n satisfies

n ·P[|Yn| > 0]→ 2

Var [Z̃]
=

2E[Z]2

E[Z(Z − 1)]
.

(b) The annealed conditional distribution of |Yn|/n given |Yn| > 0 converges in

distribution to an exponential law with mean E[Z(Z−1)]
2E[Z]2

as n→∞.

Under the additional assumption of E[Z3] < ∞, parts (a) and (b) are due to

Kolmogorov [Kol38] and Yaglom [Yag47] respectively; as such, they are commonly

referred to as Kolmogorov’s estimate and Yaglom’s limit law. For a modern treat-

ment of these classical results, see [LPP95] or [LP17, Section 12.4]. Although less

widely known, Theorem 3.1.1 quickly gives a limit law for the size of the annealed

IIC.

Corollary 3.1.2. If E[Z2] < ∞, let Cn denote the number of vertices at depth n

in the annealed incipient infinite cluster. Then Cn/n converges in distribution to

the random variable with density λ2xe−λx with λ := 2E[Z]2

E[Z(Z−1)] on [0,∞). In other

words,

lim
n→∞

(
lim
M→∞

P[|Yn|/n ∈ (a, b) | |YM | > 0]
)

=

∫ b

a

λ2xe−λx dx

for each a < b.

This can be easily proven from Theorem 3.1.1 using an argument similar to the

proof of Theorem 3.3.11, and thus the details are omitted.

Our goal is to upgrade Theorem 3.1.1 and Corollary 3.1.2 to hold for the

quenched process; that is, rather than generate T and perform percolation at the
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same time as in the annealed case, we generate T and then perform percolation on

each resulting T . Before stating the quenched results, we recall some notation and

facts from the theory of branching processes. If we allow P[Z = 0] > 0 and condi-

tion on the resulting tree being infinite, we may pass to the reduced tree as in [LP17,

Chapter 5.7] in which we remove all vertices that have finitely many descendants;

this results in a new Galton-Watson process with some offspring distribution Z̃ ≥ 1.

We therefore assume without loss of generality that Z ≥ 1. For a Galton-Watson

tree T , let Zn denote the number of vertices at distance of n from the root; then

the process Wn = Zn/(E[Z])n converges almost-surely to some random variable W .

A first quenched result is that of [Lyo90], which states that for a.e. supercritical

Galton-Watson tree with progeny distribution Z, we have that the critical percola-

tion probability is pc = 1/E[Z]; furthermore, for almost every Galton-Watson tree

T, θT(p) = 0 for p ∈ [0, pc] and θT(p) > 0 for p ∈ (pc, 1]. For a fixed tree T , let PT [·]

be the probability measure induced by performing pc percolation on T . When T is

random, this is a random variable and we may ask about the almost sure behavior

of certain probabilities. Our main results are summarized in the following theorem:

Theorem 3.1.3. Let T be a Galton-Watson tree with progeny distribution Z ≥ 1

with E[Z] > 1. Suppose E[Zp] <∞ for each p ≥ 1. Set λ := 2E[Z]2

E[Z(Z−1)] and let Yn be

the set of vertices in depth n of T connected to the root in pc = 1/E[Z] percolation.

Then for a.e. T we have

(a) n ·PT[|Yn| > 0]→ Wλ a.s.
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(b) The conditioned variable (|Yn|/n | |Yn| > 0) converges in distribution to an

exponential random variable with mean λ−1 a.s.

(c) Let Cn denote the number of vertices in the quenched IIC of T at depth

n. Then Cn/n converges in distribution to the random variable with density

λ2xe−λx a.s.

Note that, surprisingly, the limit laws of parts (b) and (c) of Theorem 3.1.3 do

not depend at all on T itself but just on the distribution of Z. This is in sharp

contrast to the case of near-critical and supercritical percolation on Galton-Watson

trees, in which the behavior is dependent on the tree itself [MPR18]. One possible

justification for this lack of dependence on W , for instance, is that conditioning on

|Yn| > 0 forces certain structure of the percolation cluster near the root; since W is

mostly determined by the levels of T near the root, the behavior when conditioned

on |Yn| > 0 for large n does not depend on W . Part (a) of Proposition 3.3.8

corroborates this heuristic explanation.

The three parts of Theorem 3.1.3 are Theorems 3.3.3, 3.3.5 and 3.3.11 respec-

tively. The proof of part (a) utilizes its annealed analogue, Theorem 3.1.1(a), along

with a law of large numbers argument. Part (b) is proven by the method of moments

building on the work of [MPR18]. Part (c) follows from there with a similar law of

large numbers argument combined with two short facts about the structure of the

percolation cluster conditioned on |Yn| > 0 (this is Proposition 3.3.8).

Remark 3.1.4. Theorem 3.1.3 assumes that E[Zp] < ∞ for each p ≥ 1, and we
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suspect that this condition is an artifact of the proof. Since we use the method of

moments, it is natural that we require all moments of the underlying distribution to

be finite. We suspect that less rigid conditions are sufficient, but this would require

a different proof strategy than the method of moments, perhaps utilizing a stronger

anti-concentration statement in the vein of Proposition 3.3.8.

3.2 Set-up and Notation

We begin with some notation and a brief description of the probability space on

which we will work. Let Z be a random variable taking values in {1, 2, . . . , } with

µ := E[Z] > 1 and P[Z = 0] = 0. Define its probability generating function to be

φ(z) :=
∑

P[Z = k]zk. Let T be a random locally finite rooted tree with law equal

to that of a Galton-Watson tree with progeny distribution Z and let (Ω1, T , GW) be

the probability space on which it is defined. Since we will perform percolation on

these trees, we also use variables {Ui}∞i=1 where the Ui are i.i.d. random variables

uniform on [0, 1]; let (Ω2,F2,P2) be the corresponding probability space. Our

canonical probability space will be (Ω,F ,P) with Ω := Ω1 × Ω2, F := T ⊗ F2 and

P := GW × P2. We interpret an element ω = (T, ω2) ∈ Ω as the tree T with edge

weights given by the Ui random variables. To obtain p percolation, we restrict to

the subtree of edges with weight at most p. Since we are concerned with quenched

probabilities, we define the measure PT[·] := P[· |T] = P[· | T ]. Since this is a

random variable, our goal is to prove theorems GW-a.s.
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We employ the usual notation for a rooted tree T , Galton-Watson or otherwise:

0 denotes the root; Tn is the set of vertices at depth n; and Zn := |Tn|. In the case

of a Galton-Watson tree T, we define Wn := Zn/µ
n and recall that Wn → W almost

surely. Furthermore, if E[Zp] < ∞ for some p ∈ [1,∞), we in fact have Wn → W

in Lp [BD74, Theorems 0 and 5]. In the Galton-Watson case, define Tn := σ(Tn);

then (Tn)∞n=0 is a filtration that increases to T . For a vertex v of T , define T (v) to

be the descendant tree of v and extend our notation to include Tn(v), Zn(v),Wn(v)

and W (v). For vertices v and w, write v ≤ w if v is an ancestor of w.

For percolation, recall that the critical percolation probability for GW-a.e. T is

pc := 1/µ and that percolation does not occur at criticality [Lyo90]. For vertices v

and w with v ≤ w, let {v ↔ w} denote the event that there is an open path from

v to w in pc percolation; let {v ↔ (u,w)} be the event that v is connected to both

u and w in pc percolation; for a subset S of T, let {v ↔ S} denote the event that

v is connected to some element of S in pc percolation; lastly, let Yn be the set of

vertices in Tn that are connected to 0 in pc percolation.
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3.3 Quenched Results

3.3.1 Moments

For k ≥ j, let Cj(k) denote the set of j-compositions of k, i.e. ordered j-tuples of

positive integers that sum to k. Define

ck,j := pkc
∑

a∈Cj(k)

ma1ma2 · · ·maj

where mr := E[
(
Z
r

)
]. We use the following result from [MPR18]:

Theorem 3.3.1 ([MPR18]). Define

M (k)
n := ET

[(
|Yn|
k

)]
−

k−1∑
i=1

ck,i

n−1∑
j=0

ET

[(
|Yj|
i

)]
.

If E[Z2k] < ∞, then M
(k)
n is a martingale with respect to the filtration (Tn), and

there exist constants Ck and ck so that

‖M (k)
n+1 −M (k)

n ‖L2 ≤ Cke
−ckn .

While Theorem 3.3.1 is not stated precisely this way in [MPR18], the martingale

property follows from [MPR18, Lemma 4.1], while the L2 bound on the increments

is given in [MPR18, Theorem 4.4]. This gives us the leading term of each ET

[
|Yn|k

]
.

Proposition 3.3.2. For each k,

ET

[
|Yn|k

]
n−(k−1) → k!

(
p2cφ

′′(1)

2

)k−1
W

almost surely and in L2.
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Proof. By Theorem 3.3.1, M
(k)
n is a martingale with uniformly bounded L2 norm

for each k. By the Lp martingale convergence theorem, M
(k)
n converges in L2 and

almost surely. We now proceed by induction on k. For k = 1, ET[|Yn|] = Wn

which converges to W . Suppose that the proposition holds for all j < k. Then by

convergence of M
(k)
n ,

ET

[(
|Yn|
k

)]
n−(k−1) =

k−1∑
i=1

ck,in
−(k−1)

n−1∑
j=0

ET

[(
|Yj|
i

)]
+ o(1)

where the o(1) term is both in L2 and almost surely. By induction, the leading

term is the contribution from i = k− 1. Noting that ck,k−1 = (k− 1)p2c
φ′′(1)

2
and the

fact that
∑n−1

j=0 j
d ∼ 1

d+1
nd+1 completes the proof.

3.3.2 Survival Probabilities

Throughout, define λ := 2
p2cφ
′′(1)

. Our first task is to find a quenched analogue of

Kolmogorov’s estimate:

Theorem 3.3.3. If E[Z4] <∞, then

n ·PT[|Yn| > 0]→ Wλ

almost surely.

The proof utilizes the Bonferroni inequalities. In order to control the second-

order term, the variance of a sum of pairs is calculated, thereby introducing the

requirement of E[Z4] <∞. We begin first by proving upper and lower bounds:
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Lemma 3.3.4. For each n,

n · ET[|Yn|]2

ET[|Yn|2]
≤ n ·PT[|Yn| > 0] ≤ 2W

1− pc

where, W = supnWn.

Proof. The lower bound is the Paley-Zygmund inequality. For the upper bound, we

use [LP17, Theorem 5.24]:

PT[|Yn| > 0] ≤ 2

R(0↔ Tn)

where R(0↔ Tn) is the equivalent resistance between the root and Tn when all of

Tn is shorted to a single vertex and each edge branching from depth k− 1 to k has

resistance 1−pc
pkc

. Shorting together all vertices at depth k for each k gives the lower

bound

R(0↔ Tn) ≥
n∑
k=1

1− pc
Zkpkc

=
n∑
k=1

1− pc
Wk

≥ (1− pc)
n

W
.

Proof of Theorem 3.3.3: For each fixed m < n, the Bonferroni inequalities imply∣∣∣∣∣nPT[0↔ Tn]− n
∑
v∈Tm

PT[0↔ v ↔ Tn]

∣∣∣∣∣ ≤ n
∑

u,v∈(Tm
2 )

PT[0↔ (u, v)↔ Tn] .

