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1.1 A Basic History of Ruthenium Chemistry 

The element number 44 was first described as a new metal isolated from platinum ores by 

Jedrzej Sniadecki, a Polish chemist, in 1803. However, his work couldn’t be reproduced by other 

chemists, and he withdrew his claim on the element, as well as the name he had given it, 

ruthenium. Eventually, in 1844, Karl Karlovich Klaus made and stood by his claim that the dross 

separated from platinum during the refining process was made up of several other metals with 

similar but distinct properties. He focused on isolating one, resuscitating the name ruthenium, 

named after the Latin term for the area traditionally covering Ukraine, Belarus, western Russia, 

and parts of Poland and Slovakia.  

Work with ruthenium continued into the 20th century, though ruthenium is a rare metal (it’s the 74th 

most abundant metal in the Earth’s crust, at around 100 ppm). One of the first ruthenium 

coordination compounds published in the literature was Ru(bpy)3
2+, where bpy is 2,2’-bipyridine, 

was published in a brief communication in 1936 by Francis Burstall.1 Burstall investigated certain 

optical properties identifying stereoisomers of the compound, and laid the groundwork for future 

extensive work on these remarkably stable complexes. In 1959, Paris and Brandt demonstrated 

for the first time the luminescence of a Ru(bpy)3
2+ complex due to a charge transfer mechanism.2 

Ruthenium was one of the first 2nd or 3rd row transition metals to demonstrate any kind of 

luminescence as a coordination compound with organic ligands, and its relative inertness 

compared to the other early examples (such as chromium(III) and molybdenum(III) compounds, 

both rather toxic) suggested the possibility of use in living systems. In fact, Ru(II) chelates were 

found early on to be unusually stable in the presence of cells, though at mid-to-high 

concentrations (10 mM) was toxic to bacteria.3,4 

Extensive work with Ru(bpy)3
2+ and Ru(phen)3

2+ (phen = 1,10-phenanthroline) complexes led to 

offhand observations that some complexes were rather photosensitive, especially when dissolved 
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in solution.5 It took chemists until 1978 to make quantitative study of this photosensitivity in 

Ru(bpy)3
2+-type complexes. Gleria and coworkers published a brief, one-page communication on 

the photoinitiated exchange Ru(bpy)3  Ru(bpy)2Cl2 in chlorinated solvents which was the first 

attempt to identify the photoproducts of the reaction.6 Thomas Meyer picked up on this newly 

elucidated process in one of his first papers on the subject, published in 1980.7 

His Inorganic Chemistry article published in 1980 was the first in-depth discussion on the 

photolability of certain coordinated ligands on a Ru(bpy)2
2+ system.7 In this exposition he and 

coworkers discussed the various photochemical reactions they observed when irradiating 

Ru(bpy)2(L)2 complexes in the low-energy absorbance band located around 450 nm.  With a 

combination of pyridine-based ligands, halides, SCN, in various coordinating and non-

coordinating solvents, they came to the conclusion that this process likely occurs in a dissociative 

mechanism resulting in a pentacoordinate intermediate Ru(bpy)2L2+, before subsequent 

coordination of a coordinating solvent or halide counterion (in non-coordinating solvents) (Figure 

1.1).7  

 

Figure 1.1. The first proposed mechanism for photoinduced ligand exchange, proposed by Meyer and 
coworkers in 1980. 

In a follow-up paper published in 1982 Meyer and coworkers elucidated the first rough sketch of 

the energy diagram describing the process and the energy levels, this time for Ru(bpy)3
2+ (Figure 

1.2).8 The electronic transition observed in an absorbance spectrum is a singlet metal-to-ligand 

charge transfer (1MLCT in modern terms, 1CT in Figure 1.2), which is coupled to two triplet 

states, one that is also MLCT in behavior, and one that is metal centered (3d-d in Figure 1.2). 
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This energy diagram has been confirmed by DFT studies in recent years,9 as well as a discussion 

on the relative levels of the 3MLCT and 3MC states, and the relationship for the quantum yield of 

photorelease.10 

 

Figure 1.2. Sketch of the excited states of Ru(bpy)n complexes presented by Meyer in 1982. At this point 
the energy of the 3d-d (later called 3MC) state was unknown. Reproduced with permission (ACS 

Publications).  

