Exposure To Heavy Metal Stress Regulates Intercellular Signaling Via Callose Deposition And Breakdown

Ruthsabel O'lexy
University of Pennsylvania, cortesr@sas.upenn.edu

Follow this and additional works at: https://repository.upenn.edu/edissertations

Part of the Cell Biology Commons, Genetics Commons, and the Molecular Biology Commons

Recommended Citation
O'lexy, Ruthsabel, "Exposure To Heavy Metal Stress Regulates Intercellular Signaling Via Callose Deposition And Breakdown" (2017). Publicly Accessible Penn Dissertations. 3057.
https://repository.upenn.edu/edissertations/3057

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/3057
For more information, please contact repository@pobox.upenn.edu.
Exposure To Heavy Metal Stress Regulates Intercellular Signaling Via Callose Deposition And Breakdown

Abstract
How organisms sense external cues and integrate them into developmental changes remains a large biological question. Plants, which are sessile organisms, are particularly vulnerable to challenges in their environment. An early response to abiotic and biotic stress in plants is the modification of intercellular signaling through plasmodesmata, cytoplasmic channels that connect adjacent cells. However, the different ways in which plasmodesmata-mediated signaling can be affected, the molecular players involved in this response, the genetic basis of this regulation, and the biological benefits of this response are still poorly understood.

Here, we take a survey of seven different agriculturally relevant stresses of nutrient starvation and heavy metal contamination, and their effects on plasmodesmata transport in the A. thaliana root. We examine the role of the polysaccharide callose, a known plasmodesmata regulator, in these modifications. Focusing on the conditions of excess iron and copper, we take a genetic approach to identify the genes involved in callose metabolism under these conditions. Finally, we examine how modifications in plasmodesmata transport under stress affect plant growth, health, and tolerance to heavy metal stress.

We find that plasmodesmata closure in response to stress is not a universal response, as was previously believed. While most conditions do induce plasmodesmata closure, some heavy metals increase plasmodesmata permeability instead. In many of the conditions tested, the changes in plasmodesmata modification correlate with changes in callose deposition as expected. In further examining excess copper and iron stresses, we identify genes in the callose synthase and β-1,3-glucanase families that synthesize and breakdown callose, responsible for callose metabolism under these conditions. We observe that these regulated changes in plasmodesmata signaling in response to stress affect root growth, health, and mineral distribution. Most importantly, opening plasmodesmata under excess copper allows for better root growth, improved tolerance to copper, and reduced copper levels in the root meristem.

Degree Type
Dissertation

Degree Name
Doctor of Philosophy (PhD)

Graduate Group
Biology

First Advisor
Kimberly L. Gallagher

Keywords
Callose, Heavy metal, Plants, Plasmodesmata, Roots, Signaling

This dissertation is available at ScholarlyCommons: https://repository.upenn.edu/edissertations/3057
EXPOSURE TO HEAVY METAL STRESS REGULATES INTERCELLULAR SIGNALING VIA CALLOSE DEPOSITION AND BREAKDOWN

Ruthsabel O’Lexy

A DISSERTATION

in

Biology

Presented to the Faculties of the University of Pennsylvania

in

Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

2017

Supervisor of Dissertation

Kimberly L. Gallagher
Associate Professor of Biology

Graduate Group Chairperson

Michael Lampson, Ph.D., Associate Professor of Biology
Professor of Biology

Dissertation Committee
Doris Wagner (chair), Ph.D., Professor of Biology
Scott Poethig, Ph.D., Professor of Biology
Brian Gregory, Ph.D., Associate Professor of Biology
Jung-Youn Lee, Ph.D., Professor of Plant and Soil Sciences
EXPOSURE TO HEAVY METAL STRESS REGULATES INTERCELLULAR SIGNALING
VIA CALLOSE DEPOSITION AND BREAKDOWN

COPYRIGHT

2017

Ruthsabel O'Lexy

This work is licensed under the
Creative Commons Attribution-
NonCommercial-ShareAlike 3.0
License

To view a copy of this license, visit

https://creativecommons.org/licenses/by-nc-sa/3.0/us/
DEDICATION

To Douglas Prasher.
ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. Kimberly Gallagher, for her support and generosity throughout my PhD. I treasure the trust she put in me, and the space she allowed me to become my own scientist. She has always backed my interests, whatever they have been. As her first graduate student, we have learned a lot together and I am grateful for the time I have spent developing here. That she is as excited as I am about the next step in my career speaks to how much she considers my success, her success.

My thesis committee: Dr. Doris Wagner, Dr. Scott Poethig, Dr. Brian Gregory, and Dr. Jung-Youn Lee, have been invaluable in the completion of this project. I cherish not only our formal annual meetings, but the opportunity to walk across the hall and exchange ideas and get guidance from scientists I truly respect and admire. I am honored to have worked with them and glad that they have always been on my side.

My collaborators Dr. Toru Fujiwara, Koji Kasai, Dr. Rosangela Sozzani, and Natalie Clark were kind enough to lend their expertise and teach me new skills that allowed for the completion of this work. I’d like to thank them for their hospitality and their shared excitement in my project; this would be a poorer story without their input.

My lab mates and the Plant Group have been a constant source of support and friendship that have made my time here rewarding and exciting. You have been a sort of ‘supplemental’ committee to me, and I have benefited from our brainstorming sessions and tutorials on things I needed help with. You have been great colleagues and associates.

Finally, I would like to thank my family. My parents and sisters have always been my biggest cheerleaders, and their unwavering pride and support have motivated me during many moments in this process. My husband, Tim, has been my partner and best friend long before I began this journey, and without his fiery support and eternal patience, this would not have been possible. It is hard to express how much his encouragement during times of bleakness meant to me and pushed me to keep going.
ABSTRACT

EXPOSURE TO HEAVY METAL STRESS REGULATES INTERCELLULAR SIGNALING VIA CALLOSE DEPOSITION AND BREAKDOWN

Ruthsabel O’Lexy
Kimberly Gallagher

How organisms sense external cues and integrate them into developmental changes remains a large biological question. Plants, which are sessile organisms, are particularly vulnerable to challenges in their environment. An early response to abiotic and biotic stress in plants is the modification of intercellular signaling through plasmodesmata, cytoplasmic channels that connect adjacent cells. However, the different ways in which plasmodesmata-mediated signaling can be affected, the molecular players involved in this response, the genetic basis of this regulation, and the biological benefits of this response are still poorly understood.

Here, we take a survey of seven different agriculturally relevant stresses of nutrient starvation and heavy metal contamination, and their effects on plasmodesmata transport in the *A. thaliana* root. We examine the role of the polysaccharide callose, a known plasmodesmata regulator, in these modifications. Focusing on the conditions of excess iron and copper, we take a genetic approach to identify the genes involved in callose metabolism under these conditions. Finally, we examine how modifications in plasmodesmata transport under stress affect plant growth, health, and tolerance to heavy metal stress.

We find that plasmodesmata closure in response to stress is not a universal response, as was previously believed. While most conditions do induce plasmodesmata closure, some heavy metals increase plasmodesmata permeability instead. In many of the conditions tested, the changes in plasmodesmata modification correlate with changes in callose deposition as expected. In further examining excess copper and iron stresses, we identify genes in the callose synthase and β-1,3-glucanase families that synthesize and breakdown callose, responsible for callose metabolism under these conditions. We observe that these regulated changes in
plasmodesmata signaling in response to stress affect root growth, health, and mineral distribution. Most importantly, opening plasmodesmata under excess copper allows for better root growth, improved tolerance to copper, and reduced copper levels in the root meristem.
TABLE OF CONTENTS

ACKNOWLEDGMENTS ... IV

ABSTRACT ... V

LIST OF TABLES .. IX

LIST OF ILLUSTRATIONS ... X

1. INTRODUCTION .. 1
 Metal contamination of soils .. 3
 Plant uptake of metals ... 4
 Long-distance transport of metals .. 7
 Root responses to metal excess ... 9
 Metal accumulation in plants ... 10
 Plasmodesmata structure ... 11
 Movement of non-cell-autonomous factors in development .. 13
 Plasmodesmata roles in biotic stress ... 16
 Plasmodesmata roles in abiotic stress .. 16
 Regulation of plasmodesmata signaling ... 19

2. RESULTS ... 25
 Plasmodesmata-mediated transport is modified under conditions of nutrient stress 26
 Changes in the accumulation of callose drive the response of the root to iron and copper .. 31
 Callose synthases and β-1,3-glucanases control the levels of callose in response to excess iron and copper ... 34
 Modifying plasmodesmatal permeability in response to iron or copper stress has consequences for plant growth ... 40
The distribution of copper is altered in the β-1,3-glucanase mutants ... 46

3. CONCLUSIONS AND FUTURE DIRECTIONS ... 50

Symplastic isolation of the phloem in response to iron stress .. 51
Increasing plasmodesmatal permeability in response to copper stress .. 53
The role of CalS and β-1,3-glucanase enzymes in responding to specific environmental cues .. 55
The link between callose deposition and primary root growth .. 56
Determining the mechanism of plasmodesma regulation under zinc stress 58
The role of ROS in heavy metal stress .. 60

4. MATERIALS AND METHODS ... 64

Plant material and growth conditions .. 65
Germplasm used in this study .. 66
Primers used in this study ... 67
Growth measurements ... 69
Aniline blue staining .. 69
GUS staining .. 69
CFDA transport assays ... 69
SUC2:GFP diffusion measurements .. 70
Raster Image Correlation Spectroscopy (RICS) .. 70
Laser Ablation – Inductively Coupled Plasma – Mass Spectroscopy (LA-ICP-MS) 71
BIBLIOGRAPHY .. 72
LIST OF TABLES

Table 4.1 Germplasm used in this study...66
Table 4.2 Primers used in this study...67
LIST OF ILLUSTRATIONS

Figure 1.1 Mechanisms of metal accumulation in plants..6
Figure 1.2 General model of radial transport of heavy metals in the root8
Figure 1.3 Routes of plasmodesmata transport..12
Figure 1.4 Mechanisms of plasmodesmata regulation...20
Figure 2.1 Changes in CFDA transport after heavy metal stress...26
Figure 2.2 Cell division after 24 hours of stress is unaffected..27
Figure 2.3 Effect of nutrient stress on the movement of GFP from the phloem.........................28
Figure 2.4 Fluorescent profile of GFP across the root transition zone....................................29
Figure 2.5 Restriction of GFP movement in response to high iron is reversible and correlates with the presence of callose in the phloem...30
Figure 2.6 Aniline blue staining of callose after 24 hours of stress treatment.........................32
Figure 2.7 Analysis of GFP diffusion coefficient in response to heavy metal stress...............33
Figure 2.8 Callose phenotypes and mRNA levels of CalS and β-1,3-glucanase mutants tested...35
Figure 2.9 Effect of excess iron on callose deposition and movement in cals5 and cals12 lines...36
Figure 2.10 CFDA transport in cals5 and cals12 lines...37
Figure 2.11 Effect of excess copper on callose deposition and movement in bg_ppap and bg6 lines...38
Figure 2.12 The β-1,3-glucanases BG_PPAP and BG6 are not required for recovery of roots from excess iron...39
Figure 2.13 Growth of the primary root is inhibited by excess copper or iron.........................40
Figure 2.14 cals5 mutants are less sensitive to the growth inhibiting effect of excess copper than wildtype..41
Figure 2.15 Growth of roots on excess iron inhibits the rate of primary root growth.................42
Figure 2.16 β-1,3-glucanase mutants are more sensitive to the growth inhibiting effect of excess copper than wildtype
Figure 2.17 Treatment of roots with excess zinc has no effect on primary root growth.............45
Figure 2.18 β-1,3-glucanase mutants have normal cellular phenotypes after 24 hours of excess copper .. 47

Figure 2.19 β-1,3-glucanase mutants accumulate excess copper in root tip compared to wildtype .. 49
1. INTRODUCTION
There are holes in the sky
Where the rain gets in
But they're ever so small
That's why the rain is thin.

~Spike Milligan

How organisms sense environmental signals and integrate them into developmental outputs continues to be a large question in biology. For plants, which are literally rooted to the ground, responding appropriately to environmental changes is crucial. An early response to environmental challenges is the modification of intercellular signaling; conditions like cold, heat, wounding, and pathogen infection all result in a rapid decrease in cell-cell transport. However, we still do not fully understand the molecular mechanisms, genetic basis, or the biological advantages to this regulation.