(3.3.1)

If we can show that the right-hand side of (3.3.1) converges a.s. to zero for

some choice of m = m(n), then the survival probability is sufficiently close to a

sum of i.i.d. random variables. The random variables PT[0 ↔ v ↔ Tn] are i.i.d.

with mean pmc P[0 ↔ Tn−m], implying that the sum is close to WmP[0 ↔ Tn−m].
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Applying the annealed result Theorem 3.1.1 would then complete the proof after

noting that Wm → W almost surely provided m→∞. The remainder of the proof

follows this sketch.

Set m = dn1/4e; we then bound the second moment

E


 ∑
u,v∈(Tm

2 )

PT[0↔ (u, v)↔ Tn]


2

= E


 ∑
u,v∈(Tm

2 )

PT[0↔ (u, v)]PT[u↔ Tn]PT[v ↔ Tn]


2

= E

E


 ∑
u,v∈(Tm

2 )

PT[0↔ (u, v)]PT[u↔ Tn]PT[v ↔ Tn]


2 ∣∣∣∣∣ Tm




= E

E


 ∑
u,v∈(Tm

2 )

PT[0↔ (u, v)]PT[u↔ Tn]PT[v ↔ Tn]


2 ∣∣∣∣∣ Tm


(1/2)·2

≤ E


 ∑
u,v∈(Tm

2 )

PT[0↔ (u, v)] ‖PT[u↔ Tn]PT[v ↔ Tn]‖L2


2

≤
(

2

1− pc

)4

E[W
2
]2 · (n−m)−4E

[(
|Ym|

2

)2
]

≤ Cm2n−4 .

Multiplying by n, the second moment of the right-hand side of (3.3.1) is bounded

above by Cm2n−2 = O(n−3/2) which is summable in n. By Chebyshev’s Inequality

together with the Borel-Cantelli Lemma, the right-hand side of (3.3.1) converges to
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zero almost surely. This implies

nPT[0↔ Tn] = n
∑
v∈Tm

PT[0↔ v ↔ Tn] + o(1)

=
∑
v∈Tm

nPT[v ↔ Tn]

µm
+ o(1) . (3.3.2)

We want to show that the right-hand side of (3.3.2) converges to Wλ, so we

first calculate

Var

[ ∑
v∈Tm

nPT[v ↔ Tn]− nP[0↔ Tn−m]

µm

]

= E

[
Var

[∑
v∈Tm

nPT[v ↔ Tn]− nP[0↔ Tn−m]

µm

∣∣∣∣ Tm
]]

= E

[
1

µ2m

∑
v∈Tm

Var [nPT[v ↔ Tn]]

]

≤ C

µm

where the last inequality is via Lemma 3.3.4. Since this is summable in n, Cheby-

shev’s Inequality and the Borel-Cantelli Lemma again imply

∑
v∈Tm

nPT[v ↔ Tn]

µm
=
∑
v∈Tm

nP[0↔ Tn−m]

µm
+ o(1) = Wm(n ·P[0↔ Tn−m]) + o(1) .

Taking n → ∞ and utilizing Theorem 3.1.1 together with (3.3.2) completes the

proof. 2

3.3.3 Conditioned Survival

Theorem 3.3.5. Suppose E[Zp] <∞ for all p ≥ 1. Then the conditional variable

(|Yn|/n | |Yn| > 0) converges in distribution to an exponential random variable with

mean λ−1 for GW-almost every T.
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By conditional random variable (|Yn|/n | |Yn| > 0), we mean the random variable

with law PT[|Yn|/n ∈ · | |Yn| > 0].

Proof. The proof is via the method of moments. In particular, since the moment

generating function of an exponential random variable has a positive radius of con-

vergence, its distribution is uniquely determined by its moments. Thus, any se-

quence of random variables with each moment converging to the moment of an

exponential random variable must converge in distribution to that exponential ran-

dom variable [Bil95, Theorems 30.1 and 30.2].

Let Xn be a random variable with distribution (|Yn|/n | |Yn| > 0). It is sufficient

to show ET[Xk
n] → k!λ−k GW-a.s. since k!λ−k is the kth moment of an exponential

random variable. Proposition 3.3.2 and Theorem 3.3.3 imply

ET[Xk
n] =

ET[|Yn|k]
nkPT[|Yn| > 0]

=
ET[|Yn|k

nk−1
· 1

n ·PT[|Yn| > 0]

→ k!Wλ−(k−1) · 1

λW

= k!λ−k .

More can be said about the structure of the open percolation cluster of the root

conditioned on 0↔ Tn, but we require two general, more or less standard lemmas

first.
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Lemma 3.3.6. For any events A and B with P[B] 6= 0,

|P[A |B]−P[A]| ≤ P[Bc] .

Proof. Expand

P[A] = P[A |B](1−P[Bc]) + P[A |Bc]P[Bc]

and solve

P[A]−P[A |B] = (P[A |Bc]−P[A |B])P[Bc] .

Taking absolute values and bounding |P[A |Bc]−P[A |B]| ≤ 1 completes the proof.

Lemma 3.3.7. Let Xk be i.i.d. centered random variables with E[|X1|p] < ∞ for

some p ∈ [2,∞). Then there exists a constant Cp so that

P

[∣∣∣∣∣
n∑
k=1

Xk

n

∣∣∣∣∣ > t

]
≤ Cpt

−pn−p/2 + 2 exp

(
− nt2

Var [X1]

)

for all t > 0.

Proof. This is a straightforward application of [Che09, Theorem 2.1] which states

that for independent random variables Mi with E[Mi] = 0 and E[|Mi|p] < ∞ for

some p > 2 we have

P

[∣∣∣∣∣
n∑
i=1

Mi

∣∣∣∣∣ ≥ t

]
≤ Cpt

−p max
(
rn,p(t), (rn,2(t))

p/2
)

+ exp

(
− t2

16bn

)

where rn,u(t) =
∑n

i=1 E(|Mi|u1|Mi|≥3bn/t), bn =
∑n

i=1 E[M2
i ] and Cp is a positive

constant. Setting Mi = Xi/n completes the proof.
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For a fixed tree and m < n, define Bm(n) to be the event that 0↔ Tn through

precisely one vertex at depth m.

Proposition 3.3.8. Suppose E[Zp] <∞ for all p ≥ 1. There exists an N = N(T)

with N <∞ almost surely so that for all n ≥ N , we have

(a) PT[Bm(n)c |0↔ Tn] < Cn−1/4 for m = m(n) := d logn
4 log µ

e

(b) maxv∈Tn PT[v ∈ Yn |0↔ Tn] = O(n−1/8)

for some constant C > 0.

Proof. Note first that for the choice of m as in part (a), we have 1
2µ
Wn1/4 ≤

Zm ≤ 2µWn1/4 for sufficiently large n.

(a) Using Theorem 3.3.3 and Lemma 3.3.4, we bound

PT[Bm(n)c |0↔ Tn] ≤
(∑

v∈Tm PT[v ↔ Tn]
)2

PT[0↔ Tn]

≤
(

2

1− pc

)2
(∑

v∈TmW (v)

Zm

)2
Z2
m

(n−m)2PT[0↔ Tn]

≤ C

(∑
v∈TmW (v)

Zm

)2

Wn−1/2 (3.3.3)

for n sufficiently large, and some choice of C > 0 depending on the distribution of

Z. Applying Lemma 3.3.7 for p = 9 gives

P

[∣∣∣∣∣
∑

v∈TmW (v)

Zm
− E[W ]

∣∣∣∣∣ > n1/8

]
≤ C9n

−9/8 + 2 exp
(
−n1/4/Var [W ]

)
where we use the trivial bound of 1 ≤ Zm. Since this is summable in n, the Borel-

Cantelli Lemma implies that this event only occurs finitely often. In particular, this
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means that for sufficiently large n

PT[Bm(n)c |0↔ Tn] ≤ CWn−1/4 (3.3.4)

for some constant C > 0 depending only on the distribution of Z.

(b) Applying Lemma 3.3.6 to the measure PT[· |0↔ Tn] and recalling Bm(n) ⊆

0↔ Tn,

∣∣∣PT[v ∈ Yn |0↔ Tn]−PT[v ∈ Yn |Bm(n)]
∣∣∣ ≤ PT [Bm(n)c |0↔ Tn]

which is O(n−1/4) by part (a). It is thus sufficient to bound PT[v ∈ Yn |Bm(n)].

For a vertex v ∈ Tn and m < n, let Pm(v) be the ancestor of v in Tm. We then

have

PT[v ∈ Yn |Bm(n)] ≤ PT[0↔ Pm(v)↔ Tn |Bm(n)] .

Conditioned on Bm(n), there exists a unique vertex w ∈ Tm so that 0↔ w ↔ Tn;

this vertex w is chosen with probability bounded above by

PT[0↔ w ↔ Tn |Bm(n)]

≤ PT[0↔ w ↔ Tn]∑
u∈Tm PT[0↔ u↔ Tn]−

∑
(u1,u2)∈(Tm

2 ) PT[0↔ (u1, u2)↔ Tn]

≤ PT[w ↔ Tn]∑
u∈Tm PT[u↔ Tn]−

(∑
u∈Tm PT[u↔ Tn]

)2
≤ c(n−m)−1W (w)

(1 + o(1))
∑

u∈Tm PT[u↔ Tn]
(3.3.5)

where the latter inequality is by applying the bound of Lemma 3.3.4 to the

numerator and arguing as in (3.3.3) to almost-surely bound the denominator. In

particular, the o(1) term is uniform in w.
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We want to take the maximum over all possible w ∈ Tm, and note that for any

α > 0,

P

[
max
w∈Tm

W (w) > nα
]

= E

[
P

[
max
w∈Tm

W (w) > nα
∣∣ Tm]]

≤ E[Zm]P[W > nα]

≤ µm · E[W
2/α

]

n2

= O(n−7/4)

which is summable, implying that for any fixed α > 0, we eventually have

maxw∈TmW (w) ≤ nα. It merely remains to bound the denominator of (3.3.5).

Note that by Proposition 3.3.2, the lower bound given in Lemma 3.3.4 converges

almost surely to Wλ
2

as n→∞. In particular, this means that if we set

pn := P

[
Wλ

4
≤ nPT[|Yn| > 0]

]
,

then pn → 1. By Hoeffding’s inequality together with Borel-Cantelli, the number

of vertices u ∈ Tm for which we have

W (u)λ

4
≤ (n−m)PT[u↔ Tn]

is almost surely at least 1/2 of Tm for n sufficiently large. This gives

(n−m)
∑
u∈Tm

PT[u↔ Tn] ≥ λ

4

∑
u∈Tm

W (u)1W (u)λ/4≤(n−m)PT[u↔Tn] = Ω(Zm) .

Recalling that Zm = Θ(Wn−1/4) and plugging the above into (3.3.5) completes

the proof. 2
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3.3.4 Incipient Infinite Cluster

As in [Kes86a], we sketch a proof of the construction of the IIC. For an infinite tree

T , define T [n] to be the finite subtree of T obtained by restricting to vertices of

depth at most n.

Lemma 3.3.9. Suppose E[Z4] <∞; for a subtree t of T[n], we have

lim
M→∞

PT[Cpc [n] = t |0↔ TM ] =

∑
v∈tnW (v)

W
PT[Cpc [n] = t]

almost surely for each tree t.