After this initial work in photosubstitution reactions with Ru(bpy)2
2+-type complexes major 

avenues of research turned elsewhere, towards applications where excited electrons are the 

desired product, rather than a possible ligand exchange.11,12 In some brief communications Walsh 

and coworkers investigated the photosubstitution reactions or Ru(tpy)(L)3
2+, where tpy is 

terpyridine,13 which occurred in a similar fashion to Ru(bpy)2
2+ complexes. Ford and coworkers 

began work on Ru(6-arene)L3
2+ complexes that were also photoreactive, exchanging one or 

more L ligands for a coordinating solvent.14 Several mechanistic studies confirmed the 

dissociating mechanism for all ruthenium polypyridyl type complexes.15,16 Yet this unique property 

of ruthenium polypyridyl complexes to undergo photoinitiated ligand exchange with a solvent 

molecule remained simply a parlor trick, a property that was inherent, annoying at times, and that 

had no positive application. 
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1.2 Photoinduced ligand exchange 

It wasn’t until 2003 that the first application of this photoresponsive property was presented in the 

literature. In his groundbreaking paper, cited over 110 times to date, Etchenique and coworkers 

described the coordination of neurotransmitter 4-aminopyridine (4AP) to Ru(bpy)2
2+.17 4AP was 

then released with visible light irradiation into the 1MLCT (<480 nm) on a timescale sufficient to 

observe the effects on neuronal firing in leeches. This positioned Ru(bpy)2
2+ as a caging group for 

bioactive molecules, that is, a protecting group that blocks the activity of molecules until 

“uncaged” or removed by irradiation. While Ru(bpy)2(4AP)2
2+ is not the first example of a visible 

light-triggered uncaging event, it is the first visible light triggered caging group for complex 

bioactive molecules other than small molecules such as cations18 or NO.19 Then, in a subsequent 

paper just 2 years later, Etchenique showed that the same process was achievable using highly 

focused multiphoton activation with 750 nm light.20 Multiphoton absorption pushed the wavelength 

of activation solidly into the wavelength region necessary for any clinical applications, known as 

the photodynamic therapy window, between 650 and 900 nm. 

This groundbreaking work opened many new avenues of research in ruthenium photochemistry. 

Just a couple of years later Etchenique presented Ru(bpy)2
2+ as a versatile caging group for 

amines as well. He presented the caging and release of several neurotransmitters such as 

tryptamine, butylamine, serotonin,21 glutamate,22 and GABA (gamma-aminobutyric acid).23 

Etchnenique also used Ru(bpy)2
2+ to cage nicotine in the first ever example of a nicotine caging 

group, with the added benefit of the capability to use violet, blue, or even green single photon 

light for uncaging.24  

In the midst of this work developing Ru(bpy)2
2+ as a caging group for small molecules, the Turro 

lab also began work on ruthenium polypyridyl compounds, with a focus on developing their 

bifunctionality. In 2004 Turro and coworkers presented Ru(bpy)2(NH3)2
2+ as a phototriggered 

second generation cisplatin.25 Under irradiation with near-UV light both ammine ligands were 

exchanged with water, in a manner similar to the chemical changes cisplatin undergoes prior to 
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binding to DNA, except with light, instead of low chloride concentration, as the trigger. The 

subsequent photoproduct Ru(bpy)2(H2O)2 was capable of binding to DNA like cisplatin.  