As global soils increasingly suffer from heavy metal accumulation due to anthropogenic activities, understanding responses of the plant root system under heavy metal stress is particularly relevant. This project focuses on determining how intercellular signaling via plasmodesmata is regulated in Arabidopsis thailana roots under heavy metal stress, and elucidating the molecular mechanisms and genetic basis for this regulation. Here I will describe the importance of plasmodesmata-mediated signaling in the contexts of development and stress, and what is known about the effects of heavy metal stress on plant roots.
Metal contamination of soils

Soil quality is negatively impacted by scarcity of essential nutrients or heavy metal contamination. While there have always been naturally occurring sources of metal deposition such as the weathering of rock or volcanic activity, current human activities like industrial processing, agricultural use of fertilizers, mining, waste, and coal burning greatly outweigh natural contributions to metal concentrations in soil, making these environmental stressors increasingly relevant (62, 78, 122). Copper-rich manure and copper-based fungicides, along with zinc-rich sewage all contribute to the presence of heavy metals on farmland soils, which has a direct effect on crop plants (2, 6, 24). In China, agricultural soils are contaminated with cadmium, mercury, and lead produced from anthropogenic activities (143). In Tanzania, the Msimbazi River valley, which is used for vegetable farming, contains chromium, lead, cadmium, and copper (90). These conditions exist in the United States as well. A study taking 3,045 soil samples from across the US found high copper levels in the organic soils of Florida, Oregon and the Great Lakes, high nickel concentrations in serpentine soils of California, and high lead and zinc in the lower Mississippi River Valley (57). These problems have led to large, long-term, and expensive projects to clean up soils. In 1980, the United States EPA launched the Superfund program to clean up contaminated sites, costing between $335 million and $681 million per year (www.epa.gov/superfund).

Studying how plants respond to heavy metal stress is an important endeavor; not just to better understand the cell biology of plant mechanisms, but because increased industrial practices, climate change, and the continued rise of global population levels make food security a very real challenge. Major federal agencies such as the USDA’s National Institute of Food and Agriculture (www.nifa.usda.gov) continue to fund projects that address food availability.
Plant uptake of metals

Studies in plant metal uptake systems have been largely limited to yeast expression studies and mutant analysis. Because of this, we have little direct evidence for metal uptake and transport in planta, and molecular components such as metal receptors, sensors, and ligands are still unidentified for many metals. Here I will describe what is known regarding the uptake of copper, iron, and zinc, the main focus of this work.

Copper is taken up by the root via the COPPER TRANSPORTER (COPT) family of transporters. In soils copper exists in its oxidized form Cu (II), but before transport is reduced to Cu (I). Several lines of evidence have led to the prevailing model that reduction is mediated by FERRIC REDUCTASE OXIDASE (FRO), however FRO reduction of Cu (II) has yet to be directly shown (23, 88). The COPT family is differentially regulated in response to specific copper levels; COPT1 is induced upon copper starvation, while COPT1, COPT2, and COPT4 are induced upon copper excess. Because copt1 has impaired copper uptake, these mutants are insensitive to excess copper concentrations and retain normal root growth under these conditions (115). The transporter HEAVY METAL P-TYPE ATPASE (HMA5) is strongly and specifically induced by copper, and has a role in copper detoxification and compartmentalization. hma-5 mutants cannot appropriately distribute excess copper, and are hypersensitive to copper excess, but not other metals (4).

Plants deploy two different strategies for the uptake of iron. Strategy I is a reduction strategy, used by dicots and non-grass monocots. It involves using proton pumps to acidify the rhizosphere surrounding the root, increasing the solubility of Fe (III), which is then reduced to Fe (II) by FERRIC REDUCTION OXIDASE (FRO). Fe (II) is then transported through the plasma membrane of the epidermis via IRON-
REGULATED TRANSPORTER1 (IRT1). Strategy II, used by grass monocots, involves chelation. The root secretes phytosiderophores (low molecular weight compounds related to mugineic acid), which chelate Fe (III). The Fe (III)-phytosiderophore complex then enters the roots via specific transporters.

Zinc is also thought to be solubilized through acidification of the rhizosphere and secretion of chelators, but unlike for copper and iron, these mechanisms are less understood. Zinc transporters responsible for acquisition have been identified in yeast (ZRT1 and ZRT2) and humans (ZIP4 and ZIP10) (48, 79, 142), but in Arabidopsis, half of the ZINC-REGULATED TRANSPORTER, IRON-REGULATED TRANSPORTER PROTEINS (ZIPs) family is induced under zinc deficient conditions (51). Thus, which members of the ZIPs are involved in zinc uptake remains to be elucidated, but the current model, based mostly on yeast studies (141), is that the ZIP member IRT1 non-selectively takes up zinc (as well as cadmium).

The rhizosphere, the few millimeters of soil immediately surrounding the plant root, also influences metal uptake. As discussed, roots exude compounds like nucleases into the rhizosphere that increase the solubility of minerals (7). Additionally, bacteria in the rhizosphere increase the root surface area and uptake capacity, and stimulate root hair production (40, 148). They may also contribute to acidification of the rhizosphere by producing chelating agents that increase solubility (161). Additionally, some plant species rely on relationships with beneficial mycorrhizae for improved nutrient uptake and defense against excess metal absorption (83, 119).
Figure 1.1 taken from Clemes, et al., 2002. Mechanisms of metal accumulation by plants. Metal ions are (a) mobilized by secretion of chelators and acidification of the rhizosphere, then (b) taken up by various uptake systems in the root plasma membrane. (c) Metals are then transported to the shoot via the xylem. (d) Once in the leaf, metals are distributed between cells through plasmodesmata. (e) Reuptake into leaf cells again is catalyzed by various transport systems.
Long-distance transport of metals

All nutrients, including metals, must enter through the root, and subsequently be distributed to appropriate tissues. Long-distance transport of metals involves entering the root, traveling radially until reaching the vasculature, being loaded into the xylem and moving towards the shoot, then being loaded into the phloem to be transported to final destinations, including the root organ (Figure 1.1, taken from Clemens, *et al.*, 2002).

After entering the root, metals are always bound to ligands; less than one free copper or zinc ion exists per cell (126). Metal transport involves the handoff of metal ions from ligand to ligand, making ligands the drivers of intracellular and long-distance transport. Ligands can be proteins, small peptides, or amino acids. Phytochelatins are oligomers synthesized by the enzyme phytochelatin synthase in response to copper or cadmium. Metallothioneins are proteins with a high amount of cysteines arranged in metal-binding motifs, and their expression is induced by copper, cadmium, and zinc. Some metals also use specific chaperones; copper transport uses the metallochaperone CCH (86), while zinc is not predicted to use any metallochaperone proteins.

Nicotianamine (NA) chelates copper in the xylem sap, and is involved in copper, iron, and zinc phloem loading and unloading (103). Iron travels in the xylem as a Fe-citrate complex, and through the phloem as Fe-NA (103, 120).

Radial transport of metals in the root has been presumed to rely on both the apoplastic and symplastic pathways (Figure 1.2). Because of suberinized and lignified casparian strip, the endodermis is impermeable to metal ions, and they must instead move via the symplasm (155). However, in tissues like the root apex, where the casparian strip is not yet formed, metals may also move through the apoplast (129). Apoplastic movement involves movement from the cell wall plasma membrane into the
cytosol, which is not selective. Thus, while both the apoplast and the symplast contribute to metal levels throughout the plant, the symplastic pathway is thought to control the selectivity and extent of metal movement (22). After reaching the xylem, metals are loaded into xylem cells for distribution to the rest of the plant. While xylem loading of zinc and cadmium is relatively well understood, the identity of transporters for other metals such as copper is still the subject of debate (60, 67, 126, 146).

Figure 1.2 General model of radial transport of heavy metals in the root. Symplastic and apoplastic routes of metal transport from the epidermis to the xylem.
Root Responses to Metal Excess

One of the most easily observable plant responses to nutrient stress is the modification of the root system architecture. Many stresses have effects on primary root growth, lateral root length and abundance, and root hair production. Metal excess generally leads to the suberization of root tissue and formation of apoplastic barriers, inhibition of primary root growth, and enhanced lateral branching. Although the inhibition of primary root growth is a general response, the mechanism for how it occurs can vary according to stress. In the cases of lead, mercury, and cadmium stress, there is a decrease in cell division (81, 100, 163). Under copper stress, decreased potassium uptake in the leaf and the accumulation of sugar leads to reduced photosynthesis which in turn reduces root growth (97). Other effects on root system architecture are also stress-specific. Cadmium toxicity decreases the diameter of the root and changes in cell shape (83, 133), lead results in a thickening and blackening of the root, high manganese suppresses root hair formation (70), and in maize, excess nickel leads to an increase in the number of cortical cell layers (84).

Prior to observable anatomical changes in root systems, nutrient status perception and stress signaling must occur. The transcription factor SPL7, which contains a metal-sensing domain and is required for activation and repression of copper-responsive genes, is proposed to sense copper levels (154). How plants sense iron and zinc status is still unknown.

The production of reactive oxygen species (ROS) is a general response and important signaling component under many stresses. Under excess metal stress, ROS are produced through the Haber-Weiss and Fenton reactions, which can be catalyzed by redox metals directly, or as a result of metabolism alterations. Copper and iron, which are redox-active metals, catalyze the conversion of hydrogen peroxide H_2O_2 to $\bullet\text{OH}$,
hydroxyl radical, which is highly reactive. Zinc, which is a redox-inactive metal, creates ROS indirectly by inhibiting ROS scavenging mechanisms (12, 29, 96, 102, 140, 162). While prolonged and excess ROS accumulation results in cell death, ROS is also an upstream signal mediator and induces stress-responsive genes (29). Interestingly, the subcellular localization, quantity, and species of ROS determine the specificity of the cellular response (44); this may partially explain why there is such contradictory data in the literature regarding ROS levels and localization under metal stress.

Plants have evolved mechanisms to mediate the detoxification of metals, most of which revolve around keeping excess metal away from important cytosolic components. Movement of metals into the root can be restricted through the action of mycorrhiza, which defend against excess metal absorption (119). To restrict metals from entering the cell, flux across plasma membranes is reduced, coupled with active efflux into the apoplast, where metals can bind to the cell wall (52). Inside the cell, metals are shunted to appropriate subcellular compartments. Metals and metal-ligand complexes are pumped into the vacuole via NRAMP transporters that move cadmium, iron, manganese, and zinc, with low substrate specificity (74, 135, 136).

Metal accumulation in plants

In addition to metal allocation to appropriate subcellular compartments, metals may be sequestered into specific tissues or organs. A few examples show that where metal is distributed under conditions of excess has important implications for plant development.

In maize, excess nickel preferentially accumulates in the pericycle and endodermis of the root. Hyperaccumulation in these root tissues prevents nickel from reaching the aboveground organs. The high accumulation in the pericycle is responsible
for restricted root branching, a response that is unique to nickel toxicity. After 7 days of nickel treatment, plants have 0 lateral roots, even under the mildest concentration of 15 μM nickel, compared to an average of 23 under control conditions (121).

Because Indian mustard (Brassica juncea) is a high biomass crop, it is of interest for potential use in phytoremediation (the technique of using plants that can accumulate heavy metals in harvestable shoots, thereby cleaning the soil of metal contamination). In this species, cadmium preferentially accumulates in the trichomes of young leaves, a possible detoxification mechanism, since trichomes are an external tissue. Because ABA treatment reduces cadmium accumulation in the leaf, it is likely that transpiration and mass flow are responsible for cadmium accumulation in the leaf (114). Manganese in sunflower (14) and lead in tobacco (85) also accumulate in trichomes, and in bean, trichomes express a metal-binding metallothionein (43).

Plasmodesmata structure

Signaling between cells is an essential feature of all multicellular organisms to coordinate development and respond to changes in their environment. There was a time where plant cells were thought to be boring, independent units that were trapped in their cell walls and unable to communicate with each other. Mathis Jacob Schleiden wrote in 1838 that “every plant is an aggregate of completely individualized entities, independent and separate, which are the cells themselves”. Not until 1879, when Eduard Tangl observed strands between cells of the strychnine tree and hypothesized that these strands connected cells “to an entity of higher order” did this view begin to change (68).

In plants, most long-distance intracellular signaling occurs via plasmodesmata, channels that provide cytoplasmic continuity between adjacent cells. During cytokinesis, primary plasmodesmata are formed when endoplasmic reticulum becomes trapped
between cells (this ER spanning adjacent cells is called the desmotubule). Secondary plasmodesmata are formed de novo, independent of cell division, to adjust cell-cell connectivity as needed. The protein and phospholipid composition of the plasmodesmata membrane is unique from the cell plasma membrane, with enrichment and exclusive localization of specific proteins and receptors (50, 107).

All cells in the plant are connected by plasmodesmata, with the notable exception of stomatal guard cells and differentiated xylem elements (72, 98). Plasmodesmata allow for the direct transfer of signaling molecules, nutrients, water, RNAs, proteins including mobile transcriptions factors, chaperones, thioredoxins, and cyclin-dependent kinase inhibitors. Molecules that move through plasmodesmata are said to travel via the symplasm (or through the symplastic pathway). Currently there are several models for how molecules might move through the plasmodesmata (Figure 1.3). Molecules can diffuse through the cytoplasmic sleeve, the space between the plasma membrane and the desmotubule (8, 35, 111, 138). Alternatively, molecules can move through the desmotubule lumen or via the membrane (17, 49).

