




Figure 8.1: Dropping an elastic cube (µ = 10, λ = 100) on the ground. Left: deformation

using isotropic elasticity (linear corotated model). Right: the result after adding anisotropic

stiffness (κ = 50).

8.4 Tearing and Cutting

Tearing and cutting effects, as shown in Figure 8.2, change the topology of a mesh, therefore

change the corresponding Laplacian matrix as well. In our implementation, we simply

remove an element from the gradient and objective evaluation once decide that element

needs to be removed from the system during tearing. A straightforward idea to simulate

this effect is to update and re-factorize our Hessian approximation M/h2 + L after the

system detects the topological change. Note that only the Hessian components of those

elements along or on the cutting edges need to be updated. Therefore the computational

cost is not as expensive as re-computing the Hessian matrix. Another approach is to

ignore the topological change from the Hessian approximation after the tearing or cutting.

The rationale behind this approach is the same with how we treat anisotropic materials in

Section 8.3 – as long as we can always get a descent direction, all we need to pay is a slightly

higher number of iterations for using a less accurate Hessian approximation. To be more

specific, we remove the contribution from a “torn” element when computing the gradient

and objective in line 4 and line 10 of Alg. 3, while keeping the hessian approximation

M/h2 + L in line 5 the same. We use this approach to simulate the result in Figure 8.2
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in real time. We can also combine these two ideas together: observing that the tearing

and cutting effects are permanent once made, we can update the Hessian approximation

on a background thread, and update the topological change information to the foreground

simulation thread only when the background thread finishes the factorization of the updated

matrix.

Figure 8.2: Simulating a flag being torn apart by the wind.

8.5 Collisions

A classical approach to enforcing non-penetration constraints between deformable solids is

to 1) detect collisions and 2) resolve them using temporarily instantiated repulsion springs,

which bring the volume of undesired overlaps to zero [Harmon et al., 2011, McAdams

et al., 2011]. However, in Projective Dynamics the primary emphasis is on computational

efficiency and therefore only simplified collision resolution strategies have been proposed

by Bouaziz et al. [2014]. Specifically, Projective Dynamics offers two possible strategies.

The first strategy is a two-phase method, where collisions are resolved in a separate post-

processing step using projections, similar to Position Based Dynamics. The drawback of

this approach is the fact that collision projections are oblivious to elasticity and inertia of

the simulated objects. The second approach used in Projective Dynamics is more physically
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realistic, but introduces additional computational overhead. Specifically, temporarily-

instantiated repulsion springs are added to the total energy. This leads to physically realistic

results, but the drawback is that the matrix M/h2 + L needs to be re-factorized whenever

the set of repulsion springs is updated – typically, at the beginning of each frame.

The quasi-Newton interpretation invites a new approach to collision response which

is physically realistic, but avoids expensive re-factorizations. Specifically, for each inter-

penetration found by collision detection, we introduce an energy term:

Ecollision(x) =
kcollision

2
((x− xs)

Tn)2 (8.7)

where kcollision is the collision stiffness, x is a vertex being detected as a colliding vertex,

xs is its projection on the surface and n is the surface normal. This constraint pushes the

collided vertex to the tangent plane. It is important to add this term to our total energy E(x)

only if the vertex is in collision or contact. Whenever the relative velocity between the

vertex and the collider indicates separation, the Ecollision(x) term is discarded (otherwise it

would correspond to unrealistic “glue” forces). This is done once at the beginning of each

iteration (just before line 3 in Alg. 3). The rest of our algorithm (lines 6-10 of Alg. 3) is

unaffected by these updates, i.e., the unilateral nature of the collision constraints is handled

correctly without any further processing.

Figure 8.3: Our method is capable of simulating complex collision scenarios, such as

squeezing the Big Bunny through a torus. The Big Bunny uses corotated elasticity with

µ = 5 and λ = 200.
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The key idea of our approach is to leverage the quasi-Newton approximation for

collision processing. In particular, we account for the Ecollision(x) terms when evaluating

the energy and its gradients, but we ignore their contributions to the M/h2 + L matrix.

This means that we form a somewhat more aggressive approximation of the Hessian, with

the benefit that the system matrix will never need to be re-factorized. The line search

process (lines 6-10 in Alg. 3) guarantees that energy will decrease in spite of this more

aggressive approximation. The only trade-off we observed in our experiments is that the

number of line search iterations may increase, which is a small cost to pay for avoiding

re-factorizations. We observed that even in challenging collision scenarios, such as when

squeezing a Big Bunny through a torus, the approach behaves robustly and successfully

resolves all collisions, see Figure 8.3.