The random measure µT on subtrees of T with marginals

µT

∣∣
Tn

[t] :=

∑
v∈tnW (v)

W
PT[Cpc [n] = t]

has a unique extension to a probability measure on rooted infinite trees GW almost

surely. The IIC is thus the random subtree of T with law µT.

Proof. Since each T has countably many vertices, Theorem 3.3.3 assures that

nPT[v ↔ Tn+|v|] = λW (v) for each vertex v of T a.s. When all of these limits

hold, we then have

PT[Cpc [n] = t |0↔ TM ] =
PT[Cpc [n] = t,0↔ TM ]

PT[0↔ TM ]

= PT[Cpc [n] = t]

(∑
v∈tn PT[v ↔ TM ] +O(|tn|2M−2)

PT[0↔ TM ]

)
M→∞−−−−→ PT[Cpc [n] = t]

∑
v∈tnW (v)

W

for each t. To show that the measure µT can be extended, we note that its marginals

are consistent, as can be seen via the recurrence W (v) = pc
∑

wW (w) where the
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sum is over all children of v. Applying the Kolmogorov extension theorem [Dur10,

Theorem 2.1.14] completes the proof.

It is easy to show that the law of the IIC can in fact be generated by conditioning

on p > pc percolation to survive and then taking p→ p+c :

Corollary 3.3.10. For a subtree t of T[n], we have

lim
p→p+c

PT[Cp[n] = t | |Cp| =∞] =

∑
v∈tnW (v)

W
PT[Cpc [n] = t]

almost surely.

Proof. As shown in [MPR18], we have

lim
p→pc

PT[|Cp| =∞]

p− pc
= KW

almost-surely for some constantK depending only on the offspring distribution. The

Corollary follows from Bayes’ theorem in the same manner as Lemma 3.3.9.

In light of Lemma 3.3.9, it is natural to guess that the number of vertices in

the IIC at depth n will asymptotically be the size-biased version of (|Yn| |0↔ Tn):

the sum
∑

v∈tnW (v) will be relatively close to |tn|W , therefore biasing each choice

of t by a factor of |tn|. In order to make this argument rigorous, we will invoke

Proposition 3.3.8 which shows that no single vertex has high probably of surviving

conditionally. Throughout, we use the notation n(a, b) = (na, nb) for a < b and C

to denote the IIC.
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Theorem 3.3.11. Suppose E[Zp] < ∞ for each 1 ≤ p < ∞. Then for each

0 ≤ a < b,

lim
n→∞

PT[Cn ∈ n(a, b)] =

∫ b

a

λ2xe−λx dx

almost surely. In fact, Cn/n converges in distribution to the random variable with

density λ2xe−λx for GW-almost every T.

Proof. To see that convergence in distribution follows from the almost sure limit,

apply the almost sure limit to each interval (a, b) with a, b ∈ Q; since there are only

countably many such intervals, there exists a set of full GW measure on which these

limits simultaneously exist for each rational interval, thereby implying convergence

in distribution [Dur10, Theorem 3.2.5].

We have

PT[Cn ∈ n(a, b)] = lim
M→∞

PT[Yn ∈ n(a, b) |0↔ Tn+M ] .

For a fixed n, write

PT[|Yn| ∈ n(a, b) |0↔ Tn+M ]

=
PT[0↔ Tn+M | |Yn| ∈ n(a, b)] ·PT[|Yn| ∈ n(a, b) |0↔ Tn] ·PT[0↔ Tn]

PT[0↔ Tn+M ]
.

(3.3.6)
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We then calculate

PT[0↔ Tn+M | |Yn| ∈ n(a, b)]

=
∑
S

PT[Yn = S | |Yn| ∈ n(a, b)]PT[S ↔ Tn+M ]

=
∑
S

PT[Yn = S | |Yn| ∈ n(a, b)]
∑
v∈S

PT[v ↔ Tn+M ] +O(M−2)

=
∑
v∈Tn

PT[v ∈ Yn | |Yn| ∈ n(a, b)]PT[v ↔ Tn+M ] +O(M−2) .

For a fixed n, we take M →∞ and utilize Theorem 3.3.3 to get

lim
M→∞

PT[0↔ Tn+M | |Yn| ∈ n(a, b)]

PT[0↔ Tn+M ]
=

1

W

∑
v∈Tn

PT[v ∈ Yn | |Yn| ∈ n(a, b)] ·W (v) .

(3.3.7)

We plug this into (3.3.6) to get the limit

lim
M→∞

PT[|Yn| ∈ n(a, b) |0↔ Tn+M ]

=

(∑
v∈Tn

PT[v ∈ Yn | |Yn| ∈ n(a, b)]

n
·W (v)

)

× (PT[|Yn| ∈ n(a, b) |0↔ Tn])

(
n ·PT[0↔ Tn]

W

)
.

Theorems 3.3.3 and 3.3.5 show that the latter two factors above have almost
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sure limits
∫ b
a
λe−λx dx and λ as n→∞, leaving only the first term. We note that

E

[∑
v∈Tn

PT[v ∈ Yn | |Yn| ∈ n(a, b)]

n
·W (v)

∣∣∣∣∣ Tn
]

=
∑
v∈Tn

PT[v ∈ Yn | |Yn| ∈ n(a, b)]

n

= ET

[
|Yn|
n

∣∣∣∣ |Yn| ∈ n(a, b)

]

=
ET

[
|Yn|
n
· 1|Yn|/n∈(a,b) |0↔ Tn

]
PT

[
|Yn|
n
∈ (a, b) |0↔ Tn

]
→
∫ b
a
λxe−λx dx∫ b
a
λe−λx dx

where the limit is by the continuous mapping theorem [Dur10, Theorem 3.2.4] and

Theorem 3.3.5. It’s thus sufficient to show that∣∣∣∣∣∑
v∈Tn

PT[v ∈ Yn | |Yn| ∈ n(a, b)]

n
· (W (v)− 1)

∣∣∣∣∣ n→∞−−−→ 0 (3.3.8)

almost surely.

Our strategy is to use a conditional version of the Borel-Cantelli Lemma together

with Chebyshev’s inequality. We bound the conditional variance

Var

[ ∑
v∈Tn

PT[v ∈ Yn | |Yn| ∈ n(a, b)]

n
· (W (v)− 1)

∣∣∣∣ Tn
]

= Var (W )
∑
v∈Tn

PT[v ∈ Yn | |Yn| ∈ n(a, b)]2

n2

≤ Var (W ) max
v∈Tn

PT[v ∈ Yn | |Yn| ∈ n(a, b)]
∑
v∈Tn

PT[v ∈ Yn | |Yn| ∈ n(a, b)]

n2

≤ Var (W ) max
v∈Tn

PT[v ∈ Yn | |Yn| ∈ n(a, b)] · E[Yn | |Yn| ∈ n(a, b)]

n2

≤ Var (W ) · b
n
·max
v∈Tn

PT[v ∈ Yn | |Yn| ∈ n(a, b)] . (3.3.9)
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We want to show that this is summable, and thus look to bound the max term.

Applying Lemma 3.3.6 to the measure PT[· | |Yn| ∈ n(a, b)] gives

∣∣PT[v ∈ Yn | |Yn| ∈ n(a, b)]−PT[v ∈Yn | |Yn| ∈ n(a, b), Bm(n)]
∣∣

≤ PT[Bm(n)c | |Ym| ∈ n(a, b)]

≤ PT[Bm(n)c |0↔ Tn]

PT[|Yn| ∈ n(a, b) |0↔ Tn]

= O(n−1/4) (3.3.10)

by Proposition 3.3.8 and Theorem 3.3.5. Similarly,

PT[v ∈ Yn | |Yn| ∈ n(a, b), Bm(n)] =
PT[v ∈ Yn, |Yn| ∈ n(a, b), Bm(n)]

PT[|Yn| ∈ n(a, b), Bm(n)]

≤ PT[v ∈ Yn, Bm(n)]

PT[|Yn| ∈ n(a, b), Bm(n)]

=
PT[v ∈ Yn |Bm(n)]

PT[|Yn| ∈ n(a, b) |Bm(n)]
. (3.3.11)

Using Lemma 3.3.6 once again expands the denominator

∣∣∣PT[|Yn| ∈ n(a, b) |Bm(n)]−PT[|Yn| ∈ n(a, b) |0↔ Tn]
∣∣∣ ≤ PT[Bm(n)c |0↔ Tn]

≤ Cn−1/4

by Proposition 3.3.8. Plugging into (3.3.11) gives the upper bound

PT[v ∈ Yn | |Yn| ∈ n(a, b), Bm(n)] ≤ PT[v ∈ Yn |Bm(n)]

PT[|Yn| ∈ n(a, b) |0↔ Tn]− Cn−1/4
.

(3.3.12)

Combining (3.3.10), (3.3.12) and Proposition 3.3.8 bounds

max
v∈Tn

PT[v ∈ Yn | |Yn| ∈ n(a, b)] = O(n−1/8) .
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Thus, by (3.3.9), the conditional variance is almost surely summable. For any fixed

δ > 0, Chebyshev’s inequality then implies

P

[∣∣∣∣∣∑
v∈Tn

PT[v ∈ Yn | |Yn| ∈ (a, b)]

n
· (W (v)− 1)

∣∣∣∣∣ > δ

∣∣∣∣∣ Tn
]

is summable almost surely. Applying a conditional Borel-Cantelli Lemma (e.g.

[Che78]) shows that (3.3.8) holds almost surely.
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Chapter 4

Invasion Percolation

This final chapter is based on excerpts from [MPR17], which is joint with Robin

Pemantle and Josh Rosenberg. For brevity, proofs are omitted and abbreviated

from certain sections.

4.1 Introduction

Given an infinite rooted tree, how might one sample, nearly uniformly, from the

set of paths from the root to infinity? One motive for this question is that nearly

uniform sampling leads to good estimates on the growth rate [JS89]. One might be

trying to estimate the size of a search tree, or, in the case of [RS00], to determine

the growth rate of the number of self-avoiding paths.

A number of methods have been studied. One is to do a random walk on the

tree, with a “homesickness” parameter determining how much steps back toward
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the root are favored [LPP96]. The parameter needs to be tuned near criticality: too

much homesickness and the walk gets stuck near the root; too little homesickness

and the walk goes to infinity without taking the time to ensure that the path is

well randomized. Randall and Sinclair [RS00] solve this by estimating the critical

parameter as the walk progresses, re-tuning the homesickness to lie above this by

an amount decreasing at an appropriate rate.

Another approach is to use percolation. One conditions the percolation cluster

to survive to level N ; as the percolation parameter decreases to criticality and

N is taken to infinity, the law of this cluster approaches the law of the incipient

infinite cluster (IIC). For many graphs—e.g. regular or Galton-Watson trees—the

IIC almost surely contains a unique infinite path, thereby giving a mechanism for

sampling such a path. In practice, the same considerations arise as with homesick

random walks: tuning the percolation parameter too low yields too little likelihood

of survival and too great a time cost to rejection sampling; too great a percolation

parameter results in too many surviving paths and a selection problem which leads

to poor randomization.

Invasion percolation was introduced as a model for how viscous fluid creeps

through an environment in [WW83]. For a more complete history, see Section 1.1.