Figure 1.3 Routes of plasmodesmata transport. Models for molecular trafficking between cells include (from left to right) movement through the cytoplasmic sleeve, transport through the desmotubule lumen or membrane, and lateral diffusion along the plasma membrane.
The size of the plasmodesmata aperture determines the extent of cell-cell connectivity by allowing or excluding molecules of certain dimensions. This is referred to as the size exclusion limit (SEL), and while it is mostly based on size, properties such as charge and Stokes radius of the transported molecules play a role as well (5, 42, 134, 145, 156). It has always been thought that stem cell populations and undifferentiated tissues are connected by large SEL, and that as tissues mature and differentiate, the SEL becomes more restrictive (27, 46, 65). However, a recent study has found that new plasmodesmata have a very narrow cytoplasmic sleeve, and that this widening only occurs during cell maturation, suggesting that transport via plasmodesmata is regulated by more than just changes in the SEL (92).

Movement of non-cell-autonomous factors in development

During development, mobile transcription factors traffic between cells to determine cell identity and patterning. Some examples of mobile transcription factors important for normal development are SHORTROOT (SHR), FLOWERING LOCUS T (FT), and CAPRICE (CPC). SHR moves via plasmodesmata from its site of production in the stele to the adjacent cell layers for proper development of the ground tissue (69). When SHR movement from the stele to the endodermis is blocked, roots experience defects in cell division and polarity (151). FT is a transcription factor induced under long days, and important for flowering. It is expressed in the leaves, but its protein acts in the shoot meristem to activate APETELA, a floral meristem identity gene. Early experiments found that when a plant grown under long days was grafted to a non-induced plant, the second plant was able to flower (73, 158). More recent grafting experiments found that FT:GFP expressed in the shoot was found in ft roots (25), confirming that the FT protein
is a long-distance signal. CPC moves from its site of production in non-root hair cells to adjacent cells to determine root hair cell fate (71). Because root hairs are the major site of nutrient absorption, the symplastic movement of CPC between epidermal cells is particularly important for both development and the response to nutrient starvation. Indeed, a recent study found that elements of the CPC pathway are responsible for the increase in root hair production observed under low phosphate conditions (116). While these are three classic examples, this is in not a rare phenomenon. Rim, et al., found that 22 out of 76 transcription factors tested were able to move out of their expression domain in the root (109). Small RNA movement through plasmodesmata also has developmental importance. For example, miR165/166 is made in the endodermis, but moves into the stele periphery, degrading its target PHABULOSA (PHB), an HD-ZIP III transcription factor, and creating a gradient of PHB mRNA that determines xylem cell types in a dose-dependent manner (19).

Plasmodesmata transport can occur through passive diffusion or targeted transport. The intercellular transport of some proteins is non-targeted and driven by diffusion, as is the case for LEAFY (LFY), which shows a diffusion gradient with the highest levels in the tissue are where it is produced (152). However, other transcription factors like KNOTTED1 (KN1) (82) and CAPRICE (CPC) (71) can directly increase the plasmodesmata aperture to facilitate their own movement between cells, suggesting a regulated, not passive, movement through plasmodesmata. Other transcription factors require additional factors such as chaperones or interactions with the cytoskeleton or endomembrane for their movement. KN1 requires CCT8, a subunit of a type II chaperonin complex, presumably for refolding after reaching its destination cell (153). Transport of SHR relies on the endomembrane pathway and intact microtubules;
pharmacologically inhibiting early and late endosomes or microtubules disrupts normal SHR movement (149, 150).

Plasmodesmata permeability is carefully regulated during normal developmental processes like flowering, bud dormancy, and organogenesis. In floral development, signals moving symplastically from leaves to shoot apices can promote or repress flowering. Studies analyzing the movement of symplastic tracers show that commitment to flowering correlates with a decrease in tracer movement through plasmodesmata (47). In perennials, the meristem cycles between states of cell-cell communication. Chilling at the end of the growing season, accompanied by shorter days, leads to a closing of plasmodesmata and the development of dormant and freeze-tolerant buds. Breaking dormancy requires the reopening of plasmodesmata, which results in a restoration of the symplastic connections in the meristem. This “dormancy cycling” is important for perennial plants in temperate climates to anticipate regular seasonal changes (110).

During lateral root organogenesis, plasmodesmata must be temporarily shut down for the establishment of lateral root primordia. This is likely necessary for forming the auxin gradient required for lateral root initiation in the pericycle. Regulation of cell-cell connectivity in this process determines where lateral roots form, which has implications for root system architecture and nutrient acquisition (10).

Plasmodesmata roles in biotic stress

While plasmodesmata-mediated signaling is regulated by developmental cues, it is also influenced by outside factors. The best studied example of this is in response to pathogenesis. Plants are susceptible to viral, fungal, and bacterial pathogens, and plasmodesmata play an important role in each of these contexts to mediate plant defense and disease symptoms. All viruses encode movement proteins (MP), which are
targeted to plasmodesmata and directly increase the SEL to allow for the spread of their infectious genomes (31). In response, plants shut down plasmodesmata to restrict the spread of infection. Fungi and bacteria (non-viral pathogens), mostly remain in the apoplastic space (with the exception of some fungi having intracellular hyphae that move through plasmodesmata) (123). However, plasmodesmata are crucial for initiating a signaling response. Defense-related pathogen associated molecular pattern (PAMP) receptors are enriched at plasmodesmata, and recognize bacterial proteins like flagellin and chitin to deploy downstream signaling responses. The activation of PAMP receptors triggers a decrease in SEL and decrease in plasmodesmata permeability (39, 87, 107, 144).

Regulating plasmodesmata in response to infection is complex; plasmodesmata closure is necessary to contain pathogen-derived factors, but keeping plasmodesmata open is necessary to propagate response signals. For antiviral RNA silencing to be amplified between cells, small RNAs need to move via plasmodesmata (105). In non-viral pathogenesis, the closing of plasmodesmata is required for immunity. Loss of function of the CHITIN ELICITOR RECEPTOR KINASE 1 (CERK1) PAMP receptor, which is required for chitin signaling, leads to an increased susceptibility to infection (45). However, when there is too much plasmodesmata closure, as is observed in the PLASMODESMATA-LOCALIZED PROTEIN (PDLPL1 or PDLP5 overexpression lines, there is no acquired immunity (18).

Plasmodesmata roles in abiotic stress

Less is known about the importance of modifying plasmodesmata signaling in response to abiotic stress. Most studies have been correlative, showing that exposure to stress results in a decrease of plasmodesmata permeability. While it is easy to
understand why plasmodesmata shut down to prevent pathogen spreading, it is less clear why plants would modify plasmodesmata signaling in response to stresses like pressure, cold, wounding, or nutrient starvation.

Oparka et al. (94) showed that plasmodesmata can be sensors of pressure gradients between adjacent cells. By using a micropressure probe/injection system, they created turgor pressure gradients between the trichome cells of *Nicotiana* leaves and assessed the movement of Lucifer Yellow. They found that plasmodesmata transport is strongly blocked when there is a pressure differential between neighboring cells. Conducted in 1992, this was one of the earliest experiments to show that transport via plasmodesmata could be modified in response to exogenous mechanical cues. It was also an exciting study for testing the idea that plasmodesmata can ‘sense’ local changes in the cellular environment.

Soon after, osmotic stress was shown to induce a transient opening of plasmodesmata. Using pea roots, Schulz, et al., (118) found that after treating root tips with low water potential media there was an increase in the phloem unloading of 14C. Additionally, electron microscopy of mannitol-treated root tips revealed an increase in plasmodesmata diameter under osmotic stress. However, this plasmodesmata widening is short-term; plasmodesmata still returned to their normal diameter whether or not there was continued exposure (3 hours) to osmotic stress. This study was important for showing that plasmodesmata responses can be transient, and not the result of permanently altered cell-cell connectivity. This study is also significant because it is the only recorded condition that causes an increase (instead of decrease) in plasmodesmata transport, albeit a transient one.

Using maize suspension-culture cells, Holdaway-Clarke et al. (56) showed that cold treatment causes a spike in cytosolic Ca^{2+}, causing plasmodesmata to go from
open, to shut, to open again in 10 seconds. Ca\(^{2+}\) is a second messenger to chilling, and while others had previously used high experimental levels of Ca\(^{2+}\), this was the first report of a rapid change in intercellular signaling in response to cold with physiological levels of Ca\(^{2+}\). Importantly, these results demonstrate how rapid and dynamic gating of plasmodesmata can be; it was a surprising finding that this response could occur in a matter of seconds.

Cui et al. (28) showed that mechanical wounding causes a restriction of plasmodesmata transport. After wounding the tips of *Arabidopsis* leaves, there is a 30% decrease in the movement of the symplastic tracer Carboxy fluorescein (CF) after 30 minutes. Interestingly, CF movement begins to recover in as little as 3 hours, with full recovery after 24 hours. These experiments indicate that blocks to plasmodesmata can be transient and reversible, enhancing our understanding of the dynamic regulation of intercellular signaling in response to external cues. This study was also important to the field for identifying specific genes that mediate the changes in plasmodesmata connectivity (discussed further below).

Müller et al. (89) published the first report showing that a nutrient signal, in the form of phosphate starvation, effectively blocks the movement of a mobile transcription factor. Using *Arabidopsis* seedlings they found that SHR:GFP movement into the quiescent center (QC) is restricted under low phosphate conditions in as soon as 12 hours. Separate from this, plasmodesmata also play a role in deploying the low phosphate response. miR399, the master regulator of the phosphate starvation signaling module, allows for the expression of high-affinity phosphate transporters to increase nutrient uptake. Grafting experiments and examination of phloem sap strongly suggest that the miR399 moves from the shoot to root to execute this response (80, 99). Because of this long-distance transport, miR399 is presumed to move via
plasmodesmata from the shoot to root to increase phosphate uptake. Thus
plasmodesmata signaling plays a role in phosphate starvation in both allowing
movement of miR399 from shoot to root, and blocking movement in and out of the QC.

These studies show that plasmodesmata responses to abiotic cues can be rapid,
occurring in a matter of seconds or minutes, and reversible. Over the years, our
paradigm of plasmodesmata as static structures has evolved into an understanding of
these channels as rapid and dynamic responders to a variety of signals. Additionally, the
literature suggests that under stress, plasmodesmata permeability is generally
decreased (with osmotic stress being an exception). It is still unclear what, if any, is the
biological benefit to the changes in plasmodesmata signaling observed under many of
these conditions.

Regulation of plasmodesmata signaling

To date, the best understood and most studied regulator of plasmodesmata
permeability is the polysaccharide callose. Callose is a β-1,3-glucan, and when induced
is deposited to plasmodesmata, effectively decreasing the plasmodesmata aperture and
restricting macromolecular traffic between cells (Figure 1.4, taken from Tilsner, et al.,
2016). The presence of callose at plasmodesmata is a reflection of the activities of two
enzyme families. Callose synthases (CalS) use UDP-glucose as a substrate to
synthesize callose, while β-1,3-glucanases degrade callose by catalyzing callose
hydrolysis. Callose is involved in normal developmental processes such as pollen
development, cell plate formation and functional megaspore selection (33, 36, 63, 93).

The CalS enzymes contain multiple transmembrane domains and a cytosolic
loop with a putative UDP-glucose binding site. CalSs interact with *trans*-partners that
Regulatory mechanisms that lead to 1) open and 2) closed plasmodesmata states. Redox states of the cytosol and organelles, cytosolic calcium, phytohormones, and pathogen infection are signaling nodes that regulate callose-mediated changes in size exclusion limit. Additionally, morphological differences in plasmodesmata structure (simple or branched) shown in left, affect macromolecular transport via plasmodesmata.
together form the CalS holoenzyme complex. While most trans-factors are still unknown, to date a UDP-glucose transferase (58), a sucrose synthase (1), and annexins (3) have been identified. The differential regulation of specific CalSs, together with interaction of specific trans-partners has been suggested as a way to exert specific regulation of callose synthesis.

Arabidopsis has 12 CalS genes, and the field is starting to piece together their specific roles in responding to environmental signals. CalS8 responds to wounding stress using hydrogen peroxide (H$_2$O$_2$) as a signal (28), CalS1 is activated by the salicylic acid pathway to respond to pathogen infection in the leaf (28), and CalS12 deposits callose plugs at sites of fungal penetration (61). The unique roles elucidated thus far for individual CalS genes indicate possible subfunctionalization of the CalS members.

The β-1,3-glucanase enzymes in *Arabidopsis* are a much larger family, consisting of 50 predicted members. Structurally, these enzymes contain an N-terminal glycosyl hydrolase family 17 domain (GH-17) which catalyzes callose hydrolysis. The C-terminal contains a callose binding domain (X8) or a carbohydrate-binding module 43 (CBM43). Less is known about the specific roles for individual β-1,3-glucanases, in part because they are such a large family. However, BG_PPAP has been linked to viral spreading in the leaf. In bg_ppap mutants, callose deposition was increased after viral infection, and viral spreading was reduced (76). In roots, PLASMODESMATA LOCALIZED β-1,3-GLUCANASE (PdBG1 and PdBG2) are responsible for callose turnover that reestablishes symplastic connectivity during lateral root organogenesis (10).