8.6 Damping

A simple method to introduce viscous damping into our formulation is as follows. Recall

that the term y from Eq. 3.30 is simply the result of inertia when all internal forces are

ignored, i.e., y = xn + hvn + h2M−1fext. Damping can be achieved simply by setting y

to xn + hṽn + h2M−1fext, where we replaced vn with a damped velocity ṽn. We use only

a very simple damping model—ether drag [Su et al., 2013], which sets ṽn := αvn, where

α ∈ [0, 1] is a parameter, typically very close to 1. However, any damping model can be

used with our method, such as the rigid-body modes preserving drag [Müller et al., 2007]

or truly material-only stiffness-proportional damping [Nealen et al., 2006].
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Chapter 9

Future Work

The key component underneath our methods from Chapter 5 to Chapter 7 is the constant

system matrix M/h2 + L. We evaluate and factorize this matrix once at the beginning of

the simulation, so that during the simulation when a linear system needs to be solved, we

only need to perform a forward and a backward substitution. This matrix dependents on the

nodal mass of a mesh, the time step size of the simulation (we usually use 33 ms for realtime

applications), the stiffness of each element and the topology of the system. We assume

all those quantities are unlikely to change during a simulation. This assumption forms the

foundation of all the accelerations we made to simulate deformable materials. But it might

be violated in some challenging cases where the speedup from our methods reduces. Our

system matrix can not encode the unpredictable information from time-varying events such

as collisions, tearing and cutting. Although several approaches are mentioned in Section 8.4

and Section 8.5, we are still looking for better numerical solutions.

Collision by itself is already a challenging problem. The classical model of repulsion

springs [McAdams et al., 2011] which we adopted in our implementation is analogous to

an active set method that adds / removes constraints during the iterations of the algorithm.

It is possible that this approach will end up cycling, however, we have never observed this

in practice. One possible workaround is to limit the number of iterations, possibly leaving

some collision constraints unresolved. In collision-dominant simulations, more advanced
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algorithms may be necessary. Another limitation is that in our current implementation,

we treat collisions as soft constraints with relatively stronger stiffness compared to the

elastic models. One possible way to resolve hard collision constraints is to use Lagrangian

multipliers, by solving the KKT system using its Schur complement [Ichim et al., 2016].

However, in cases with many collision constraints, the Schur complement becomes im-

practically large. Another possible approach to treating hard collision constraints is the

Augmented Lagrangian method [Deng et al., 2013]. Fast and robust collision resolution in

challenging scenarios is a problem which deserves significant attention in future work.

Another direction is to explore the possibility of parallelizing our methods. The local

step in Projective Dynamics or the gradient evaluation step in our quasi-Newton method is

trivially parallelizable. However we can parallelize the global step or the descent direction

evaluation step depends on the linear solver we choose. We currently rely on a constant

Cholesky factorization of our system matrix so that only forward and backward substitutions

are needed during the runtime. The substitutions are fast in a sequential implementation on

the CPU for moderate sized problems, but might not be the best solution for solving larger

systems in parallel because of two reasons. First, the forward and backward substitutions

are by nature sequential: each unknown can only be solved whenever all the unknowns

in the sub-triangle are solved. Second, the factorization of a sparse matrix, even with a

reasonable reordering, typically contains one or two magnitudes more non-zero elements

compared to the original matrix, making it hard to scale to gigantic systems. Recently,

Wang et al. [2015, 2016] use a Jacobi method on the GPU to solve Projective Dynamics

problems and further accelerate it using a Chebyshev semi-iterative method; Fratarcangeli

et al. [2016] accelerate the linear system solve in Projective Dynamics using a novel

graph-coloring approach to achieve fast Gauss-Seidel solves on the GPU. Both of them

show that iterative solvers could be the parallelization-friendly alternatives. The dotted

blue graph in Figure 7.7 shows that even in a CPU implementation, a conjugate gradient

(CG) method with only 15 iterations is not too worse compared to the solution obtained

by our pre-factorized direct solver. We believe that CG can be a competitive candidate for
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implementing our methods in parallel.