Each site is given an independent U [0, 1] random variable, representing how great

the percolation probability would have to be before the site would be open. The

cluster then grows by adding, at each time step, the site with the least U value
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among sites neighboring the cluster but not in the cluster. On trees, it is not hard

to see that the lim sup of U -values of bonds chosen is equal to the critical percolation

parameter. In other words, instead of running percolation at pc and conditioning

to survive, one allows slightly supercritical bonds but less and less as the cluster

grows. As is the case for the IIC, the invasion cluster almost surely contains only

one infinite path in the case of regular or Galton-Watson trees, and thus gives

a different mechanism for sampling paths. Unlike the IIC and homesick random

walk, invasion percolation requires no tuning to criticality and is an instance of

self-organized criticality.

The invasion cluster has some properties in common with the IIC but not all.

For example, results of Kesten [Kes86a] and Zhang [Zha95] show that the growth

exponents of the two are equal on the two-dimensional lattice; however the measures

of the two clusters are mutually singular on the lattice [DSV09] as well as on a

regular tree [AGdHS08]. Our focus is the comparison of the laws induced on paths

by both the IIC and invasion percolation.

On a Galton-Watson tree T , there is a natural measure on paths, the limit-

uniform measure µT , which although it does not restrict precisely to the uniform

measure on each generation, approximates this as closely as possible. There is not,

however, a fast algorithm for sampling from it. Rules such as “split equally at each

node” lead to rapid sampling but the wrong entropy; in other words, the Radon-

Nikodym derivative with respect µT on generation N will be exponential in N . It
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is not hard to show that on almost every Galton-Watson tree (assuming a Z logZ

moment for the offspring distribution), the unique path in the IIC has law µT . Since

sampling from the IIC is problematic, it is therefore natural to ask how close the

law νT of the path chosen by the invasion cluster is to µT . It is easy to see that the

two laws are typically not equal. In particular, this shows that the IIC does not

stochastically dominate the invasion measure on Galton-Watson trees.

The best comparison one might hope for is that νT be absolutely continuous

with respect to µT , perhaps even with Radon-Nikodym derivative in Lp. Our main

result is as follows.

Theorem 4.1.1. Suppose the offspring distribution Z has at least p moments and

P[Z = 0] = 0; set p1 := P[Z = 1], let µ := E[Z], and denote q := log µ
log(1/p1)

. If

2p2q2 + (3p2 + 5p)q + (−p2 + 11p− 4) < 0,

then νT � µT almost surely.

The condition in Theorem 4.1.1 is a trade-off between p1 and p. In the case of

p = ∞, the condition becomes p1 < 1/µ
3+
√
17

2 . In the case of p1 = 0, the condition

is p > 11+
√
105

2
.

A summary of the argument behind Theorem 4.1.1 is as follows. Let Xn be the

KL-distance between the way that µT and νT split at the nth step γn of a path chosen

from νT . A sufficient condition for absolute continuity is that
∑∞

n=1 EXn < ∞. A

precise statement is given in Lemma 4.2.7 below. A more detailed outline of the

argument is given at the end of this section.
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The reason we have a hope of estimating Xn is that there is a backbone de-

composition for invasion percolation. Define the backbone to be the almost surely

unique non-backtracking path γ = (0, γ1, γ2, . . .) from the root to infinity. For any

vertex v define the pivot value at v, denoted β(v), to be the least p such that there

is a path from v to infinity in the subtree at v with all U variables (not includ-

ing the one at v) at most p. On a regular tree, invasion percolation was studied

in [AGdHS08, AGM13]. For the purposes of studying νT , the regular tree is a

degenerate case, because µT and νT are equal to each other and to the equally

splitting measure. Further, on regular trees, the incipient infinite cluster stochas-

tically dominates the invasion cluster; this fails to hold in the Galton-Watson case

due to the fact that µT 6= νT . Despite these differences, the results on backbones

and pivots in the regular case extend in a useful way to the Galton-Watson setting.

In particular, [AGdHS08] prove that the process {β(γn) − pc}n≥0 converges to the

Poisson lower envelope process when properly scaled; we prove similar results, and

combine Theorem 4.6.2 and Corollaries 4.6.3 and 4.6.4 into the following:

Theorem 4.1.2. Define hn := β(γn)− pc. Then

(i) Let {Uj}∞j=0 be IID random variables each uniformly distributed on (0, 1) and

define Mn = min{U0, . . . , Un}. Then for each ε > 0, the process {hn} may be

coupled with {Mn} so that with probability 1, hn satisfies (1− ε)pcMn ≤ hn ≤

(1 + ε)pcMn for all sufficiently large n.
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(ii) For any ε > 0 as k →∞,

(khdkte/pc)t≥ε
∗

=⇒ (L(t))t≥ε

where
∗

=⇒ denotes convergence in distribution of càdlàg paths in the Skorohod

space D[0,∞) and L(t) denotes the Poisson lower envelope process, defined

in [AGdHS08] and Section 4.6.

(iii) The sequence n ·hn converges in distribution to pc · exp(1), where exp(1) is an

exponential random variable with mean 1.

Conditioning on T , the way the invasion measure splits at v depends on the whole

tree. However, if one also conditions on the pivot at v, then the way the invasion

measure splits at v becomes independent of everything outside of the subtree at

v. A similar statement is true if one conditions on the pivot of v being less than

or equal to a certain value; these are the Markov properties of Propositions 4.4.4

and 4.4.6. The limiting behavior of these values is given in Theorem 4.4.8 and

Section 4.6. Further, Lemma 4.5.1 shows that this conditioned splitting measure is

close to a ratio of survival probabilities under supercritical Bernoulli percolation.

The problem is thus reduced to proving estimates of the survival probabilities of

Galton-Watson trees under supercritical Bernoulli percolation as in Section 4.3.

The remainder of the chapter is organized as follows. Section 4.2 sets up the

notation and gives some preliminary results. Some care is required to set up the

probability space so that we can easily speak of the random measures µT and
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νT , which are conditional on the Galton-Watson tree. Section 4.2 culminates in

Lemma 4.2.7 and Corollary 4.2.8. Section 4.3 estimates near-critical survival prob-

abilities for Galton-Watson trees. Section 4.4 proves two Markov properties for the

subtree from γn together with β(γn). The remainder of the section extends the work

of [AGdHS08] by proving a limit law for β(γn) which then implies an upper bound

on the rate at which β(γn) ↓ pc. In particular, Corollary 4.6.3 shows convergence

to the Poisson lower envelope process, as in [AGdHS08]. Section 4.5 completes the

proof of Theorem 4.1.1 by comparing the conditional invasion measure to the ratio

of survival probabilities and utilizing the estimates on survival probabilities from

Section 4.3.

Outline of Proof of Theorem 4.1.1

1. Absolute continuity follows from summability of KL-divergence of

splits

Let Xn be the KL-distance between the way that µT and νT split at the nth

step γn of a path chosen from νT . A sufficient condition for absolute continuity

is that
∑∞

n=1Xn <∞. A precise statement is given in Lemma 4.2.7. In fact,

we may replace the KL-distance with a process that differs from Xn for only

finitely many n (Corollary 4.2.8).

2. Shifting to the γn is the same as conditioning on the pivot being at

most a certain value
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We show that shifting to the γn is the same as examining a fresh Galton-

Watson tree with the pivot of the root conditioned to be at most a certain

random variable that we call the dual pivot, β∗n. This is the content of the

Markov property given in Proposition 4.4.4.

3. Understanding how β∗n behaves for large n

As n → ∞, the variables β∗n approach pc. We in fact will have that the

convergence is quite rapid, as shown by Theorem 4.4.8. The variables β∗n are

closely related to the pivots βn whose rate of decay is given in Theorem 4.1.2;

the process {β∗n}n is difficult to study by itself, although the pair (βn, β
∗
n) is

Markov with transition kernel given explicitly in Proposition 4.4.7.

4. Conditioned on the pivot of the root being at most p, the split of

the invasion measure is close to the ratio of survival probabilities

With Steps 2 and 3 in mind, we examine the split of the invasion measure

conditioned on the root having pivot at most p. Lemma 4.5.1 shows that this

splitting measure may be closely approximated by splitting according to the

probability that the subtree survives p-percolation.

5. The ratio of survival probabilities is close to the split of the limit-

uniform measure

The last remaining step is to show that if p is close to pc, the ratios of the

probabilities of surviving p-percolation closely approximate the splits of the
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limit uniform measure (Proposition 4.5.2). In order to show this, much work

needs to be done to approximate the near-critical survival probabilities of

Galton-Watson trees. This is the content and focus of Section 4.3.

4.2 Construction and preliminary results

4.2.1 Galton-Watson trees

We begin with some notation we use for all trees, random or not. Let U be the

canonical Ulam-Harris tree [ABF13]. The vertex set of U is the set V :=
⋃∞
n=1Nn,

with the empty sequence 0 := ∅ as the root. There is an edge from any sequence

a = (a1, . . . , an) to any extension a t j := (a1, . . . , an, j). The depth of a vertex v

is the graph distance between v and 0 and is denoted |v|. We work with trees T

that are locally finite rooted subtrees of U . The usual notations are in force: Tn

denotes the set of vertices at depth n; T (v) is the subtree of T at v, canonically

identified with a rooted subtree of U , in other words the vertex set of T (v) is

{w : v t w ∈ V (T )} ; ∂T denotes the set of infinite non-backtracking paths from

the root; if γ ∈ ∂T then γn (n ≥ 0) denotes the nth vertex in γ; the last common

ancestor of v and w is denoted v ∧ w and the last common vertex of γ and γ′ is

denoted γ ∧ γ′ ; ←−v denotes the parent of v . Let µnT denote the uniform measure

on the nth generation of T . In some cases, for example for almost every Galton-

Watson tree, the limit µT := limn→∞ µ
n
T exists and is called the limit-uniform
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measure [LP17, Chapter 17.6].

Turning now to Galton-Watson trees, let φ(z) :=
∑∞

n=1 pnz
n be the ordinary

generating function for a supercritical branching process with no death, i.e., φ(0) =

0. We recall,

φ′(1) = EZ =: µ

φ′′(1) = E[Z(Z − 1)]

where Z is a random variable with probability generating function φ. Throughout,

we assume E[Z2] < ∞; in particular, this also means that φ′′(1) < ∞. Moreover,

since our focus is on ∂T , the assumption of φ(0) = 0 can be made without loss of

generality by considering the reduced tree, as in [AN72, Chapter I.12].

We will work on the canonical probability space (Ω,F ,P) where Ω = (N ×

[0, 1])V, F is the product Borel σ-field, and P is the probability measure making the

coordinate functions ωv = (degv, Uv) IID with the law of (Z,U), where U is uniform

on [0, 1] and independent of Z. The variables {degv}—where degv is interpreted as

the number of children of vertex v—will construct the Galton-Watson tree, while

the variables {Uv} will be used later for percolation. Let T be the random rooted

subtree of U which is the connected component containing the root of the set of

vertices that are either the root or are of the form v t j such that 0 ≤ j < degv.

This is a Galton-Watson tree with ordinary generating function φ.