In addition to CalS and β-1,3-glucanase enzymes, GPI-anchored plasmodesmata callose-binding proteins (PDCB) influence callose accumulation at plasmodesmata.
While they have no enzymatic activity, PDCB proteins bind callose through their CMB43 domain, stabilizing callose at the plasmodesmata neck region (125). PDBGs and PDCBs are both membrane-bound via GPI anchors, reinforcing the model that specific protein composition at the plasmodesmata membrane influences molecular trafficking through plasmodesmata (50). A partial Arabidopsis cell wall proteome analysis identified PDLPs, a family of plasmodesmata localized proteins with features of type I membrane receptor-like proteins. Later, PDLP5 was found to mediate plasmodesmata closure in response to pathogen infection in a salicylic acid-dependent manner (28, 75).

While callose is an important player in developmental and environmental responses, very little is known about how the enzymes responsible for callose accumulation are themselves regulated. Correlative studies have linked calcium and ROS signaling to activation of the CalS enzymes (11, 128). Accumulation of ROS stimulates a cytosolic influx of Ca$^{2+}$, and increases in cytosolic Ca$^{2+}$ can lead to plasmodesmata closure, as is the case after exposure to cold (56). However, we still do not know how these signals are integrated at the plasmodesmata and then transmitted to the CalS enzymes. Cold and wounding result in the accumulation of callose in seconds or minutes, suggesting that regulation occurs at the level of protein activity (28, 56). In the case of β-1,3-glucanases, less is known. However, according to Doxey, et al., a small group of β-1,3-glucanase genes are regulated at the level of transcription in response to hormone treatment, ozone stress, bacterial or pathogen infection (34).

Other molecules, subcellular domains, and structural differences can regulate cell-cell connectivity, although many of these aspects are still not well understood. First, the change in plasmodesmata from a simple to a complex structure, as occurs in leaves undergoing a sink-source transition, can influence symplastic transport between cells. In tobacco leaves, branched plasmodesmata restrict non-specific plasmodesmata transport.
Conversely, the INCREASED SIZE EXCLUSION LIMIT 1 (ISE1) mutants, which have increased transport of fluorescent tracers, also have a higher frequency of twinned plasmodesmata (131).

Secondly, like plasma membranes, cell walls can have microdomains with specific compositions that lead to different mechanical properties. For example, plasmodesmata pit fields, which are sites of high plasmodesmata transport and cell-cell exchange, have cell walls with low cellulose and high pectin content, which facilitate the function of forming secondary plasmodesmata (26, 38).

Thirdly, the cytoskeleton components actin and myosin have been found to localize to plasmodesmata, and dye diffusion experiments show that disrupting either of these leads to alterations in the normal SEL (132). However, it is still unknown if the actin cytoskeleton controls plasmodesmata aperture directly, or if this effect is indirect through protein recruitment, microdomain organization, or membrane shaping.

Lastly, plasmodesmata membrane contact sites (MCS) have been more recently studied and proposed to greatly influence symplastic permeability. MCS are areas where two membranes are in very close proximity (30nm) but do not fuse, and in plant cells, the MCS between the ER desmotubule and plasmodesmata membrane is particularly relevant (54, 104). MCS tethers are protein complexes that connect the two membranes and mediate this interaction. These MCS tethers adjust the gap between membranes, determining the space available for macromolecular transport (55). Shortening of the gap between the ER and PM can facilitate crosstalk if the membranes are close enough, and models have been suggested for receptor-induced Ca\(^{2+}\) signaling at ER/PM MCS (20). Importantly, MCS have been shown to respond to environmental cues; the synaptotagmin SYTA is recruited to the ER/PM MCS during viral infection, and is necessary for the accumulation of MP at plasmodesmata during viral infection (77).
In summary, plasmodesmata-mediated transport is essential for plant life, and tightly regulated in both development and in response to abiotic and biotic stress. Since Tangl’s prescient findings in 1879, the paradigm of plant intercellular communication has completely changed, and we have come to appreciate plasmodesmata function and importance. However, there is still much we do not fully understand about how plasmodesmata are regulated, and the molecular components and signaling pathways that lead to this regulation. While the effects of pathogenesis on plasmodesmata transport have been well studied, less is known about the effects of nutrient stresses. Further work is needed to elucidate if there is a biological or adaptive benefit to plasmodesmata modification in other contexts. Additionally, it is still unclear if shutting down plasmodesmata is a universal response to stress, since only a few conditions have been studied. The identification of genes that regulate plasmodesmata permeability is being actively pursued by the field, and there are several lines of evidence that suggest subfunctionalization of the enzymes that regulate callose turnover at plasmodesmata in response to specific environmental cues.

While heavy metal contamination is an increasingly relevant environmental stress, we still do not know how it affects plasmodesmata transport. Even components such as metal receptors, sensors, and ligands are still unidentified for many metals, and we do not have a full understanding of how metals are taken up by the root and move within the plant. However, one relevant mechanism is the finding that metals such as aluminum, nickel, and cadmium preferentially accumulate in different tissues or organs. Since metals presumably use the symplastic pathway for their long-distance movement and distribution, it is likely that plasmodesmata play a role in the proper distribution of metals.
2. RESULTS
Plasmodesmata-mediated transport is modified under conditions of nutrient stress.

To determine whether a decrease in plasmodesmatal permeability is a general response to nutrient stress we transferred 5-day old *A. thaliana* seedlings to media lacking essential nutrients: 0 µM phosphate, 0 µM iron or 0 µM zinc or media containing excess nutrients: 600 µM iron, 150 µM zinc, or 50 µM copper. In addition, we examined the effects of 85 µM cadmium, which competes against other metals for uptake into the root but plays no role itself in normal plant nutrition. After 24h on the stress media, we assessed the effects of these treatments on the movement of carboxyflourescein diacetate (CFDA) or free GFP through plasmodesmata.

Figure 2.1 Changes in CFDA transport after heavy metal stress. (A) Distance of CFDA transport shootwards after 24 hours of stress treatment. Wilcoxon rank sum test, p<0.05, n = 25 or greater. (B)-(B’) Sample image of CFDA after color threshold has been applied using ImageJ under (B) control or (B’) 600 µM Fe.
CFDA is a commonly used small (~ 1kD) symplastic tracer. When applied to the root tip, CFDA is internalized and converted to the fluorescent molecule, carboxy fluorescein (CF). CF traffics between cells exclusively via plasmodesmata. Under our assay conditions, when CFDA was micropipetted (2.0 µL) directly onto the tip of an unstressed root, CF moved rapidly into the epidermis and cortex cell layer and then shootward up the root an average of 68.0 mm (Figure 1 A and B). In roots that have been grown for 24 h on 0 µM phosphate, 0 µM iron, 600 µM iron, or with 85 µM cadmium movement of CF was significantly reduced, suggesting that these growth conditions elicited a decrease in plasmodesmata permeability (Figure 2.1, A and B’). In contrast, roots grown on 0 µM zinc, 150 µM zinc or 50 µM copper all increased the distance that CF traveled from the root tip, indicating an increase in plasmodesmata permeability (Figure 2.1, A).

Figure 2.2 Cell division after 24 hours of stress is unaffected. GUS staining of cycb1;1:GUS line, marking actively dividing cells, after 24 hours of (A) control conditions, (B), 50 µM Cu, (C) 600 µM Fe, (D) 150 µM Zn, (E) 85 µM Cd, (F) 0 µM Pi, (G) 0 µM Fe, and (H) 0 µM Zn.

None of these growth conditions (paucity or excess) affected the levels of cell divisions in the root meristem (Figure 2.2). Likewise, with the exception of the 0 µM phosphate treatment, which dramatically increased the frequency of emerged root hairs, none of these treatments affected the overall patterning of the root. These results suggest that the changes that we see in the movement of CF in response to nutrient
stress are not the result of general changes in the development of the root meristem, but rather modifications in plasmodesmatal permeability.

Free (untagged) GFP (~27 kD) is able to move between most cells in the plant via PD (117). As such, movement of GFP is used as a marker of symplastic signaling. Under normal growth conditions, when GFP is expressed in the phloem companion cells using the SUCROSE-H⁺ SYMPORTER 2 (SUC2) it is unloaded into the pericycle and diffuses via plasmodesmata throughout the entire root meristem (Figure 2.3A and Figure 2.4).

Figure 2.3 Effect of nutrient stress on the movement of GFP from the phloem. (A-H) SUC2:GFP expressing 6 day old seedlings at 24 h after transfer to (A) standard MS (control) (B) 600 µM iron (C) 50 µM copper (D) 150 µM zinc (E) 85 µM cadmium (F) 0 µM iron (G) 0 µM phosphate, and (H) 0 µM zinc. Scale bar 75 µm. Inset values are the ratio of mean GFP mean fluorescence intensity in the stele of the root tip just above the QC (white boxed region) relative to the stele in the transition zone of the root (yellow boxed region); *indicates statistical significance, 2-tailed t-test, p<0.05. (I) Arbitrary fluorescence units (AFU) of GFP radially across the transition of the root in representative samples: control, 50 µM copper, and 600 µM iron.
In roots with defective trafficking however, GFP florescence is largely limited to the phloem (9, 89). In our assays, growth of roots for 24 h on 50µM copper, 150 µM zinc or 0 µM phosphate had no appreciable effect on movement of GFP out of the phloem or its distribution in the root meristem (Figure 2.3C, D, G, and I; Figure 2.4B). In contrast 24 h treatment of roots with 0 µM iron, 0 µM zinc, 600 µM iron, or 85 µM cadmium all reduced the movement of GFP from the phloem (Figure 2.3B, E, F, H and I; Figure 2.4A).

Figure 2.4 Fluorescent profile of GFP across the root transition zone. Arbitrary fluorescence units (AFU) of GFP in a line across the transition zone of a 6 day old root 24 h after growth on media (A) that decreases the QC to stele ratio of GFP fluorescence: 600 µM iron, 85 µM cadmium, 0 µM iron or 0 µM zinc (as labeled) or (B) under conditions that have no effect on movement of GFP 50 µM copper, 150 µM zinc and 0 µM Pi. Control roots are shown in both graphs.

This is reflected in the decrease in the movement of GFP into the meristem (the ratio of GFP fluorescence in the stele above the QC relative to the stele where the phloem extends into the meristem; QC:P ratio) and a change in the fluorescence intensity profile of GFP radially across the transition zone of the root meristem compared to the controls (Figure 2.3 and Figure 2.4). In roots with a decreased QC:P ratio (in control roots the QC:P ratio is 0.60) there is conspicuous peaks in GFP signal in the two phloem strands (indicated by yellow arrow-heads in Figure 2.3I and Figure 2.4 I). These
results indicate that short term exposure of roots to 0 µM iron, 0 µM zinc, 600 µM iron or 85 µM cadmium decreases plasmodesmatal permeability in the post-phloem domain of the root meristem. The block to movement of free GFP in these assays is not the result of permanent changes to plasmodesmata; the restriction of GFP movement is reversible. For example, when roots grown for 24 h on 600 µM iron are allowed to recover on control media for 24 hours, GFP profiles return to the normal pre-stressed levels (Supplemental Figure 2.5, A-C).

![Figure 2.5 Restriction of GFP movement in response to high iron is reversible and correlates with the presence of callose in the phloem.](image_url)

(A-C) SUC2:GFP seedlings stained with (A'-C') aniline blue. (A and A') prior to iron treatment, (B and B') after 24 hours on 600 µM iron, and (C and C') after 24 h recovery on normal media for 24 hours. (Scale bar 100 µm).
Collectively these data indicate that while many stressors trigger a decrease in plasmodesmata permeability, a restriction in plasmodesmata-mediated trafficking is not in fact a universal response to abiotic stress.

Changes in the accumulation of callose drive the response of the root to iron and copper.

The β-1,3-glucan, callose, has emerged as a major regulator of plasmodesmata permeability. When deposited at plasmodesmata, there is a general decrease in the size of plasmodesmatal apertures, and restricted movement of macromolecules between cells. To determine if any of our growth conditions affect the accumulation of callose in the root, we stained roots with aniline blue, a fluorescent dye that binds callose (157).

In the root meristem, callose is apparent in the walls of newly divided cells; however low basal levels of callose are found surrounding all cells under normal growth conditions (Figure 2.6A). Short-term (24 h) growth of roots on 85 µM cadmium, 0 µM iron, 0 µM zinc, and 150 µM zinc had no quantitative effects on callose levels in the root meristem, elongation or differentiation zones (Figure 2.6D-F, H and I). There were also no obvious qualitative differences in the deposition of callose. In contrast, growth of roots on 50 µM copper induced a general decrease in the levels of callose in the root meristem, elongation and differentiation zones (Figure 2.6C and I), which correlates with the observed increase in movement of CF that is seen in Figure 1. Growth of roots on 0 µM phosphate resulted in a tissue-specific accumulation of callose, in the epidermis of the differentiation zone of the root, particularly among the root hairs (Figure 2.6G).