Having a bioactive Ru(bpy)2(H2O)2
2+ photoproduct is beneficial when designing cell-harming 

targets, like anti-cancer drugs that will bind to DNA or other protein targets. Turro’s group used 

the Ru(bpy)2 core to cage and deliver common anti-cancer drugs. Their first work described the 

caging, release, and cellular toxicity of 5-cyanouracil, a version of 5-fluorouracil, a chemotherapy 

drug that’s been used for over 20 years in the treatment of multiple types of cancer, and as a co-

drug to increase the efficacy of other chemotherapy agents.26 A second generation of the dual-

action prodrug used Ru(tpy)(5-cyanouracil)3 as the caging group/phototriggered prodrug, a 

construct that was successful in in vitro cell studies.27 

This new dual-action drug delivery opened many new avenues of research, centered around the 

delivery of a bioactive molecule and a ruthenium-based DNA binding core. With their focus on 

cancer development and anti-cancer drugs, the Turro group has identified a specific need for the 

caging of nitrile groups.28 With no other photocaging group available to use with nitriles and a 

whole class of cathepsin proteases implicated in cancer development that can be inactivated with 

nitrile-containing inhibitors (such as cathepsin B),29,30 Ru(bpy)2 and its derivatives become viable 

options. Turro and coworkers have caged several different cysteine protease inhibitors with 

Ru(bpy)2 and Ru(TPA) (where TPA = tris(2-pyridylmethyl)amine), in each case successfully 

inhibiting cathepsin B after irradiation with visible light.31,32  

1.3 Blue is great, red is even greater 

One of the strengths of the ruthenium phototriggering system is the large amount of variations in 

ruthenium compounds, and the potential to shift the 1MLCT further to the red. Meyer’s first sketch 

of the electronic structure of these compounds has been confirmed by recent expositions of the 

electronic structure.9 (Figure 1.3) In ruthenium polypyridyl complexes the lowest energy transition 

is a metal-to-ligand charge transfer (MLCT), with a max in the visible region. This singlet MLCT is 
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electronically coupled to a triplet MLCT, where rapid intersystem crossing (ISC, QY = 1, <1 ps) 

occurs from the 1MLCT to the 3MLCT. From here there is a nearby triple metal centered state, 

3MC, with significant antibonding character between the ruthenium and its ligands, leading to the 

dissociation of a ligand. Recent work has confirmed a pentacoordinate intermediate for these 

types of reactions (Ru(bpy)2(L), Figures 1.1, 1.3) which may be relatively long-lived, on the order 

of ~70 ps, before backfilling with water to make the photolysis product Ru(bpy)2L(H2O).33,34  

 

Figure 1.3. Modern Jablonski diagram showing the confirmed electronic states for the excitation of 
ruthenium polypyridyl compounds.   

Shifting the 1MLCT to the red is relatively simple: incorporating electron-poor ligands with 

extended pi structure will decrease the o and the energy gap for the MLCT, but concurrently it 

will widen the gap between the 3MLCT and 3MC, resulting in inefficient crossover and a poor QY. 

Therefore, it becomes necessary to not only reduce the 1MLCT energy to red shift the 

absorbance, but also to reduce the E between the 3MLCT and the 3MC states. Decreasing the 

energy of the 1MLCT is accomplished by incorporating electron withdrawing ligands, decreasing 

E is a little more complicated.  

Adding steric strain and disrupting the octahedral field around the ruthenium effectively decreases 

E and increases population into the 3MC state. First described in a Ru(tpy)(LL)(py) system, the 

exchange of a bpy for a sterically crowded Me2bpy (where Me2bpy is 6,6’-methyl-2,2’-bipyridine) 

increased the quantum yield of pyridine exchange more than 1000-fold (from <10-4 for bpy to 0.16 

for Me2bpy).35 This technique for increasing the QY of photorelease has since been applied to 
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other systems as well.36 The difficulty here lies in striking that fine balance between thermal 

stability and photolability. Too much strain and the monodentate ligands will exchange with 

solvent in the dark, and too little strain renders compounds with very low quantum yields.  