As is usual for Galton-Watson branching processes, we denote Zn := |Tn|. Ex-

tend this by letting Zn(v) denote the number of offspring of v in generation |v|+n;
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similarly, extend the notation for the usual martingale Wn := µ−nZn by letting

Wn(v) := µ−nZn(v). We know that Wn(v) → W (v) for all v, almost surely and

in Lp if the offspring distribution has p moments. This is stated without proof for

integer values of p ≥ 2 in [Har63, p. 16] and [AN72, p. 33, Remark 3]; for a proof

for all p > 1, see [BD74, Theorems 0 and 5]. Further extend this notation by letting

v(i) denote the ith child of v, letting Z
(i)
n (v) denote nth generation descendants of v

whose ancestral line passes through v(i), and letting W
(i)
n (v) := µ−nZ

(i)
n (v). Thus,

for every v, W (v) =
∑

iW
(i)(v). For convenience, define pc := 1/µ and recall that

pc is almost surely the critical percolation parameter for T [Lyo90].

4.2.2 Bernoulli and Invasion Percolation

In this subsection we give the formal construction of percolation on random trees,

and for invasion percolation. Our approach is to define a simultaneous coupling of

invasion percolations on all subtrees T of U via the U variables, then specialize to

the random tree T. Let T := σ({degv : v ∈ V}) denote the σ-field generated by the

tree variables. Because T is independent from the U variables, this means we have

constructed a process whose law, conditional on T , is invasion percolation on T.

We use the notation ET to denote E[· | T ]; similarly PT[·] := P[· | T ] . Moreover,

we use GW := P|T to denote the Galton-Watson measure on trees.

We begin with a similar construction for ordinary percolation. For 0 < p < 1,

simultaneously define Bernoulli(p) percolations on rooted subtrees T of U by taking
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the percolation clusters to be the connected component containing 0 of the induced

subtrees of T on all vertices v such that Uv ≤ p; note that we always include the

root 0, and thus the uniform variables Uv may equivalently be thought of as being

edge-weights connecting the parent of v to v. Let Fn be the σ-field generated by

the variables {Uv, degv : |v| < n}. Let pc = 1/µ = 1/φ′(1) denote the critical

probability for percolation. Write v ↔T,p w if Uu ≤ p for all u on the geodesic from

v to w in T . Informally, v ↔T,p w iff v and w are both in T and are connected in the

p-percolation. The event of successful p percolation on T is HT (p) := {0↔T,p ∞}

and the event of successful p percolation on the random tree T, is denoted HT(p) or

simply H(p). Let θ(T, p) := P[HT (p)] denote the probability of p percolation on T .

The conditional probability PT[H(p)] is measurable with respect to T and we may

define θT(p) := PT[H(p)]. Furthermore, we may define θ(p) = P[H(p)] = EθT(p).

Since pc = 1/µ is the critical percolation parameter for a.e. T, note that θT(p) = 0

for all p ∈ [0, pc].

Define invasion percolation on an arbitrary tree T as follows. Start with IT0 = 0

where we recall that 0 is the root of T . Inductively define ITn+1 to consist of ITn

along with the vertex of minimal weight Uv adjacent to ITn . The invasion percolation

cluster is defined as IT :=
⋃
n I

T
n . Note that IT is measurable with respect to the

U variables. Let I := IT denote the invasion cluster of the random tree T. By

independence of the U variables and T , the conditional distribution of I given T

agrees with that of invasion percolation.
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Proposition 4.2.1. For any p > pc, I almost surely reaches some vertex v such

that v ↔p ∞ in T(v).

Proof. We consider the following coupling that generates I at the same time as T:

begin with the root, and generate children according to Z, giving each new edge a

(0, 1) weight uniformly and independently. We denote this height 1 weighted tree as

L1. The sequence of weighted trees {Ln} is now defined inductively as follows: for

each n ≥ 1, Ln+1 is obtained by assigning Z children (using an independent copy of

Z) to the boundary vertex of Ln with the smallest corresponding edge weight, and

then giving each of the new edges a (0, 1) weight uniformly and independently.

For each n ≥ 1, define Fn to be the Borel σ-field inside of F that is generated

by Ln. Next, we define the increasing sequence of stopping times N1, N2, . . . in the

following way: set N1 equal to the minimum value of n such that all edges connected

to boundary vertices of Ln have weight at least p, and if no such value exists, set

N1 =∞. For j ≥ 1, setNj+1 equal to infinity if eitherNj =∞, or there is no n > Nj

such that all edges connected to boundary vertices of Ln have weight at least p, and

otherwise set Nj+1 equal to the minimum n > Nj for which this last condition is

satisfied. Observing that {N1 =∞} is simply the event that all edges of the invasion

cluster I have weight less than p, we see that P(N1 =∞) = θ(p). In addition, since

no edges in LNj are considered until time Nj+1, we also find that for every j, k with

1 ≤ j ≤ k <∞, the random variable Nj+1 −Nj is independent of Fk with respect

to the probability measure P(·|Nj = k). Finally, noting that (Nj+1 − Nj|Nj = k)
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has the same distribution as N1, we find that P(Nj+1 =∞|Nj <∞) = θ(p).

Now define Ap ∈ F to be the event that I eventually invades a vertex with

corresponding edge weight less than p. Since having a j for which Nj =∞ implies

Ap, we can now conclude from the above observations that

P(Ap) = E[P(Ap|T)] ≥
∞∑
j=0

θ(p)
(
1− θ(p)

)j
= 1 =⇒ PT(Ap) = 1 GW-a.s.,

thus completing the proof.

Corollary 4.2.2. For any p > pc, the number of edges in I with weight greater

than p is almost surely finite.

This was proven for a large class of graphs by Häggström, Peres and Schon-

mann [HPS99], but this class doesn’t cover the case of Galton-Watson trees condi-

tioned on survival; they exploit quite a bit of symmetry that does not occur in the

Galton-Watson case.

Proof. Let x be the first invaded vertex with an infinite subtree below with weights

less than p. Then after x is invaded, no edges of weight larger than p will be

invaded.

Corollary 4.2.3. There is almost surely only one infinite non-backtracking path

from 0 in I. Equivalently, T is almost surely in the set of trees T such that IT

contains almost surely a unique infinite non-backtracking path from 0.

Proof. Suppose that there are two distinct paths to infinity in I; by Corollary

4.2.2, there exist maximal weights M1 and M2 along these paths after they split,
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P-almost surely. If M1 > M2, the second infinite path would be invaded before the

edge containing M1. Similarly, we cannot have M2 > M1. Finally, M1 = M2 has

P-probability 0, completing the proof.

This proof is stated for invasion percolation on regular trees in [AGdHS08], but

is identical for Galton-Watson trees once Corollary 4.2.2 is in place; the unique path

guaranteed by Corollary 4.2.3 is typically called the backbone of I, and we continue

this convention. Note that a regular tree is simply a Galton-Watson tree with Z

almost-surely constant.

Definition 4.2.4 (the invasion path γ). Let γT := (0, γT1 , γ
T
2 , . . .) be the random

sequence whose nth element is the unique v with |v| = n such that v ↔ ∞ via a

downward path in the invasion cluster IT . Let νT denote the law of γT given T .

Let νT denote the random measure on the random space (T, ∂T) induced by the

γT. In other words, for measurable A ⊆ ∂U , νT(A, ω) = P[γT ∈ A] evaluated at

T = T(ω). By Corollary 4.2.3, this is a well defined probability measure for almost

every ω.

4.2.3 Preliminary comparison of limit-uniform and invasion

measures

Our main goal is to see whether νT is almost surely absolutely continuous with

respect to µT. We give the summability criterion that establishes a sufficient con-

dition for absolute continuity in terms of the KL-divergence of the two measures
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along a ray chosen from νT.

Definition 4.2.5 (the splits p and q at children of u, and their difference, X). Let

v be a vertex of T and let u be the parent of v. Define

p(v) := µT(v)/µT(u)

q(v) := νT(v)/νT(u)

X(u) :=
∑
w

q(w) log[q(w)/p(w)]

where the sum is over all children w of u and νT(v) = νT({γ : v ∈ γ}) and µT(v)

is defined similarly. The quantity X is known as KL-divergence. The KL-divergence

K(ρ, ρ′) is defined between any two probability measures ρ and ρ′ on a finite set

{1, . . . , k} by the formula

K(ρ, ρ′) :=
k∑
i=1

ρ′(i) log
ρ′(i)

ρ(i)
.

It is a measure of the difference between the two distributions. It is always non-

negative but not symmetric. The following inequality shows that K behaves like

quadratic distance away from ρ = 0.

Proposition 4.2.6. Let ρ and ρ′ be probability measures on the set {1, . . . , k} and

denote εi := ρ′(i)/ρ(i)− 1. Then

K(ρ, ρ′) ≤
k∑
i=1

ρ(i)ε2i . (4.2.1)

Proof. Define the function R on (−1,∞) by

R(x) :=
(1 + x) log(1 + x)− x

x2
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if x 6= 0 and R(0) := 1/2. This makes R continuous, positive, and decreasing from 1

to 0 on (−1,∞). When ε = ρ′/ρ− 1, we may compute

ρ′ log(ρ′/ρ)− (ρ′ − ρ)

ρ
=

(1 + ε)ρ log(1 + ε)− ερ
ρ

= ε2R(ε) .

Because
∑k

i=1 ρ(i) =
∑k

i=1 ρ
′(i) = 1, we see that

K(ρ, ρ′) =
k∑
i=1

(ρ′(i)− ρ(i)) + ρ(i)ε2iR(εi) =
k∑
i=1

ρ(i)ε2iR(εi)

and the result follows from 0 < R(εi) < 1.

Applying Proposition 4.2.6 to ρ′ = q and ρ = p gives

X(u) ≤
∑
w

p(w)ε(w)2 (4.2.2)

where ε(w) = q(w)
p(w)
− 1.

Lemma 4.2.7. Let T be a fixed tree on which νT and µT are well defined on the

Borel σ-field B on ∂T . If

∞∑
n=1

∑
|v|=n

X(v)νT (v) <∞ (4.2.3)

then νT � µT .

Proof. On the measure space (∂T,B), define a filtration {Gn} by letting Gn denote

the σ-field generated by the sets {γ : γn = v}. The Borel σ-field B is the increasing

limit σ(
⋃
n Gn). Let

Mn :=
dνT
dµT

∣∣∣∣
Gn
.
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In other words, Mn(γ) = νT (γn)/µT (γn). Let M := lim supn→∞Mn. The Radon-

Nikodym martingale theorem [Dur10, Theorem 5.3.3] says that {Mn} is a martingale

with respect to (∂T,B, µT , {Gn}) and that νT � µT is equivalent to νT ({M =∞}) =

0. This is equivalent to νT ({M = 0}) = 0 where M = 1/M = lim infn 1/Mn. The

sequence {1/Mn} is a νT -martingale, therefore {log(1/Mn)} is a νT -supermartingale

and to conclude that it νT -a.s. does not go to negative infinity, it suffices to show

that its expectation is bounded from below.

We compute the conditional expected increment of log(1/Mn). Letting γ denote

the ray (γ1, γ2, . . .),

log
1

Mn+1(γ)
− log

1

Mn(γ)
= log

νT (γn)

µT (γn)
− log

νT (γn+1)

µT (γn+1)
= − log

q(γn+1)

p(γn+1)
.