Previous reports by Müller showed a marked increase in aniline blue staining in the QC region of 6 day-old roots grown for 48 h on 0 µM phosphate; we did not observe this as a general phenomenon - one root of 17 showed conspicuous accumulation of callose.
Figure 2.6 Aniline blue staining of callose after 24 hours of stress treatment.
Aniline blue staining of callose after 24 h transfer to (A) standard (control) MS media (B) 600 µM iron (C) 50 µM copper (D) 150 µM zinc (E) 85 µM cadmium (F) 0 µM iron (G) 0 µM phosphate, and (H) 0 µM zinc. Scale bar 100 µm. (I) Mean fluorescence intensity (MFI) of aniline blue signal in roots treated as indicated. 2-tailed t-test, p<0.05, n >19, error bars indicate standard error.

around the QC. Growth of roots for 24 h on 600 µM iron resulted in a dramatic and tissue-specific increase in callose in the phloem, with no obvious qualitative changes in aniline blue staining in other regions of the root (Figure 2.6B). Interestingly the deposition of callose in response to high iron was reversible. When roots were removed from media containing 600 µM iron and allowed to recover for 24 h on normal MS medium, callose levels return to normal (Figure 2.5A`-C`). The iron induced buildup and
turnover of callose correlates with the observed inhibition and recovery of GFP movement (Figure 2.5A-C).

To further assess the relationship between heavy metal stress and protein movement, we examined movement of free GFP (using Raster Imaging Correlation Spectroscopy) within a defined region of the root meristem of roots treated for 24 h with 600 µM iron, 50µM copper, or 150 µM zinc.

Figure 2.7 Analysis of GFP diffusion coefficient in response to heavy metal stress. (A) Small white box shows region of interest (ROI) used for RICS. (B) Magnified representative image of an ROI in which RICS was performed. (C) Average diffusion coefficients for GFP in 35S:GFP seedlings after 24 h of treatment with 50 µM copper, 600 µM iron or 150 µM zinc. 2-tailed t-test, p<0.05, n >14.

In the region of interest used for RICS we saw no effects on callose levels in response to iron or zinc treatment and a decrease in callose in the copper treated roots. In control roots the diffusion coefficient of free GFP in the region of the meristem tested (shown in Figure 2.7A) was 7.94 µm²/sec, which is consistent with previously published results (21). Within the same region of interest in the 600 µM iron or 150 µM zinc treated roots, there were no quantitative difference in the levels of callose compared to the controls and no difference in the coefficient of diffusion in these roots compared to the controls (Figure 2.7C). In contrast, there was a general decrease in callose levels in the
region of interest of roots grown on 50 μM copper and a significant increase in the coefficient of diffusion of free GFP (Figure 2.7C). These results suggest that growth of roots on 600 μM iron causes a tissue specific increase in callose and a block to movement of GFP out of the phloem (Figure 2.3), but not a general decrease in plasmodesmatal permeability in the stele (Figure 2.7), whereas growth of roots on excess copper have generally decreased callose levels in the root meristem and increased plasmodesmatal permeability.

Callose synthases and β-1,3-glucanases control the levels of callose in response to excess iron and copper.

Callose accumulation is regulated by two families of enzymes; callose synthases, which synthesize callose, and β-1,3-glucanases, which degrade callose. Recent data suggest that at least for the callose synthase family, specific genes are responsible for responding to specific cues. To identify genes involved in the response of *A. thaliana* roots to excess iron or copper we tested the ability of callose synthase and β-1,3-glucanase mutants to respond to 24 h treatment with 600 μM iron or 50 μM copper respectively (Supplemental Figure 4).

There are 12 annotated callose synthase (*CalS*) genes in *A. thaliana*. We were able to isolate viable homozygous loss-of-function lines for 10 of the 12 family members. *cals9* nulls are gametophytic lethal (59); loss of *cals10* is seedling lethal (113). As in previous assays, *cals* seedlings were grown for 5 days on standard MS media and then transferred for 24 h to media containing 600 μM iron. After 24 h on 600 μM iron, roots were stained with aniline blue and assessed for the induction of phloem-specific callose and a general increase in the levels of callose in the root meristem. Here 8 of the 10 *cals* lines showed a wildtype response to growth on excess iron (Figure 2.8).
Figure 2.8 Callose phenotypes and mRNA levels of CalS and β-1,3-glucanase mutants tested in this study. Aniline blue staining of roots, genotypes as indicated 24 h after treatment with (A) 600 µM iron, or (B) 50 µM copper. Scale bar 75um. (C) Levels of mRNA expression in indicated genotypes after 30 cycles of PCR. *in (A) and (B) indicate published alleles, for which there are no mRNA levels tested in (C).

In contrast, cals5 (cals5-2, cals5-3 or cals5-5) and cals12 (cals12-1 or cals12-2) showed an attenuated response to excess iron (Figure 2.9). Despite a decrease in the basal levels of callose in the cals5 lines, the cals5 roots were still responsive to treatment with excess iron showing a 31% increase in aniline blue signal in cals5-2 lines versus 33% increase in wildtype after 24 h on 600 µM iron (Figure 2.9D). In addition approximately 50% of the cals5-2 roots examined showed modest increases in phloem callose compared to wildtype. However, the increases in phloem callose was not
Figure 2.9 Effect of excess iron on callose deposition and movement in *cals5* and *cals12* lines. (A-D) Aniline blue staining of callose in (A and A’) wildtype, (B and B’) *cals5*-2, and (C and C’) *cals12*-1 under (A-C) control conditions, and (A’-C’) 24 h after treatment with 600 µM Fe. (D) Callose levels after 24 hours of growth in control or 600 µM iron in *cals5*-2 and *cals12*-1. 2-tailed t-test, p<0.05, n = 20 or greater, error bars indicate standard error. (E-F’) SUC2:GFP expressing 6 day old *cals5* and *cals12* seedlings at 24 h after transfer to (E and F) standard MS (control), and (E’ and F’) 600 µM iron. Inset values are the ratio of mean GFP mean fluorescence intensity in the stele of the root tip just above the QC relative to the stele in the transition zone of the root. Scale bars in A-F’100 µm.

sufficient to block movement of GFP from the phloem or affect the QC:P ratio (Figure 2.9 F and F’). In contrast, 24 h treatment with 600 µM iron significantly inhibited movement of CF in the *cals5*-2 lines. The *cals12* (*cals12*-1 or *cals12*-2) roots showed normal basal levels of callose and no quantitative increases in callose levels in response to 24 h treatment with 600 µM iron (Figure 2.9D). Only occasionally (approximately 1 in 10 roots) was there a low level accumulation of callose in the phloem. Consistent with these results, GFP movement from the phloem (SUC2:GFP) is not inhibited by treatment of the
cals12-1 mutants with 600 µM iron (Figure 2.9 E and E’). The *cals12-1* lines however are responsive to iron treatment, as movement of CF is inhibited in the *cals12-1* roots (similar to wildtype) after 24 h on 600 µM iron (Figure 2.10). These results indicate that CALS12 is largely responsible for the iron induced production of phloem specific callose and the subsequent block to the movement of GFP out of the phloem. CALS5 is required for basal callose production in the root, not specifically in the phloem or specifically in response to iron. Additionally, pathways independent of callose may restrict movement of CF within the iron-stressed roots.

![CF Transport](image)

Figure 2.10 CFDA transport in cals5 and cals12 lines. Distance of CFDA transport shootwards after 24 hours of treatment with 600 µM Fe (Wilcoxon rank sum test, p<0.05, n = 25 or greater).

There are 50 predicted β-1,3-glucanases in *A. thaliana* (34). Doxey et al., 2007, divided the β-1,3-glucanases into 13 groups (A-M). Here we concentrate our analysis on the group D β-1,3-glucanase genes, which are specifically expressed in the root, and regulated in response to various stress conditions. In addition, we examined BG_PPAP, a stress-responsive plasmodesmata-localized β-1,3-glucanase that is not part of the
group D β-1,3-glucanases (76). As in previous assays, the loss-of-function lines were grown for 5 days on regular MS media before being transferred for 24 h onto media containing 50 µM copper. Neither bg_ppap-1 nor bg6-1 (At4g16260) showed a reduction in callose levels or an increase in CF movement that is seen in wildtype roots in response to 50 µM copper treatment (Figure 2.11) indicating that both BG_PPAP and BG6 are required for wildtype responses to excess copper.

Figure 2.11 Effect of excess copper on callose deposition and movement in bg_ppap and bg6 lines. Aniline blue staining of callose (A-C) under normal growth conditions, and (A’-C’) after 24 h treatment with 50 µM Cu. Scale bar 100 µm. (D) Callose levels after 24 hours of control or 50 µM Cu in bg_ppap-1 and bg6-1. 2-tailed t-test, p<0.05, n = 20 or greater, error bars indicate standard error. (E) CFDA transport shootwards in bg_ppap-1 and bg6-1 (Wilcoxon rank sum test, p<0.05, n = 25 or greater).

However, BG_PPAP and BG6 are not generally required for response to heavy metal stress or the breakdown of callose. Both bg_papp-1 and bg6-1 show normal
increases in phloem specific callose after 24 h of growth on 600 µM iron (Figure 2.12A` and B`). More importantly after 24 h recovery on normal MS media (Figure 2.12A`` and B``) callose is broken down normally in the phloem of the bg_papp and bg6-1 lines. These results suggest that BG_PPAP and BG6 mediate a reduction in callose levels in response to excess copper; however neither is required for breakdown callose during recovery from iron. These data are consistent with callose synthases and β-1,3-glucanases specifically regulating callose levels in response to heavy metal stress, and they further support the premise that changes in callose underlay changes in plasmodesmatal permeability.

Figure 2.12 The β-1,3-glucanase BG_PPAP and BG6 are not required for recovery of roots from excess iron. Aniline blue staining of (A-A``) bg_papp-1 and (B-B``) bg6-1 (A and B) prior to stress exposure, (A` and B`) after 24 hours of 600 µM Fe, and (A`` and B``) after 24 hours of recovery on control media. Scale bar 100 µm.
Modifying plasmodesmatal permeability in response to iron or copper stress has consequences for plant growth.

Inhibition of primary root growth is a common response of plants to nutrient stress. There are likely many factors that contribute to the reduction in root growth; however the results of Sivaguru et al., (127) suggest that changes in symplastic signaling may underlie a significant part of the response. This study showed that exposure of wheat to 20 µM aluminum significantly inhibits growth of the primary root. Remarkably this stunting is ameliorated when roots are pretreated with 2-deoxy-d-Glc, an inhibitor of callose and cellulose synthases prior to exposure to 20 µM aluminum (127). These findings are consistent with speculation in the literature that the production of excess callose in response to abiotic stress is generally inhibitory to growth.

Figure 2.13 Growth of primary root is inhibited by excess copper or iron. Seedlings treated for (A-D) 1 day or (A`-D`) 3 days with excess copper, iron, or zinc as labeled. (E-F) Increase in the length of the primary root during (E) 1 day of treatment as labeled, or (F) 3 days. 2-tailed t-test, p<0.05, n > 14, error bars indicate standard error.

To examine the connection between nutrient stress, callose, and root growth, we looked at changes in the growth of A. thaliana roots after treatments with 50 µM copper, 600 µM iron or 150 µM zinc. As shown in Figure 2.13, both 50 µM copper and 600 µM
iron decrease the rate of root growth (by 35% and 50% respectively at day 1, and by 33% and 70% respectively at day 3); however even after 3 days of growth on 50 µM copper or 600 µM iron the root meristems are actively dividing. These results indicate that while short-term growth of roots on excess iron or copper stunts the growth of the primary root, the roots are still alive and actively dividing.

Figure 2.14 cals5 are less sensitive to the growth inhibiting effect of excess copper than wildtype. (A-C) Roots transferred for 3 days to (A-C) regular MS media or (A'-C') media containing 600 µM iron. Scale bar 100 µm. The yellow arrow heads indicate the end of the meristematic zone and the beginning of the elongation zone. (D) Increase in the length of the primary root during the 3 days post-transfer to control or media containing of 600 µM iron. Percentages below the root genotypes indicate percent inhibition of growth relative to MS grown roots. 2-tailed t-test, p<0.05, n = 15 or greater, error bars indicate standard error. Star indicates growth statistically less than wildtype under control conditions.
A plausible model for the effect of iron on the growth of the primary root is that increased levels of callose in the phloem decrease the ability of the vasculature to transport molecules needed for growth into the root meristem. To test this model, we examined the effect of 600 µM iron on the growth of *cals5-2* and *cals12-1* roots. As shown in Figure 2.14, the *cals5-2*, but not the *cals12-1* mutants were less sensitive to iron induced inhibition of root growth. This was seen both in the overall reduction in root growth – approximately 72% in wildtype compared to 43% in the *cals5-2* lines (Figure 2.14D) and in the overall size and structure of the root meristem (Figure 2.14B’).

Figure 2.15 Growth of roots on excess iron inhibits the rate of primary root growth. (A) 7 day old wt seedlings germinated directly on standard MS media (control) or media containing excess iron as labeled. (B-B’) Aniline blue staining of callose after 24 hours of (B) control or (B’) 100 µM Fe. Scale bar 100 µm.