Integrating stiff or even rigid material is another challenging problem. In the real world,

deformable bodies usually do not exist on their own, but more commonly coupled with rigid

components. For example, in an anatomical simulation, deformable flesh is attached to rigid

bones, and simulating only deformable part would not be interesting enough. In theory,

one can modify our deformable body simulation framework to simulate stiff materials or

even rigid bodies by increasing the stiffness of the elements close to infinite. However, it

is numerically hard to simulate such kind materials efficiently. As shown in Figure 5.3,

the stiffness of the material affects the convergence of our method directly: the stiffer

material we simulate, the slower our solver will converge. Tournier et al. [2015] show that

an extremely stiff systems can not be simulated well even using Newton’s method. In order

to solve this problem, they propose a compliant constraint based framework, supporting

both soft elastic materials and hard constraints at the same time. However, the performance

of their work is still far away from the realtime requirement. We would like to explore fast

numerics for simulating stiff materials in the future.

Damping is a common physics phenomenon, simple post-processing damping models

are fast in the cost of plausibility. Ether drag [Su et al., 2013] reduces the linear and angular

momentum to a system. PBD damping [Müller et al., 2007] preserves the momentum

quantities, but in a non-physical way. Recently, Li et al. [2018] studies the matrix in

Projective Dynamics and proposes a Laplacian damping method, combining the efficiency

of our methods with an approximate model of Rayleigh damping. For completeness of our

method, we want to study a better damping method in the future.

Our current methods are designed for the backward Euler integration. But we do

not intend to limit our method with the backward Euler scheme. Applying our Hessian

approximation to Eq. 3.31 should allow us to accelerate implicit midpoint integration as

well. However, the implicit midpoint integration is not guaranteed to be stable under large

timesteps. Dinev et al. [2018] propose a method to stabilize implicit midpoint using a

Projective Dynamics solver. We believe that in order to achieve realistic simulations of
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deformable objects, a fast, stable yet not artificially damped time integration method is

worth exploring as well.
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Chapter 10

Conclusion

This thesis work summarizes the major projects I did during my Ph.D. study, from fast

simulation of mass spring systems [Liu et al., 2013], to Projective Dynamics [Bouaziz et al.,

2014], to a more general quasi-Newton simulation of a variety of different materials [Liu

et al., 2017]. The goal is to push the simulation of deformable body towards real-time.

Fast simulation of mass-spring systems [Liu et al., 2013] proposes a numerical method

for implicit Euler time stepping of mass-spring system dynamics. The technique is based on

block coordinate descent, which gives it different properties than the traditional Newton’s

method. The method can approximate the solution in a limited amount of computational

time, making it particularly attractive for real-time applications—we demonstrate real-time

cloth with quality similar to the exact solution. The proposed algorithm can also be useful

for quick simulation preview and for bootstrapping Newton’s method.

Projective Dynamics [Bouaziz et al., 2014] generalizes the idea of [Liu et al., 2013], sup-

porting more general spatial discretizations of deformable objects including finite element

discretizations.It introduces an implicit constraint-based solver for real-time simulation.

The approach is based on an abstract, constraint-based description of the physical system

making the method general in its use to simulate a large variety of different geometries and

materials. Projective Dynamics derives a broad set of constraints directly from continuous

energies using proper discretization that make the solver robust to non-uniform meshing
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with different resolutions.

Both [Liu et al., 2013] and [Bouaziz et al., 2014] apply a local/global solver to solve

their numerical problems. The solver only requires the definition of a projection operator

for a given constraints (local solve), making it very easy to implement. Furthermore, the

global solve only requires solving a linear system, where the system matrix M/h2 + L is

constant if the number of constraints is kept fixed, leading to efficient computation. Due to

the independence of the local solves, the approach is also very well suited for parallelism,

further boosting performance.

The quasi-Newton methods for real-time simulation of hyperelastic materials [Liu et al.,

2017] further broadens the supported materials from Projective Dynamics [Bouaziz et al.,

2014] and improves the convergence of the numerical solver. The key to this approach is the

insight that Projective Dynamics can be re-formulated as a quasi-Newton method. Aided

with line search, this work obtains a robust simulator supporting many practical material

models. The quasi-Newton formulation also allows us to further accelerate convergence

by combining itself with L-BFGS. Even though L-BFGS is sensitive to initial Hessian

approximation, the prior knowledge we gained from [Liu et al., 2013] and [Bouaziz et al.,

2014] suggests a particularly effective Hessian initialization M/h2 + L which yields fast

convergence. Most of the experiments use ten iterations of quasi-Newton iterations which

is typically more accurate than one iteration of Newton’s method, while being about ten

times faster and easier to implement.

I wish that these methods will encourage further investigation of time integration

techniques and the underlying nonlinear numerical problems. Traditionally, real-time

physics is considered to be approximate but fast, while off-line physics is accurate but slow.

By keeping improving the performance and accuracy of the solver, I hope our work will

eventually blur the boundary between real-time and off-line physically-based simulations

of deformable objects.
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