Conditioning on Gn, if γn = u, then the νT -probability of γn+1 = v is q(v), whence

EνT

[
log

1

Mn+1

− log
1

Mn

∣∣∣∣Gn] =
∑

v child of u

−q(v) log
q(v)

p(v)
= −X(u) .

Taking the unconditional expectation,

EνT

[
log

1

Mn+1

− log
1

Mn

]
= −

∑
|v|=n

νT (v)X(v)

and summing over n shows that (4.2.3) implies that log(1/Mn) has expectation

bounded from below, establishing νT � µT .

Corollary 4.2.8. Recall that γ denotes the invasion path on T and let Xn denote

X(γn).

(i) If
∑∞

n=1 EXn <∞ then νT � µT GW-almost surely.
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(ii) Define the filtration {G ′n} on (Ω,F) by letting G ′n be the σ-field generated by

T together with γ1, . . . , γn. Let Y (v) be non-negative random variables such

that Y (v) ∈ G ′|v| and

P[X(γn) 6= Y (γn) infinitely often] = 0 .

Then
∑∞

n=1 EYn <∞ implies that GW-almost surely, νT � µT.

Proof.

(i) Writing EXn = E [ETXn] we see that the hypothesis of (i), namely
∑∞

n=1 EXn <

∞, implies E
∑∞

n=1 ETXn < ∞. This implies
∑∞

n=1 ETXn < ∞ almost surely. A

version of ETXn is
∑
|v|∈Tn X(v)νT(v), whence (4.2.3) holds for GW-almost every T,

implying almost sure absolute continuity of µT with respect to νT.

(ii) The argument used to prove Lemma 4.2.7 may be adapted as follows. Let

Mn :=
dνT
dµT

∣∣∣∣
G′n

, a version of which is the function taking the value
νT(v)

µT(v)
on {γn =

v}. Again {Mn} is a martingale and log(1/Mn) is a supermartingale which we need

to show converges almost surely. The sequence

SM :=
M∑
n=1

(
log

1

Mn+1

− log
1

Mn

)
1X(γn)=Y (γn)

is a convergent supermartingale because its expected increments are either 0 or

−Y (γn); convergence of the unconditional expectations EY (γn) implies almost sure

convergence of the expected increments, implying almost sure convergence of the su-

permartingale {SM}. The hypotheses of (ii) imply that the increments of SM differ
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from the increments of log(1/Mn) finitely often almost surely, implying convergence

of the supermartingale log(1/Mn) and hence νT � µT.

4.3 Survival function conditioned on the tree

This section is concerned with estimating the quenched survival function θT(p).

The ultimate goal will be to examine the behavior of θT(p) for small p − pc, as

estimates on θT(·) will be central to step 5 of the outline. Before studying the

random function θT(p), we record some basic properties of the annealed function

θ(p) = E[θT(p)]. For a more complete analysis of the function θT(·), see [MPR18].

4.3.1 Properties of the annealed function θ(p)

We restate the necessary parts of Propositions 2.2.2 and 2.2.5.

Proposition 4.3.1. The derivative from the right K := θ′(pc) exists and is given

by

K :=
2

p3cφ
′′(1)

. (4.3.1)

Furthermore as, p ↓ pc, θ′(p)→ K.

4.3.2 Preliminary estimates of θT(p)

We now move to estimating θT(p), a random variable measurable with respect to

T . We first prove an upper bound on θ which gives a uniform bound on the Lq
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norm of θ. Additionally, we show that conditioning on only the first n levels gives a

random variable exponentially close to θ. Estimating this averaged random variable

is a key element in the proof of Theorem 4.1.1, and is the content of Section 4.3.3.

The following result from [LP17] will be useful for obtaining an a.s. upper bound

on θT(pc + ε).

Theorem 4.3.2 ([LP17, Theorem 5.24]). For p-percolation, we have

1

R(0↔∞) + 1
≤ PT[0↔∞] ≤ 2

R(0↔∞) + 1

where R(0 ↔ ∞) denotes the effective resistance from 0 to infinity when an edge

connecting ←−u to u is given resistance

r(e) =
1− p
p|u|

.

2

From this, we deduce:

Proposition 4.3.3. For any ε ∈ (0, 1− pc) and GW-almost surely,

θT(pc + ε) <
2εW

(1− pc − ε)pc
(4.3.2)

where W := sup
n
Wn(T) is almost surely finite because limn→∞Wn exists almost

surely.

Proof. To get an upper bound on g, we need a lower bound on the resistance. For

each height n, short together all nodes at this height. For every p = pc + ε this
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gives a lower bound of

R(0↔∞) ≥
∞∑
n=1

1− pc − ε
Zn(pc + ε)n

= (1− pc − ε)
∞∑
n=1

pnc
Wn(pc + ε)n

≥ (1− pc − ε)
W

∞∑
n=1

pnc
(pc + ε)n

=
(1− pc − ε)pc

Wε
.

Using Theorem 4.3.2, we get

θT(pc + ε) ≤ 2

1 + (1−pc−ε)pc
Wε

≤ 2εW

(1− pc − ε)pc
. (4.3.3)

Proposition 4.3.4 (uniform Lq bound). Suppose the offspring distribution has a

finite q > 1 moment. Then for any δ > 0, there is a constant cq such that for all

ε ∈ (0, 1− pc − δ),

EθT(pc + ε)q ≤ cqε
q

where cq = cq(δ) > 0.

Proof. First recall that if the offspring has a finite q-moment, then Mq := EW q is

finite as well. By the Lq maximal inequality (e.g., [Dur10, Theorem 5.4.3]), we have

that

E

[(
sup

1≤k≤n
Wk

)q]
≤
(

q

q − 1

)q
EW q

n ≤
(

q

q − 1

)q
Mq

because {W q
n} is a submartingale.
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Note that

(
sup

1≤k≤n
Wk

)q
↑ W q

as n→∞. By monotone convergence, this implies

E[W
q
] ≤ (q/(q − 1))qMq. In particular, for any ε < 1 − pc − δ, this together with

Proposition 4.3.3 implies

E[θT(pc + ε)q] ≤
(

2ε

(1− pc − ε)pc

)q
E[W

q
] ≤

(
2ε

δpc

)q (
q

q − 1

)q
Mq ,

proving the proposition with cq =

(
2q

(q − 1)δpc

)q
Mq.

Let Tn denote σ(degv : |v| ≤ n). Because Tn ↑ T and θ is bounded, we know

that E[θT(p) | Tn] → θT(p) almost surely and in L1. It turns out that θn,T(p) :=

E[θT(p) | Tn] is much easier to estimate than θ itself. Our strategy is to show this

convergence is exponentially rapid, transferring the work from estimation of θ to

estimation of θn.

Lemma 4.3.5. For any δ > 0, there are constants ci > 0 such that for all p ∈

(pc,
√
pc − δ) ∣∣ θT(p)− θn,T(p)

∣∣ ≤ c1e
−c2n

with probability at least 1− e−c3n.

Proof. Define a random set S = S(n, p) to be the set of vertices v ∈ Tn such that

0 ↔p v. Let πT denote the law of the random variable S, an atomic probability

measure on the subsets of the random set Tn. Using

θT(p) = P[H(p) | T ] = E [P[H(p) | F ′n] | T ]
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where F ′n be the σ-field generated by Fn and T , we obtain the explicit representation

θT(p) =
∑
S

πT(S)

[
1−

(∏
v∈S

(1− θT(v)(p))

)]
. (4.3.4)

Order the vertices in Tn arbitrarily and define the revealed martingale {Mk} by

Mk := E [θT(p) | Tn, {T(vj) : j ≤ k}] (4.3.5)

as k ranges from 0 to |Tn|. By definition, M0 = θn,T. Also, M|Tn| = θT(p) because

from Tn together with {T(v) : v ∈ Tn} one can reconstruct T. Arguing as in

(4.3.4), we obtain the explicit representation

Mk =
∑
S

πT(S)

1−
∏
v∈S≤k

(1− θT(v)(p))(1− θ(p))|S>k|
 (4.3.6)

where for a given set S ⊂ Tn, S≤k denotes the vertices in S indexed ≤ k and S>k

denotes the set indexed > k.

We claim the increments of {Mk} are bounded by pn. Indeed, (4.3.6) implies

|Mk −Mk−1| ≤
∑
S3vk

πT(S)|θT(vk)(p)− θ(p)| ≤
∑
S3vk

πT(S) = P[0↔p vk] = pn.

Azuma’s inequality [Azu67] implies that for any c1, c2 > 0, the bounded incre-

ments translate to an upper bound

P
[
|θT(p)− θn,T(p)| > c1e

−c2n | Tn
]
≤ exp

(
− c

2
1e
−2c2n

2|Tn|p2n

)
. (4.3.7)

Recall that for any γ > 0,

P[|Tn| ≥ (µ(1 + γ))n] = P[Wn ≥ (1 + γn)] ≤ (1 + γ)−n
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by Markov’s inequality. Since µp2 < 1 uniformly for p ∈ [pc,
√
pc − δ], we therefore

may pick c2 so that e−2c2n is exponentially larger in n than |Tn|p2n with exponen-

tially high probability. Conditioning on this event and applying (4.3.7) completes

the proof.

4.3.3 Bounds on the difference between θT(p) and Wθ(p)

For the purposes of proving Theorem 4.1.1, we will show that θT(pc + ε) is close to

Wθ(pc + ε) for small ε > 0. For a fixed vertex v in a tree T define E(v, ε) by

θT(v)(pc + ε) = θ(pc + ε) (W (v) + E(v, ε)) .

Proposition 4.3.6. Suppose the offspring distribution of Z has p ≥ 2 moments.

Then for any δ, ` for which both 0 < δ < 1 and 0 < ` < 1
2
, there exist constants

Ci > 0 so that for all ε sufficiently small

|E(0, ε)| ≤ C1Wε1−δ + C2ε
1−2`

dε−δe−1∑
j=1

Wj (4.3.8)

with probability at least 1− C3ε
p`−δ.

Proof. Let c1, c2, c3 be the constants from Lemma 4.3.5, and fix δ > 0. Then for

m = dε−δe, we have

|θm,T(pc + ε)− θT(pc + ε)| < c1e
−c2/εδ (4.3.9)

with probability at least 1 − e−c3/εδ , which implies that (4.3.9) holds for the root

and all children of the root with probability at least 1 − (µ + 1)e−c3/ε
δ
. Utilizing
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(4.3.9) and the fact that θ(pc + ε) = Θ(ε) as ε → 0+ (while also making sure to

select c3 < c2) gives

1

θ(pc + ε)
|θm,T(pc + ε)− θT(pc + ε)| < c1

1

θ(pc + ε)
e−c2/ε

δ

= O
(
e−c3/ε

δ
)
. (4.3.10)

By [Dub71], there exist positive constants C ′1 and c′2 so that

P[W ≤ a] ≤ C ′1a
c′2 .

This implies that C1e
−c3/εδ ≤ Wε1−δ with probability at least 1−Ce−c/εδ for some

new constants. Thus, to show equation (4.3.8), it is sufficient to examine θm,T(pc +

ε).

The Bonferroni inequalities imply that

Bon(1)m (0, ε)− Bon(2)m (0, ε) ≤ θm,T(pc + ε) ≤ Bon(1)m (0, ε)

where

Bon(1)m (0, ε) :=

(
1 +

ε

pc

)m
Wmθ(pc + ε)

and Bon(2)m (0, ε) := θ(pc + ε)2
∑

u,w∈Tm
u6=w

(pc + ε)2m−|u∧w|.