Since the *cals5-2*, but not the *cals12-1* lines still produce callose in response to treatment with 600 µM, with about half of the *cals5-2* roots showing increases in phloem specific callose in response to excess iron, these results are not consistent with our
initial model. Therefore, to further explore the connection between iron-induced callose deposition and inhibition of root growth, we directly germinated and grew wildtype roots for 7 days on media containing between 100-600 µM (in 100 µM increments) iron (Figure 2.15A). In these assays the extent of inhibition of root growth directly correlated with the concentration of iron. However, it did not correlate with the presence of excess callose in the phloem as even roots grown for 24 h on media containing 100 µM showed iron induced accumulation of phloem specific callose (Figure 2.15B'). Collectively these results suggest that the ameliorative effects of the cals5-2 mutation on inhibition of root growth in response to excess iron are the result of the overall general decrease in callose levels in these lines and not due to a lack of phloem-specific callose deposition. It is possible that the rescue of root growth would be more pronounced in cals5;cals12 double mutants, however we were not able to isolate viable double mutants. Note that similar to the experiments by Sivaguru et al., we tried pretreating roots with 2-deoxy-d-Glc prior to growth on 600 µM iron; however, in our hands, 2-deoxy-d-Glc had no measureable effect on callose levels in response to 600 µM iron.

Roots grown on 50 µM copper show quantitative decreases in the overall levels of callose in the root and increases in the movement of CF and GFP in the root meristem. Roots grown for 1 or 3 days on 50 µM copper are roughly 30% shorter than corresponding control roots grown on normal MS media, indicating that excess copper is inhibitory to root growth (Figure 2.13). To determine if the observed decreases in root growth are the result of altered callose levels we examined the effects of 50 µM copper treatment on the growth of bg_ppap-1 and bg6-1 roots, which have slightly increased basal levels of callose but show no changes in the levels of callose or the movement of CF in response to excess copper. Surprisingly both the bg_ppap and bg6-1 lines are
more sensitive to 50 µM copper than wildtype (Figure 2.16). Both bg_ppap-1 and bg6-1 show an increase in the inhibition of primary root growth in response to excess copper relative to wildtype (Figure 2.16D) with dramatic decreases in the size of the meristem, radial swelling in the root elongation zone and cell death (Figure 2.16 A’-C’). Treatment of roots with 150 µM zinc, which also increases plasmodesmatal permeability, but has no effect on callose levels, has no effect on the growth of the primary root (Figure 2.17). These results suggest that rather than inhibiting

Figure 2.16 β-1,3-glucanase mutants are more sensitive to the growth inhibiting effect of excess copper than wildtype. (A-C) roots transferred for 3 days to (A-C) regular MS media or (A’-C’) media containing 50 µM copper. Scale bar 100 µm. (D) Increase in the length of the primary root during the 3 days post-transfer to control or media containing of 50 µM copper. Percentages below the root genotypes indicate percent inhibition of growth relative to MS grown roots. 2-tailed t-test, p<0.05, n = 15 or greater, error bars indicate standard error. Star indicates growth statistically less than wildtype under control conditions.
growth, the break-down of callose by BG_PPAP and BG6 helps to maintain normal root growth in the presence of excess copper.

Figure 2.17 Treatment of roots with excess zinc has no effect on primary root growth. (A) wildtype and the (B and C) callose synthase and (D and E) β-1,3-glucanase alleles (as labeled) after 3 days on media containing 150 µM Zn. Scale bar 100 µm. (F) Increase in the length of the primary root during the 3 days post-transfer to control or media containing 150 µM Zn. 2-tailed t-test, p<0.05, n > 14 , error bars indicate standard error.

If decreases in callose allow for continued growth of the primary root in response to excess copper, then cals5-2 roots, which have reduced basal levels of callose, should have decreased sensitivity to treatment with 50 µM copper. Indeed, when 5 day-old cals5-2 seedlings were grown for an additional 3 days on media containing 50 µM copper, growth of the primary root was inhibited by only 14%. In contrast, wildtype and
cals12 roots which have normal basal levels of callose show 29% and 27% decreases in the growth of the primary root, respectively (Figure 2.16D). These results suggest that decreases in callose may generally ameliorate stress induced decreases in growth of the primary root. However, the converse was not strictly true. Both bg_ppap-1 and bg6-1, which have increased basal levels of callose, were not more sensitive to the inhibitory effects of 600 µM iron treatment. Both bg_ppap-1 and bg6-1 showed reductions in root growth (73% and 67% respectively) in response to excess iron that were in range with what was seen in wildtype (Figure 2.14). Collectively, these results suggest that increases in callose in response to heavy metal stress generally limit the growth of the primary root and that factors that decrease the accumulation of callose may buffer the inhibitory effects of excess heavy metals on root growth.

The distribution of copper is altered in the β-1,3-glucanase mutants.

Since there are both apoplastic and symplastic routes for the transport of heavy metals, changes in symplastic permeability may alter the distribution of metals within the root. To determine where in the root iron and copper accumulate and determine whether changes in symplastic signaling affect this distribution, we used LA-ICP-MS (Laser Ablation – Inductively Coupled Plasma – Mass Spectrometry), which was recently optimized for use in *A. thaliana* roots (124). For our assays, 10 µM punches (positioned along a linear grid) were taken from a live *A. thaliana* root; these punches were coupled to MS to determine elemental concentrations in the punches. Assays were done on wildtype and mutant roots under control conditions and after 24 h on excess iron or copper where defects in root growth are minimal and meristem organization is unaffected (Figure 2.18).
Figure 2.18 β-1,3-glucanase mutants have normal cellular phenotypes after 24 hours of excess copper. (A and A’) wildtype, (B and B’) bg_ppap-1, and (C-C’) bg6-1 treated for 24 hours with (A)-(C) control media or (A’)-(C’) 50 µM Cu media. Scale bar 100 µm.

The roots of wildtype, cals5-1 and cals12-1 seedlings were analyzed on control media and after exposure for 24 h to 600 µM iron. The signals for iron were very low in all genotypes, in all regions of the root. Measurements were similarly low when roots were grown under control conditions or on excess iron. Since others have reported similar challenges with the detection of iron using LA-ICP-MS, this likely reflects a technical limitation of the system and not the biology of the root.

Under normal growth conditions wildtype, bg_ppap-1 and bg6-1 all showed similar levels of accumulation of copper throughout the root. After 24 h on 50 µM copper,
wildtype roots showed increases in copper levels throughout the length of the root with even higher levels in punches 1 and 2, which correspond to the meristem. In root punches 3-10, bg_ppap-1 and bg6-1 roots did not differ from wildtype in the levels of copper. In punch 2, levels of copper in bg_ppap-1 and bg6-1 were moderately higher than wildtype. However, in the meristem (punch 1) copper levels were dramatically (2-2.5 fold) higher in ppap-1 and bg6-1 relative to wildtype roots treated with 50 µM copper. These results indicate that copper levels are altered in the meristem of bg_ppap-1 and bg6-1 roots relative to wildtype. The region of the root with the most substantial increases in copper in the bg_ppap-1 and bg6-1 roots at 24 h is also the region of the root whose development appears most affected by excess copper at day 3. These results suggest that in the absence of BG_PPAP or BG6 roots are less able to restrict copper from the root meristem perhaps due to reduced symplastic movement of copper in these lines.
Figure 2.19 β-1,3-glucanase mutants accumulate excess copper in root tip compared to wildtype. Accumulative signal intensity in arbitrary units of copper levels in wildtype, bg_ppap-1, and bg6-1 after 24 hours of 50 µM Cu. X-axis corresponds to sample taken along the root, with punch 1 being at the meristem and moving shootwards.
3. CONCLUSIONS AND FUTURE DIRECTIONS
The focus of this work was to study how environmental stressors can affect plasmodesmata-mediated signaling. After exposure to seven different nutrient starvation and heavy metal excess conditions, we found that plasmodesmata closure in response to stress is not a universal response, as was previously thought. Upon investigating the deposition of callose in roots after exposure to stress, significant phenotypes were found in high iron (phloem-specific deposition) and high copper (callose breakdown) that correlated with the observed decrease and increase in symplastic signaling, respectively. Genetic analysis identified enzymes in the callose synthase and β-1,3-glucanase families, involved in callose deposition and breakdown, that were responsible for these callose-mediated modifications to plasmodesmata transport. We find that these regulated changes in plasmodesmata signaling in response to stress affect root growth, health, and mineral distribution. Most importantly, opening plasmodesmata under excess copper allows for better root growth, improved tolerance to copper, and reduced copper levels in the root meristem. This work contributes to our knowledge of plasmodesmata signaling during nutrient stress by identifying the genes and mechanisms that play a role in regulating intercellular signaling during high copper and iron stress, and by beginning to elucidate what the biological benefit might be to these modifications.

Symplastic isolation of the phloem in response to iron stress

Exposure to excess iron causes a fast and dramatic symplastic isolation of the phloem. This tissue specificity is confirmed by the RICS data, which show that plasmodesmata transport at the root tip remains normal under high iron. While not related to conditions of excess iron, symplastic isolation of the phloem is also observed during the normal potato tuber life cycle. In that system, symplastic gating plays a role in both tuber induction and dormancy break by controlling the allocation of resources to
meristematic or vegetative tissues (53). While the callose deposition in response to excess iron is dramatic, root cells are not dead (as shown by cycb1;1:GUS and propidium iodine staining) and plasmodesmata transport returns to normal after roots are removed from stress (as shown by SUC2:GFP diffusion recovery). This suggests that this is a biologically adaptive response, not the root responding by dying or entering dormancy. However, it is not clear what benefit (if any) there is to the deposition of phloem callose in response to excess iron.

One possibility is that this strong phloem block may serve to protect the meristem from excess iron accumulation. For iron to be distributed to the root organ, it is first sent up the xylem to the shoot, then loaded into the phloem for redistribution to sink tissues (22). We hypothesized that under high iron conditions, wildtype lines would have low levels of iron in the meristem, while the CalS mutants would have high iron accumulation, since they are unable to deposit phloem callose. However, we were unable to detect changes in iron accumulation in the root meristem using our LA-ICP-MS methods. The iron signal was very low in our mass spectrometry data, regardless of treatment condition or genotype. While this system is ideal for measuring many different elements, it is not very sensitive to detecting iron. Thus, we were unable to determine if ameliorating phloem callose leads to alterations in iron distribution in the root. However, if our hypothesis about protecting the meristem is correct, it may be that keeping that population of cells safe from toxic iron is a priority for the plant, even if this callose deposition correlates with inhibition of primary root growth (discussed later).

An alternative experimental approach would be to perform traditional ICP-MS (37), without the laser ablation. However, because of the amounts of dry tissue required for this technique, one would need thousands of Arabidopsis seedling roots for each
treatment. Additionally, because entire organs are ground up for processing, any spatial
information about distribution within the root would be lost.

A more informative alternative approach would be to use synchrotron x-ray
fluorescence (SXRF) to get in vivo metal abundance data without fixation or sectioning.
Briefly, the SXRF technique involves exciting a sample with synchroton x-rays, and
capturing the emission based on an element’s characteristic energy. This method
provides spatial resolution in the sub-μm range, and sub-mg kg⁻¹ detection sensitivity
(106). The technique has been optimized for use in various plant tissues, including
Arabidopsis roots, by the Guerinot lab, and more recently used in the Vatamaniuk lab
(159) to analyze iron and copper levels in leaves.

Increasing plasmodesmatal permeability in response to copper stress

One of the most exciting results from this work was the finding that excess levels of
copper induce an increase in plasmodesmata transport. With the exception of osmotic
stress, all other biotic and abiotic stressors reported in the literature (pathogenesis,
wounding, cold, metal toxicity) cause a decrease in plasmodesmata permeability. This
led us to wonder why copper would have such a different effect on plasmodesmata
compared to other metals like iron, and the finding that copper is particular toxic among
heavy metals. While land plants contain 140 μg of iron per g⁻¹ dry weight, they contain
only 4.15 μg of copper (91), creating a very low threshold for optimal copper amounts. In
ryegrass and other plant species tested, the order of metal toxicity is
Cu>Ni>Mn>Pb>Cd>Zn>Hg>Fe; this order matches the order of metallic-organic
complexes stability (147). Additionally, unlike iron, which can be safely bound to ferritin
as a storage mechanism, copper has no similar mechanism (108). This increased
toxicity particular to copper led us to the hypothesis that excess copper concentrations
would require a spreading of copper throughout the root to dilute levels in individual cells.

Our LA-ICP-MS experiments show that opening plasmodesmata under conditions of high copper results in reduced copper concentrations in the root meristem. This increase in plasmodesmata permeability appears to be beneficial to the plant; when this response is attenuated, plants have poorer root growth, increased sensitivity to copper stress, more severe developmental effects, and increased copper accumulation in the meristem. Given that heavy metals are presumed to move symplastically at several points in their long-distance transport, these findings highlight the importance of plasmodesmata-mediated transport of copper for appropriate distribution under conditions of excess.

An intriguing additional possibility is that opening plasmodesmata allows for the spreading of a signal necessary in the high copper response. In the case of phosphate starvation, for example, the long-distance transport of miR399 from the shoot to root is necessary for the expression of high affinity transporters to increase phosphate uptake (66, 99). In another example, the antiviral RNA silencing response during pathogenesis requires the spreading of small RNAs via plasmodesmata (105). Therefore; it is possible that a mobile signal needs to move via plasmodesmata under high copper stress as well.