To bound θm,T(pc + ε)− θ(pc + ε)W , we first bound Bon
(1)
m (0,ε)

θ(pc+ε)
−W . Write

Bon(1)m (0, ε)

θ(pc + ε)
−W = W

((
1 +

ε

pc

)m
− 1

)
+ [Wm −W ](1 + ε/pc)

m.

Note first that |(1 + ε/pc)
m − 1| ≤ Cmε/pc for some C > 0. Recalling that

m = dε−δe gives a bound of Cε1−δ. Additionally, we have (1 + ε/pc)
m ≤ 2 for ε

sufficiently small. We now look towards |Wm −W |.
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By [AN72, Chapter I.13], we have that

Var [Wm −W |Wm] =
Wm

µm

(
Var [Z]

µ2 − µ

)
.

By the law of total variance, this implies that

Var [Wm −W ] =
1

µm
Var [Z]

µ2 − µ
=:

CZ
µm

.

Chebyshev’s inequality then gives

P[|Wm −W | > µ−m/3] ≤ CZµ
−m/3.

Since µ−m/3 ≤ µ−ε
−δ/3 ≤ C2e

−c1/εc2 for some positive constants C2 and c1, c2, we

have that

∣∣∣Bon(1)m (0, ε)− θ(pc + ε)W
∣∣∣

θ(pc + ε)
≤ C1Wε1−δ + C2e

−c1/εc2 (4.3.11)

with probability at least 1− CZµ−m/3 = 1− C3e
−c3/εc4 .

By computing the lower probabilities of W again, recall that there exist con-

stants C ′1 and c′2 so that

P[W ≤ a] ≤ C ′1a
c′2 .

This implies that C2e
−c1/εc2 < C1Wε1−δ with probability at least 1−Ce−c′2c1/εc2 . Re-

labeling constants, this means that for sufficiently small ε, we can upgrade (4.3.11)

to ∣∣∣Bon(1)m (0, ε)− θ(pc + ε)W
∣∣∣

θ(pc + ε)
≤ C1Wε1−δ (4.3.12)

with probability at least 1− e−c1/εc2 .
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The last piece is to bound Bon(2)m (0, ε)/θ(pc + ε). By Fubini’s theorem,

Bon(2)m (0, ε)

θ(pc + ε)
= θ(pc + ε)

∑
u,w∈Tm
u6=w

(pc + ε)2m−|u∧w|

≤ 2θ(pc + ε)
m−1∑
j=0

p2m−jc

∑
u,w:|u∧w|=j

1

≤ 2θ(pc + ε)
m−1∑
j=0

pjc
∑
v∈Tj

∑
1≤i<k

W
(i)
m−j−1(v)W

(k)
m−j−1(v)

≤ θ(pc + ε)
m−1∑
j=0

pjc
∑
v∈Tj

Wm−j(v)2

where the second inequality is from the bound (1 + ε
pc

)2m ≤ 2 for sufficiently small

ε.

Note that for each j the innermost sum is a sum of IID random variables. We

utilize the Fuk-Nagaev inequality from [FN71] which states

P

∑
u∈Tj

[Wm−j(u)2 − EW 2
m−j] > t

∣∣∣∣Zj
 ≤ Cpt

−p/2Z
p/4
j + exp

(
−C t2

Zj

)
.

Applying this bound for t = EW 2
m−jZjε

−2` gives

P

[ ∑
u∈Tj

[Wm−j(u)2 − EW 2
m−j] > (EW 2

m−j)Zjε
−2`
∣∣∣∣Zj
]

≤ C ′pε
p`(Zj)

−p/4 + exp
(
−C ′Zj/ε4`

)
≤ C ′′p ε

p`

for some choice of C ′′p > C ′p. By applying this bound and a union bound, we get

Bon(2)m (0, ε)

θ(pc + ε)
≤ θ(pc + ε)(1 + ε−2`)

m−1∑
j=0

(
EW 2

m−j
)
Zjp

j
c

≤ Cθ(pc + ε)ε−2`
m−1∑
j=0

Wj
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with probability at least 1− C ′′pmεp` for some new choice of C. This means that

P

[
Bon(2)m (0, ε)

θ(pc + ε)
> Cθ(pc + ε)ε−2`

m−1∑
j=0

Wj

]
≤ mC ′′p ε

p`.

Recalling that θ(pc + ε) = Θ(ε) now gives

Bon(2)m (0, ε)

θ(pc + ε)
≤ C2ε

1−2`
m−1∑
j=0

Wj

with probability at least 1− Cεp`−δ for some new C. Along with equations (4.3.9)

and (4.3.12), this now implies the proposition.

From here, we extract the estimate that will be used to prove Theorem 4.1.1:

Corollary 4.3.7. Suppose the offspring distribution of Z has p > 1 moments and

p1 := P[Z = 1]. Let δ, `, d be positive constants such that

α = 1− 3`− (1 + d)δ (4.3.13)

is greater than 1
2
. Then there exists a constant C > 0 such that for all ε > 0

sufficiently small

|E(v, ε)| ≤ CW (v)εα (4.3.14)

for the root and its children with probability at least 1− Cεδ′ for

δ′ = min
{
p`− δ, log(1/p1)

log(µ)
dδ
}

.

Proof. The first term in equation (4.3.8) is always eventually smaller than W (v)εα

since the exponent on ε is larger. The final term in equation (4.3.8) can now be

dealt with separately.
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By [BD74, Theorems 0 and 5], if Z is in Lp, then Wk
Lp−→ W , implying E[|Wk −

W |p] ≤ C for some C > 0. Therefore,

P[|Wk −W | > ε−`] ≤ Cεp`.

For m = dε−δe, condition on Z1, apply a union bound, and take expectation to

see that
m∑
k=1

Wk ≤ m(ε−` +W )

for the root and all of its children with probability at least 1 − C(1 + µ)εp`−δ.

Applying this to the latter term in equation (4.3.8) gives

|E(v, ε)| ≤ C1W (v)ε1−2`−δ + C2ε
1−3`−δ

with probability at least 1− Cεp`−δ.

In the case where p1 = 0, the lower tails on W provided by [Dub71] show that

for any r1, r2 > 0 we have P[W (v) < εr1 ] = o(εr2), thereby showing W (v) < εr1

with probability less than εr2 for ε sufficiently small. Setting r1 = dδ and r2 = p`−δ

completes the proof when p1 = 0.

When p1 > 0, there exists a constant C so that for all a ∈ (0, 1)

P[W < a] ≤ Calog(1/p1)/ log(µ).

This implies that for α as in (4.3.13),

P[W (v) < ε1−3`−δ−α] = O
(
ε

log(1/p1)
log(µ)

dδ
)
. (4.3.15)

Performing a union bound for the root and all of its children again completes the

proof.
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4.4 Pivot Sequence on the Backbone

Define the shift function σ : Ω→ Ω by

(σ(ω))v := ωγ1tv . (4.4.1)

Informally, σ shifts the values of random variables at nodes γ1 t v in T (γ1) back to

node v; these values populate the whole Ulam tree; values of variables not in T (γ1)

are discarded; this is a tree-indexed version of the shift for an ordinary Markov

chain. The n-fold shift σn shifts n steps down the backbone.

The main purpose of this section will be to understand the shift function θ, and

thereby understand the behavior of the pivots. While this section contains many

intermediate results—a fair number of which may be of independent interest—

only a handful will be directly of use in the proof of Theorem 4.1.1: the pair of

Propositions 4.4.4(i) and 4.4.5 demonstrating that shifting down the backbone is

the same as conditioning on the pivot being at most a certain value (this is step

2 in the outline in the introduction); also of use will be Theorem 4.4.8, which

accomplishes step 3 of the outline by showing that β∗n − pc approaches 0 rapidly.

Before showing the necessary Markov properties, a fair bit of notation is nec-

essary. We begin with the definition of the dual pivots β∗n; these variables will be

central to the proof of Theorem 4.1.1, primarily due to their appearance in Propo-

sition 4.4.4.

Definition 4.4.1 (dual trees and pivots). Recall that T (v) denotes the subtree
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from v, moved to the root. Let T ∗(v) denote the rooted subtree induced on all

vertices w /∈ T (v), and let β∗v,w represent the pivot of the vertex w on T ∗(v), that

is, the least x such that w is connected to infinity by a path with weights ≤ x that

avoids going through v. The dual pivot β∗v is defined to be min
w<v

β∗v,w. In keeping

with the notation for pivots, we denote β∗n := β∗γn .

Definition 4.4.2. We define the following σ-fields.

(i) For fixed v 6= 0, define Cv to be the σ-field generated by degw and Uw for all

w 6= v in T (v) along with degv. Define B∗v to be the σ-field generated by all

the other data: Uw and degw for all w ∈ T ∗(v), along with Uv.

(ii) For n ≥ 1, let B∗n denote the σ-field containing γn and all sets of the form

{γn = v} ∩B where B ∈ B∗v. Informally, B∗n is generated by γn and B∗γn .

(iii) Let Cn be the σ-field generated by σnω; in other words it contains deg(γn)

and all pairs (degγntx, Uγntx). It is not important, but this definition does not

allow Cn to know the identity of γn.

It is elementary that {B∗n} is a filtration, that B∗n∩Cn is trivial, and that B∗n∨Cn =

F .

Definition 4.4.3. We define the following conditioned measures.

(i) For x ∈ (pc, 1), let Qx := (P | β0 ≤ x) denote the conditional law given

0↔x ∞, in other words, Qx[A] = θA(x)
θ(x)

where

θA(x) := P[A ∩ {β0 ≤ x}] .
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(ii) Let L denote the law of β0, the pivot at the root. By [Dur10, Theorem 5.1.9],

one may define regular conditional distributions Px := (P | β0 = x). These sat-

isfy Px[β0 = x] = 1 and
∫

Px dL(x) = P. Also, Qy = (1/θ(y))
∫

Px dL|[0,y](x).

A common null set for all the conditioned measures is the set where either the

invasion ray is not well defined or β(v) = β∗v for some v. Equalities below are always

interpreted as holding modulo this null set.

Proposition 4.4.4 (Markov property for dual pivots).

(i) For any A ∈ F ,

P[σnω ∈ A | B∗n] = Qβ∗n [A] .

(ii) More generally, if 0 < y ≤ 1 then for any A ∈ F ,

Qy[σ
nω ∈ A | B∗n] = Qβ∗n∧y[A] .

(iii) Under P, the sequence {β∗n} is a time homogeneous Markov chain adapted to

B∗n with transition kernel p(x, S) = Qx[β
∗
1 ∧ x ∈ S] and initial distribution δ1.

It is immediate that Qx � P for all x. The following more quantitative state-

ment will be useful, especially when used in conjunction with Proposition 4.4.4(i).

Proposition 4.4.5. Let q > 1 and suppose that the offspring distribution has a

finite q-moment. Then there exists a constant Cq such that for all A ∈ T and for

all δ > 0 and all x ∈ (pc, 1),

P[A] ≤ δ implies Qx[A] ≤ Cqδ
1−1/q .
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Proof. On T , the density of Qx with respect to P is given by

dQx

dP
(T ) =

θT (x)

θ(x)
.

Combining Proposition 4.3.1, which implies θ(x) ∼ K(x−pc), with Proposition 4.3.4,

which shows
∫
θT (pc + ε)q dGW(T ) ≤ cqε

q provided pc + ε is bounded away from 1,

we see that ∫ ∣∣∣∣dQx

dP
(T )

∣∣∣∣q dGW(T ) ≤ c′q

for some constant c′q and all x ∈ (pc, 1). Applying Hölder’s inequality with 1/p +

1/q = 1 then gives

Qx[A] =

∫
1A
dQx

dP
dP ≤

[∫
1A dP

]1/p [∫ (
dQx

dP

)q
dP

]1/q
≤ Cqδ

1−1/q

when Cq = (c′q)
1/q.

The measures Px are in some sense more difficult to compute with than Qx be-

cause of the conditioning on measure zero sets. Relations such as the Markov prop-

erty, however, are conceptually somewhat simpler. The following statement of the

Markov property generalizes what was proved in [AGdHS08, Theorem 1.2 and Propo-

sition 3.1], with B+
n representing the σ-field generated by B∗n together with βn. Note,

however, that the only role Propositions 4.4.6 and 4.4.7 play in the proof of Theo-

rem 4.1.1 is that they are utilized to prove Theorem 4.4.8. The proposition below is

also of independent interest, and will be crucial for studying the forward maximal

weight process in Section 4.6.
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Proposition 4.4.6 (Markov property for pivots). For any A ∈ F ,

P
[
σnω ∈ A | B+

n

]
= Pβn [A]

on (Ω,F ,Px).

In fact, the pair {βn, β∗n} is Markov:

Proposition 4.4.7. The sequence {βn, β∗n} is a time-homogeneous Markov chain

adapted to {B+
n } with initial distribution L× δ1. Further, if we define h∗n := β∗n− pc

and f(x) := φ′(1−(pc+x)θ(pc+x)), then {hn, h∗n} has transition probabilities given

by p({a, b}, ·) = νa × ν̃a,b where

dνa
dx

=
f(a)θ′(pc + x)

θ′(pc + a)
1x<a + Caδa

and
dν̃a,b
dx

= −f
′(x)

f(a)
1a<x<b + C̃a,bδb

with Ca = f(a)(pc + a) and C̃a,b = f(b)
f(a)

.

The decay rate of β∗n − pc = h∗n follows from analyzing this Markov chain; the

following Theorem accomplishes Step 3 of the outline.

Theorem 4.4.8. There exists C > 0 such that for any t ∈ (1/2, 1), P[h∗n > n−t] is

O(e−Cn
1−t

).
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4.5 Proof of Theorem 4.1.1

This section is devoted to the proof of Theorem 4.1.1. For a non-root vertex v ∈

Tn+1 with |v| = n+ 1 and p > pc, define

q̃(v, p) := Qp[σ
−1
←−v {v = γ1}]. (4.5.1)

In words, q̃(v, p) considers the tree rooted at←−v and finds the probability that v is in

the backbone conditioned on the root having pivot at most p. We then have q(v) =

E
(n)
T [q̃(v, β∗n)], where β∗n is as defined in Definition 4.4.1 and E

(n)
T := E[·|T , γn].

4.5.1 Comparing q̃ and the ratio of survival functions

The goal of this section is to accomplish step 4 of the outline. This takes the form

of

Lemma 4.5.1. Let {wk}dk=1 be an enumeration of the children of v. Then for any

p > pc and j,∣∣∣∣∣q̃(wj, p)− θT(wj)(p)∑d
k=1 θT (wk)(p)

∣∣∣∣∣ ≤ θT (v)(p)

1− θT (v)(p)
·

θT (wj)(p)∑d
k=1 θT (wk)(p)

. (4.5.2)

Proof. Define

Aj = q̃(wj, p)−
θT (wj)(p)∑d
k=1 θT (wk)(p)

and write

q̃(wj, p) =
PT[Uwj ∨ β(wj) is smallest | β(v) ≤ p]∑d
i=1 PT[Uwi ∨ β(wi) is smallest | β(v) ≤ p]

=
PT[Uwj ∨ β(wj) smallest and Uwj ∨ β(wj) ≤ p]∑d
i=1 PT[Uwi ∨ β(wi) smallest and Uwi ∨ β(wi) ≤ p]

.
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For each j, we observe that

p · θT (wj)(p)(1−Bj) ≤ PT[Uwj ∨ β(wj) smallest and Uwj ∨ β(wj) ≤ p]

≤ p · θT (wj)(p)

where 1−Bj =
∏

1≤i 6=j≤d(1− pθT (wi)(p)). The upper bound is the probability that

Uwj ∨ β(wj) ≤ p, while the lower bound is the probability that Uwj ∨ β(wj) ≤ p,

and that this does not hold for any of the siblings of wj.

This gives the bounds

θT (wj)(p)(1−Bj)∑d
k=1 θT (wk)(p)

≤ q̃(wj, p) ≤
θT (wj)(p)∑d

k=1 θT (wk)(p)(1−Bk)
. (4.5.3)

Sandwich bounds on the difference with survival ratios follow:

−BjθT (wj)(p)∑d
k=1 θT (wk)(p)

≤ Aj ≤
∑d

k=1[θT (wk)(p)θT (wj)(p)Bk]

(
∑d

k=1 θT (wk)(p))(
∑d

k=1[θT (wk)(p)(1−Bk)])
. (4.5.4)

Finally, the simple bound of

Bk ≤ 1−
d∏
i=1

(1− pθT (wi)(p)) = θT (v)(p)

allows us to rewrite equation (4.5.4) as

−
θT (v)(p)θT (wj)(p)∑d

k=1 θT (wk)(p)
≤ Aj ≤

θT (v)(p)

1− θT (v)(p)
θT (wj)(p)∑d
k=1 θT (wk)(p)

. (4.5.5)

4.5.2 Completing the Argument

The main ingredients for showing that p and q are close are in place: Corollary

4.3.7 bounds the fluctuations of θT(·), which will allow us to complete step 5 of the
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outline; Lemma 4.5.1 shows that q̃ is close to the ratio of survival probabilities for

a fixed p (step 4); and Propositions 4.4.4(i), 4.4.5 and Theorem 4.4.8 will allow us

to translate bounds for a fixed p into a bound for the random variable β∗n (steps 3

and 2 respectively). We now put these pieces together for one final bound:

Proposition 4.5.2. Letting q := log(µ)
log(1/p1)

, if

2p2q2 + (3p2 + 5p)q + (−p2 + 11p− 4) < 0, (4.5.6)

then there exists M > 0 and t ∈ (1/2, 1) such that, with probability 1, the set

∞⋃
n=1

{
v ∈ Tn+1 :

∣∣∣∣q(v)

p(v)
− 1

∣∣∣∣ > 3Mn−t,←−v = γn

}

is finite.

Proof of Theorem 4.1.1: As guaranteed by Proposition 4.5.6, let M > 0

and t ∈ (1/2, 1) so that with probability 1, the set

∞⋃
n=1

{
v ∈ Tn+1 :

∣∣∣∣q(v)

p(v)
− 1

∣∣∣∣ > 3Mn−t,←−v = γn

}

is finite. Define the event

An :=

{∣∣∣∣q(v)

p(v)
− 1

∣∣∣∣ ≤ 3Mn−t for all v ∈ Tn+1 with ←−v = γn

}
.

Define Yn := Xn1An ; by the choice of M, t, Yn = Xn all but finitely often almost

surely. Therefore, by Corollary 4.2.8, it is sufficient to show that
∑

EYn <∞. By

definition of An, Proposition 4.2.6 gives an upper bound of Yn ≤ 9M2n−2t. Taking

expectation and recalling t ∈ (1/2, 1) completes the proof. 2
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4.6 The Forward Maximal Weight Process

This section will be devoted to describing the limiting behaviour of the process

{βn − pc}. We begin by showing that {βn} is a time-homogeneous Markov chain

and computing the transition probabilities.

Lemma 4.6.1.

(i) The sequence {βn := β(γn)} is a time-homogeneous Markov chain adapted to

{B+
n } with initial distribution L.

(ii) Reparametrizing by letting hn := βn − pc, a formula for the transition kernel

of the chain {hn} is given in terms of the OGF φ by p(a, ·) = µa where

dµa
dx

= Caδa +
φ′ (1− (pc + a)θ(pc + a)) θ′(pc + x)

θ′(pc + a)
1(0,a)(x)

and

Ca = 1− φ′ (1− (pc + a)θ(pc + a)) θ(pc + a)

θ′(pc + a)
.

Theorem 4.6.2. Let U0, U1, . . . be a sequence of IID random variables each uni-

formly distributed on (0, 1), and let Mn = min {U0, U1, . . . , Un}. For each C1, C2

such that 0 < C1 < pc < C2, the process {hn} can be coupled with the process

{Mn} so that, with probability 1, hn eventually (meaning for all sufficiently large n)

satisfies C1 ·Mn ≤ hn ≤ C2 ·Mn.

This coupling is enough to prove convergence on the level of paths. Let P be an

intensity 1 Poisson point process on the upper-half-plane; define the Poisson lower

124



envelope process by

L(t) := min{y > 0 : (x, y) ∈ P for some x ∈ [0, t]}.

Then we have

Corollary 4.6.3. For any ε > 0 as k →∞,

(khdkte/pc)t≥ε
∗

=⇒ (L(t))t≥ε (4.6.1)

where
∗

=⇒ denotes convergence in distribution of càdlàg paths in the Skorohod

space D[ε,∞).

Corollary 4.6.4. The sequence n ·hn converges in distribution to pc · exp(1), where

exp(1) is an exponential random variable with mean 1.
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[Dub71] Serge Dubuc. Problèmes relatifs à l’itération de fonctions suggérés par

les processus en cascade. Ann. Inst. Fourier (Grenoble), 21(1):171–251,

1971.

[Dur10] R. Durrett. Probability: Theory and Examples. Duxbury Press, New

York, NY, fourth edition, 2010.

[FN71] D. H. Fuk and S. V. Nagaev. Probabilistic inequalities for sums of

independent random variables. Teor. Verojatnost. i Primenen., 16:660–

675, 1971.

[FvdH17] Robert Fitzner and Remco van der Hofstad. Mean-field behavior for

nearest-neighbor percolation in d > 10. Electron. J. Probab., 22:Paper

No. 43, 65, 2017.

[GBGL08] Timothy Gowers, June Barrow-Green, and Imre Leader, editors. The

Princeton companion to mathematics. Princeton University Press,

Princeton, NJ, 2008.

129



[GPS18] Christophe Garban, Gábor Pete, and Oded Schramm. The scaling

limits of the minimal spanning tree and invasion percolation in the

plane. Ann. Probab., 46(6):3501–3557, 2018.

[Gri99] G. Grimmett. Percolation, volume 321 of Grundlehren der mathema-

tischen Wissenschaften. Springer, New York, second edition, 1999.

[Har60] T. Harris. A lower bound for the percolation probability in a certain

percolation process. Proc. Camb. Phil. Soc., 56:13–20, 1960.

[Har63] T. Harris. The theory of branching processes. Springer, Berlin, 1963.
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