SPL7 has been proposed as the sensor for copper levels, activating copper chaperone CCH, copper transporters, and miR398 (which degrades proteins that require copper as a co-factor) under copper deficiency (154). However, under high copper conditions, SPL7 needs to be turned off. Regulation of SPL7 under high copper may involve degradation of the SPL7 protein, or inactivation by an as-yet unidentified copper-sensing protein, as proposed by Yamasaki, et al. (154). While we understand many of the steps involved in the copper deficiency response, the signaling pathway and regulators in
response to copper excess are still not clearly elucidated. It is possible that increasing plasmodesmata permeability may assist in the spreading of an unknown copper-sensing protein, thus allowing a signal to reach the meristem and instruct the root to cease copper uptake.

The role of CalS and \(\beta-1,3\)-glucanase enzymes in responding to specific environmental cues

Although callose is the best-studied regulator of plasmodesmata permeability, the field is still actively working to elucidate how CalS and \(\beta-1,3\)-glucanase enzymes respond to specific cues to regulate callose metabolism. A recent 2014 review listed all of the known callose synthases and \(\beta-1,3\)-glucanases that influence plasmodesmata permeability through callose turnover (30); there were only three of each kind. The current work contributes to that list and supports previous findings that there may subfunctionalization of the CALS genes. We found that of the genes tested, only CalS12 acts in the iron stress response. While we did not screen all 50 \(\beta-1,3\)-glucanase genes under high copper, single mutants for \textit{BG_PPAP} and \textit{BG6} were enough to significantly impact how roots respond to this stress. Therefore, even though this is a large family, there may be specificity between genes and signals. The other 48 genes do not appear to compensate, suggesting there is less genetic redundancy than we may have expected.

Moving forward, it will be valuable to understand more about how these enzymes are regulated. Correlative studies have shown that calcium and ROS signaling are linked to activation of CalS enzymes (discussed further below). However, we still do not know how these signals are integrated at plasmodesmata and transmitted to the CalS complex. Even less is known about the regulation of the \(\beta-1,3\)-glucanase enzymes. The
class D β-1,3-glucanase genes, which we screened in this study, are transcriptionally regulated in response to hormone treatment, ozone stress, and bacterial or pathogen infection, as determined by microarray expression data (34). However, the upstream regulators and signaling components are still unidentified. Learning more about the regulation and activation of these enzymes will contribute to our understanding of the steps in turning an environmental cue into a modification of intercellular signaling.

One promising avenue of inquiry would be the relationship between the plasmodesmata-localized proteins (PDLPs) and callose synthases. PDLPs were identified in a plasmodesmata proteome study (41), and confirmed via microscopy to localize to plasmodesmata (75). In salicylic acid-dependent defense responses, PDLP5 is required for appropriate plasmodesmata closure, and PDLP5 overexpresser lines have four times higher callose levels at plasmodesmata than wildtype. However, the precise function of PDLPs is still unknown, and how exactly they contribute to callose deposition is unclear, since they have no callose synthesis activity of their own. It is likely that the PDLPs work to activate the callose synthase enzymes at plasmodesmata through a still-unknown mechanism.

The link between callose deposition and primary root growth

For some time, scientists in the field have been interested in definitively concluding if the deposition of callose causes inhibition of primary root growth. A study using the callose synthesis inhibitor 2-deoxy-D-glucose in wheat cultivars found that inhibition of callose synthesis rescues primary root growth of wheat roots exposed to aluminum toxicity (127). However, 2-deoxy-D-glucose can also inhibit cellulose synthesis, so these effects are not callose-specific. Another more recent study found that overproduction of callose led to inhibition of primary root growth (139). In this study, an estradiol-inducible
system was used to activate the ics3m construct, expressing a gain-of-function CALS3, which led to excess callose levels and significantly shorter roots than wildtype.

Here we were able to assess the effects of callose deposition on root growth using mutant analysis. Under normal conditions, the β-1,3-glucanase mutants bg_ppap and bg6 have higher callose levels than wildtype, and after exposure to high copper stress, do not decrease callose levels in the root. These mutants also grow more poorly under high copper stress than wildtype, showing an increased inhibition of primary root growth. The callose synthase mutant cals12 has equal levels of callose as wildtype under normal conditions, and a similar inhibition of primary root growth as wildtype under high iron stress. Conversely, cals5 has significantly lower callose levels than wildtype under control conditions, and shows much less primary root growth inhibition in response to high iron (43% compared to 72%). High zinc, which elicits no obvious changes in callose deposition, also elicits no inhibition of primary root growth, in wildtype or mutant lines, after 1 or 3 days.

The strongest support for the model of callose driving root growth inhibition in this work comes from the growth assays of bg_ppap and bg6 on high iron, and cals2 and cals12 on high copper. The β-1,3-glucanase mutants, which have higher overall levels of callose, also have more severe primary root growth on high iron than cals5, which has the lowest callose levels. Under high copper, cals5, which has the lowest basal callose levels, also shows the least inhibition of primary root growth. cals12, which has similar callose levels as wildtype, shows similar primary root growth inhibition (27% and 29%, respectively).

Our results are consistent with recent findings in a recent 2015 study by Zhang, et al. (160). This group screened 71 cultivars of sweet sorghum for aluminum tolerance. They found that the aluminum-tolerant ROMA cultivar also had lower callose synthase activity,
higher β-1,3-glucanase activity, and reduced callose accumulation after 24 hours of aluminum exposure. Conversely, the most aluminum-sensitive cultivar, POTCHETSTRM, had higher callose synthase activity, lower β-1,3-glucanase activity, and accumulated more callose in root apices in response to aluminum treatment. Interestingly, when the β-1,3-glucanase responsible for these differences, SbGlu1, was heterologously expressed in Arabidopsis, these plants also showed reduced callose accumulation and greater aluminum tolerance, as assayed by primary root growth. Thus, under either excess aluminum or copper, a decrease in callose levels in the root correlates with improved root growth.

Why would plants increase callose deposition if it stunts root growth? One possibility is that this allows for the loss of apical dominance, and an increasingly branched root system. Under suboptimal nutrient conditions, root system architecture changes to deploy more lateral roots at the expense of primary root growth. This is thought to increase foraging capacity for a more optimal nutrient patch. Classic experiments using barley grown in soils with heterogeneously distributed nutrients show that the root system has dramatically increased lateral roots and root hairs only in the zone of nutrient stress (112). Thus, stress does not cause a complete cessation of growth, but rather a redistribution of growth.

Determining the mechanism of plasmodesmata regulation under zinc stress

After exposure to excess or deficient zinc, Arabidopsis roots show changes in plasmodesmata transport that appear to be independent of callose accumulation (in contrast to what was observed with high copper and iron). Even when zinc levels were increased to 500 μM, or the exposure time was increased to 7 days, no changes in callose were observed. One possibility is that callose levels are changing at a range that
is undetectable with aniline blue imaging. Aniline blue is a fast and inexpensive technique; however, there may be high background levels due to non-specific staining (157). Immuno-labeling of callose gives more sensitive and cleaner images, but is labor-intensive due to the fixation and sectioning required (101). To confidently rule out callose changes during high zinc stress, future experiments could use commercially available antibodies to perform immuno-labeling of callose under these conditions.

An alternate possibility is that the changes in plasmodesmata transport under zinc stress are callose-independent. Some support for this is the finding that excess zinc has no effect on primary root growth (discussed above). While callose is the best understood regulator of plasmodesmata permeability, other molecules, subcellular domains, and structural differences can regulate cell-cell connectivity. Changes in plasmodesmata structure, microdomains, or membrane contact sites (MCS) all influence plasmodesmata permeability. These are all plasmodesmata alterations we would not detect with our aniline blue staining experiments under zinc stress. One possibility that was preliminarily investigated in this work was whether there are changes in the frequency and structure of plasmodesmata under high zinc conditions. Using cryo-EM techniques of high pressure freeze and freeze substitution (15), longitudinal ultra-thin sections of the root tip were prepared for TEM imaging. Due to the laborious and expensive nature of the sample preparation, and the time-intensive process of quantifying plasmodesmata numbers using TEM, this avenue of research was not pursued further, but future work may use this preliminary data for further exploration.

Another feature of zinc stress is that while there is an increase of CF movement shootwards in both high and low zinc, there is either a decrease (low zinc), or no significant changes in GFP movement (high zinc) out of the phloem. One possibility for this is that we are using two fluorescent molecules of different sizes (GFP is 27 kDa,
while CFDA is much smaller at ~1 kDa), and we are observing increased allowance of CF movement, but not necessarily GFP. Alternatively, because we observed different changes in plasmodesmata transport between directions (outwards from the phloem compared to from root to shoot), it is possible that the phloem and stele tissues may experience different modifications to plasmodesmata permeability than the ground tissues and epidermis do. Other stresses like salt and low iron elicit tissue-specific transcriptional responses (32). Perhaps in the case of zinc, there are tissue-specific transcriptional events that culminate in different regulation of intercellular signaling.

Nothing is known yet about tissue-specific responses to excess zinc, but to determine this, future work could perform Fluorescence Activated Cell Sorting (FACS) to look at the transcriptional profiles of different cell types after exposure to zinc stress (13, 16).

The role of ROS in heavy metal stress

While excessive and prolonged exposure to ROS results in cell death, ROS is also an important upstream signaling component in stress responses. Literature in the field about ROS localization and production is controversial. For example, while some groups have documented that excess zinc leads to increased ROS, others have found that this is only the case in mutants lacking vacuolar sequestration (64). Part of the difficulty in studying ROS is the rapid kinetics of ROS production, the involvement in all steps of the stress response (signal perception, transduction, and amplification), the difficulty in reliably detecting levels and localization, and the crosstalk between ROS and hormones and nitric oxides. Additionally, preliminary data in my thesis (unpublished) found that mutants in ROS production fail to make phloem callose under high iron stress, supporting the body of work linking ROS signaling to stress responses. In this work, the
role of ROS in influencing root growth, activating CalS enzymes, and regulating plasmodesmata permeability is of particular interest.

The balance of types of ROS molecules has been shown by Tsukagoshi, et al., to regulate the switch between cell proliferation and differentiation (137). The transcription factor UPBEAT1 (UPB1) regulates the expression of three peroxidase genes that in turn regulate the levels of superoxide and hydrogen peroxide in specific root zones. These opposing gradients of superoxide and hydrogen peroxide control the transition between division at the meristem and differentiation at the transition zone in the root. Interestingly, based on observed differences between the localization of UPB1 mRNA and protein, UPB1 may move from the lateral root cap to the elongation zone. Because excess copper and iron induce ROS accumulation, inhibition of primary root growth, and changes in plasmodesmata permeability, it would be interesting to determine the role of UPB1 in the root responses observed under copper and iron stress. If UPB1 requires plasmodesmata for its intercellular movement, one could study how high copper or iron changes UPB1 distribution, and if this correlates with change in primary root growth under these conditions.

As stated above, very little is known about how signals are integrated at the plasmodesmata to activate CalS enzymes. However, studies have shown a correlation between ROS production and callose deposition in both developmental processes (pollen development, elongation of cotton fibers, stomata patterning, and transition to senescence) and stress responses (viral infection, aluminum and cadmium exposure). Additionally, forward genetic screens for mutants in symplastic transport have mostly yielded mutations in genes involved in redox homeostasis. Mutants in GFP-ARRESTED TRAFFICKING (GAT1), have defects in the plastid thioredoxin TRX-m3, which is an enzyme responsible for protein redox activation and inactivation. gat1 mutants show an
increased accumulation of both callose and ROS (9). Conversely, mutants in INCREASED SIZE EXCLUSION LIMIT 1 (ISE1), which have defects in a mitochondrial RNA helicase, have increased intercellular transport, though still accompanied by increased ROS levels (131). These two mutants both have increased ROS, but different effects on plasmodesmata permeability. The plastid and mitochondria make different ROS intermediates and in different concentrations, therefore the subcellular origin, ROS amount, and ROS type may activate different signaling pathways that lead to different plasmodesmata modifications.

Because high copper increases ROS levels, but we see an increase in plasmodesmata permeability, it is likely that ROS is being produced from the mitochondria, resulting in plasmodesmata widening. To test this hypothesis, future work could utilize the organelle-targeted ROS sensors developed in the Zambryski lab to determine the redox state of subcellular compartments, and confirm if the mitochondria is responsible for the ROS production under high copper stress (130). These sensors consist of GFP variants, target to either the cytoplasm (cyto-roGFP1), plastid (plastid-roGFP2), or mitochondria (mito-roGFP1). Importantly, two cysteine residues have been introduced near the fluorophore, allowing for the formation of a disulfide bond dependent on the redox state of the organelle. The different conformations of the fluorophore have different peak fluorescence excitation wavelengths (400nm in neutral form, 495nm in anionic form), which can then be detected via confocal microscopy.

In summary, this work has contributed to our knowledge of how plants regulate intercellular signaling in response to environmental challenges. Callose, the best-studied regulator of plasmodesmata permeability, modifies plasmodesmata transport under excess copper or iron, although we cannot rule out its role in stresses that fail to show
obvious changes in callose localization or levels. Elucidating the genes responsible for regulating these modifications contributes to what we know about callose synthase and β-1,3-glucanase enzymes, and their roles in responding to specific cues. Most importantly, plasmodesmata modifications under heavy metal stress have significant impacts on plant health and survival. Altering the plant’s normal plasmodesmata responses affects root growth, cellular morphology, and mineral distribution under heavy metal stress.

While plasmodesmata have been studied for over 138 years, the field at this time is actively trying to further understand mechanisms of regulation in this important signaling pathway. At this juncture, there are many possible avenues to pursue. Future work should focus on continuing to identify specific roles for proteins that regulate callose turnover at plasmodesmata, better understanding callose-independent mechanisms of intercellular transport regulation, elucidating the role of ROS in root responses to excess heavy metals, and discovering if mobile signals are being propagated via plasmodesmata under high copper stress.

Outside of basic science, the findings from this work have potential for biotech applications as well. Many applied and translational groups are working on exploiting adaptive responses to create better crops and agricultural products. As global populations continue to rise and the changing climate threaten our food security, maximizing crop production efficiency will continue to be of interest.
4. MATERIALS AND METHODS
Plant Material and Growth Conditions

A. thaliana wildtype ecotype Col-0 was used along with mutant lines (Supplemental table 1). Cycb1;1:GUS lines were provided by Dr. Scott Poethig, University of Pennsylvania. SUC2:GFP lines were provided by Dr. Stefan Abel, University of California, Davis. CalS lines (as indicated in Table 4.1) were provided by Dr. Jung-Youn Lee, University of Delaware. All seeds were sterilized using 20% bleach solution, and kept in 4ºC for 2 days before sowing onto 1x MS plates with 5% sucrose and 5% Difco Agar. Plants were grown in incubation chamber using 16-hr light / 8-hr dark cycle at 23ºC. After 5 days, seedlings were transferred to stress media for 1 or 3 days (indicated in text) before analyzing. For plates containing excess heavy metals, the following concentrations were added to 1xMS media: 50 µM CuSO₄, 150 µM ZnSO₄, 600 µM FeEDTA, or 85 µM CdCl₂. For low nutrient plates, media was made with the following concentrations of macro and micronutrients (instead of using MS): 5 mM potassium nitrate, 2 mM calcium nitrate, 2 mM magnesium sulfate, 2.5 mM potassium phosphate, 14 µM manganese chloride, 70 µM boric acid, 1 µM zinc sulfate, 0.5 µM copper sulfate, 0.2 µM sodium molybdate, 0.01 µM cobalt chloride, and 50 µM NaFe EDTA. For low phosphate media, potassium phosphate was omitted, 2.5 mM potassium chloride added as a potassium source, and washed agar was also used. For low iron media, NaFe EDTA was omitted, and 100 µM Ferrozine (an iron chelator) was added. For low zinc media, ZnSO₄ was omitted from the media.
Table 4.1 Germlasm used in this study

<table>
<thead>
<tr>
<th>Gene</th>
<th>Allele</th>
<th>Line</th>
<th>Reference</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>CalS1</td>
<td>cals1-1</td>
<td>SALK_142792</td>
<td>Weier et al., 2016</td>
<td>Jung-Youn Lee, UDel</td>
</tr>
<tr>
<td>CalS2</td>
<td>cals2-1</td>
<td>SAIL_1276_E05</td>
<td>Weier et al., 2016</td>
<td>Jung-Youn Lee, UDel</td>
</tr>
<tr>
<td>CalS3</td>
<td>cals3-5</td>
<td>SALK_068418</td>
<td>Vaten et al., 2011</td>
<td>Jung-Youn Lee, UDel</td>
</tr>
<tr>
<td>CalS4</td>
<td>cals4-1</td>
<td>SALK_009569</td>
<td>this study</td>
<td>ABRC</td>
</tr>
<tr>
<td>CalS5</td>
<td>cals5-2</td>
<td>SALK_026354</td>
<td>Dong et al., 2005</td>
<td>ABRC</td>
</tr>
<tr>
<td>CalS5</td>
<td>cals5-3</td>
<td>CS68974</td>
<td>Nishiwaka et al., 2005</td>
<td>ABRC</td>
</tr>
<tr>
<td>CalS5</td>
<td>cals5-5</td>
<td>SALK_072226</td>
<td>Nishiwaka et al., 2005</td>
<td>ABRC</td>
</tr>
<tr>
<td>CalS6</td>
<td>cals6-1</td>
<td>FLAG_335D06</td>
<td>Weier et al., 2016</td>
<td>ABRC</td>
</tr>
<tr>
<td>CalS7</td>
<td>cals7-1</td>
<td>SALK_048921</td>
<td>Xie et al., 2011</td>
<td>Jung-Youn Lee, UDel</td>
</tr>
<tr>
<td>CalS8</td>
<td>cals8-1</td>
<td>SALK_037603</td>
<td>this study</td>
<td>ABRC</td>
</tr>
<tr>
<td>CalS11</td>
<td>cals11-1</td>
<td>SAIL_18_G03</td>
<td>Weier et al., 2016</td>
<td>ABRC</td>
</tr>
<tr>
<td>CalS12</td>
<td>cals12-1/pmr4-1</td>
<td>CS3858</td>
<td>Nishimura et al., 2003</td>
<td>Jung-Youn Lee, UDel</td>
</tr>
<tr>
<td>CalS12</td>
<td>cals12-2/pmr4-5</td>
<td>CS67146</td>
<td>Nishimura et al., 2003</td>
<td>ABRC</td>
</tr>
<tr>
<td>At</td>
<td>bg_ppap-1</td>
<td>SALK_019116</td>
<td>Levy et al., 2007</td>
<td>ABRC</td>
</tr>
<tr>
<td>At</td>
<td>bg_ppap-2</td>
<td>SAIL_115_G04</td>
<td>Levy et al., 2007</td>
<td>ABRC</td>
</tr>
<tr>
<td>At4g16260</td>
<td>bg6-1</td>
<td>SALK_031479</td>
<td>this study</td>
<td>ABRC</td>
</tr>
<tr>
<td>At4g16260</td>
<td>bg6-2</td>
<td>SAIL_1280_B05</td>
<td>this study</td>
<td>ABRC</td>
</tr>
<tr>
<td>At1g30080</td>
<td>bg7</td>
<td>SALK_078006</td>
<td>this study</td>
<td>ABRC</td>
</tr>
<tr>
<td>At4g18340</td>
<td>bg8</td>
<td>SALK_053553</td>
<td>this study</td>
<td>ABRC</td>
</tr>
</tbody>
</table>
Table 4.2 Primers used in this study

<table>
<thead>
<tr>
<th>Primer Name</th>
<th>5’-3’</th>
</tr>
</thead>
<tbody>
<tr>
<td>EIF4a</td>
<td>Forward primer: AAACCTGAAATCGCTCAGAG</td>
</tr>
<tr>
<td>cals4-1</td>
<td>Forward primer: GCTAACGGAAGTGGAGCA</td>
</tr>
<tr>
<td>cals8-1</td>
<td>Forward primer: GGAGATGGCGAGGAATGCTT</td>
</tr>
<tr>
<td>bg6-1</td>
<td>Forward primer: TCACAACCATCCTCAACCCAA</td>
</tr>
<tr>
<td>bg6-2</td>
<td>Forward primer: TCACAACCATCCTCAACCCAA</td>
</tr>
<tr>
<td>bg7</td>
<td>Forward primer: ACCAAGATCGGTGTTCCG</td>
</tr>
<tr>
<td>bg8</td>
<td>Forward primer: AACGAGCCTTTTTCACCAGC</td>
</tr>
<tr>
<td>Allele</td>
<td>Primer Name</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>cals1-1</td>
<td>Left primer</td>
</tr>
<tr>
<td></td>
<td>Right primer</td>
</tr>
<tr>
<td>cals2-1</td>
<td>Left primer</td>
</tr>
<tr>
<td></td>
<td>Right primer</td>
</tr>
<tr>
<td>cals3-5</td>
<td>Left primer</td>
</tr>
<tr>
<td></td>
<td>Right primer</td>
</tr>
<tr>
<td>cals4-1</td>
<td>Left primer</td>
</tr>
<tr>
<td></td>
<td>Right primer</td>
</tr>
<tr>
<td>cals5-2</td>
<td>Left primer</td>
</tr>
<tr>
<td></td>
<td>Right primer</td>
</tr>
<tr>
<td>cals5-3</td>
<td>Right primer</td>
</tr>
<tr>
<td>cals5-5</td>
<td>Left primer</td>
</tr>
<tr>
<td></td>
<td>Right primer</td>
</tr>
<tr>
<td>cals6-1</td>
<td>Left primer</td>
</tr>
<tr>
<td>cals7-1</td>
<td>Right primer</td>
</tr>
<tr>
<td>cals8-1</td>
<td>Right primer</td>
</tr>
<tr>
<td>cals11-1</td>
<td>Left primer</td>
</tr>
<tr>
<td></td>
<td>Right primer</td>
</tr>
<tr>
<td>cals12-1</td>
<td>Left primer</td>
</tr>
<tr>
<td></td>
<td>Right primer</td>
</tr>
<tr>
<td>cals12-2</td>
<td>Left primer</td>
</tr>
<tr>
<td></td>
<td>Right primer</td>
</tr>
<tr>
<td>bg_ppap-1</td>
<td>Left primer</td>
</tr>
<tr>
<td></td>
<td>Right primer</td>
</tr>
<tr>
<td>bg_ppap-2</td>
<td>Left primer</td>
</tr>
<tr>
<td></td>
<td>Right primer</td>
</tr>
<tr>
<td>bg6-1</td>
<td>Left primer</td>
</tr>
<tr>
<td></td>
<td>Right primer</td>
</tr>
<tr>
<td>bg6-2</td>
<td>Left primer</td>
</tr>
<tr>
<td></td>
<td>Right primer</td>
</tr>
<tr>
<td>bg7</td>
<td>Left primer</td>
</tr>
<tr>
<td></td>
<td>Right primer</td>
</tr>
</tbody>
</table>
Growth measurements

5 day old seedlings were transferred to indicated stress media for 1 or 3 days (indicated in text). Growth of primary root during stress exposure was measured using Image J segmented line function. 2-tailed t-test, p<0.05.

Aniline blue staining

Seedlings were stained in aniline blue solution (750 µl 67 mM K₃PO₄ pH 9.5, 240 µl distilled water, 1 µl Silwet-77, and 10 µl 1% aniline blue) in the dark for 1 hour prior to imaging. Images were taken using a Leica SP5 scanning confocal microscope using a 405 laser. When quantified, entire root was selected as a region of interest and mean fluorescence intensity was measured using ImageJ.

GUS staining

Entire seedlings were placed in ice-cold 90% acetone or 10 minutes. Acetone was then removed and replaced with staining buffer containing 50mM PO₄ buffer, 0.2% Triton-X, 2mM ferrocyanide/ferricyanide, and incubated for 10 minutes. Staining buffer was then removed and replaced with staining buffer containing 2mM X-Gluc and incubated for 15 minutes. Samples were incubated at 37 ºC overnight. Samples were then washed three times with 70% ethanol, and imaged using DIC.

CFDA

5(6)-Carboxyfluorescein diacetate (CFDA) was dissolved in dimethyl sulfoxide at 50mM stock concentration and stored at -20ºC. Fresh working solution was prepared for each
experiment by diluting the stock 1:50 in autoclaved water. 2 µl of working solution CFDA was applied to root tips and incubated at room temperature for 5 minutes. Roots were imaged on a fluorescent dissecting microscope using GFP filter. The extent of CF movement from root tip towards shoot was measured using Image J segmented line function. Color threshold was adjusted to include only strong green signal, and exclude dim signals and autoflourescence. Wilcoxon rank sum test, p<0.05. Boxplot created using R Studio.

SUC2::GFP

5 day old SUC2::GFP seedlings were transferred to stress media for 1 day. Roots were then imaged using Leica SP5 confocal microscope using a 488 laser. Propidium Iodide was used as a counter stain for the cell wall. Ratiometric data was generated by taking phloem:meristem fluorescence intensity ratios. Fluorescent profiles were generated by drawing a transverse line across the width of the root and using ImageJ’s plot profile feature.

RICS

5 day old 35S::GFP seedlings were transferred to stress media for 24 hours. Raster Image Correlation Spectroscopy (RICS) performed according to Clark, et al, 2016 (21). Images were collected using a Zeiss 710 confocal microscope. For Raster Image Correlation Spectroscopy, frames were acquired using Raster scan with a dwell time of 12.61µsec / pixel, for 100 frame series. Diffusion coefficient was derived using SimFCS software’s autocorrelation function. Wilcoxon rank sum test, p<0.05. Boxplot created using R Studio.
LA-ICP-MS

Laser ablation- inductively coupled plasma – mass spectroscopy performed according to Shimotohno, et al, 2015 (124). After 24 hours of metal stress, live *Arabidopsis* seedlings were mounted on microscope slides using double sided tape. Positions for laser ablation were set using computer software and camera, with a spot size of 10µM and a spacing of 30µM between punches.