1.4 The future of ruthenium photolabile complexes 

Ruthenium now holds the prominent position as the most employed metal in catalysis and 

photochemistry. Its low toxicity and relatively low price point (compared to other platinum-group 

metals) have made ruthenium compounds the preferred choice for many applications.37 In biology 

and biomaterials ruthenium polypyridyl complexes show unique promise as translational 

applications demand a red shift in absorbance. For nearly all applications in the clinic 

phototriggered events should respond to light in the photodynamic therapy window, 650 – 900 

nm. Ruthenium-based prodrugs are already pushing into this window, albeit slowly and with 

minimal QYs.38–40 Ruthenium polypyridyl complexes are also finding use in soft biomaterials, with 

several examples of ruthenium-based hydrogel materials or nanoparticles that can be degraded 

with light in the PDT window.41  

For biological applications ruthenium is positioned well because of its extensive visible light 

absorbance, but in many cases where cell death is not desired, steps must be taken to mediate 

the cytotoxicity of the compounds. Thus, for these applications a ruthenium construct that 

remains attached to a larger framework or macromolecule is desirable. A Ru(bpy)2
2+ construct as 

a photodegradable crosslinker had not been proposed at the beginning of my work in this thesis, 

and to date only one other application of ruthenium compounds as crosslinkers has been 

published.42 Ruthenium photodegradable crosslinkers is a new field of research, one that 

warrants more innovation, and may be a vital part of the general push towards red and near-IR 

light activated prodrugs and materials. 
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CHAPTER 2 – Synthesis and Characterization of Alkyne-Modified Ruthenium 
Crosslinker, RuBEP 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Material in this chapter was originally published in Chemical Science. It has been adapted here 
with permission from the publisher. 

Reprinted with permission from Griepenburg, J.C.; Rapp,T.L.; Carroll, P.J.; Eberwine, J.; and 
Dmochowski, I.J. Ruthenium-Caged Antisense Morpholinos for Regulating Gene Expression in 
Zebrafish Embryos. Chem. Sci. 2015, 6, 2342-2346   
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2.1 Introduction 

Though the photolability of some types of ligands on ruthenium compounds was first observed in 

the 1960s,5 this property was not harnessed until 2003 when the first Rubpy2L2 compound (where 

L is a pyridine-type ligand) enabled photorelease of 4-aminopyridine, a neurotransmitter.43 

Etchenique et al. showed that the compound Rubpy2(4-aminopyridine)2
2+ was photoactive 

exchanging one 4-aminopyridine ligand with water upon irradiation with visible light into the MLCT 

absorbing band. This ligand exchange was rapid, on the order of tens of picoseconds, which is 

much faster than almost all biological processes. This first description of photoinduced ligand 

exchange positioned the Rubpy2 core as a caging group for small molecules, i.e., to block the 

activity of the small molecule until released with light. 

Since the first breakthrough with 4-aminopyridine, the Rubpy2
2+ core has been used to cage 

multiple different types of pyridine-based drug targets. Sadler and coworkers recently reported 

the viability of Rubpy2 as a caging group for isoniazid, and anti-tuberculosis compound that 

contains a pyridine moiety.44 The use of light in this case is a valuable targeting strategy, as 

isoniazid treats mycobacterial infections which occur primarily on the surface of skin or in the 

lungs. Their construct, Rubpy2(isoniazid)2
2+ was found to be highly active against four strains of 

bacteria, with significant difference between samples kept in the light and in the dark.44 

Rubpy2
2+ has also been used to cage ligands via an imidazole, albeit with lower efficiency of 

ligand exchange. Mosquera et al. generated a histidine caging group Ru(bpy)2(PPh3)(His-fmoc), 

which could be subsequently incorporated into a peptide via standard solid-phase synthesis.45 It 

knocked out the zinc-binding activity of zinc finger nuclease peptide RGH when the H was 

coordinated to the ruthenium, and restoring activity after irradiation. Zamora et al. also worked to 

generate an imidazole-based metyrapone prodrug to inhibit cytochrome P450, which can 

sensitize cells to anti-cancer drugs that modify DNA. They demonstrated that metyrapone can be 

caged in the compound Ru(bpy)2(metyrapone)2, and released with a visible light trigger.46 They 

found that extended irradiation with 463 nm light was sufficient to cleanly release both 



11 

 

metyrapone drugs, freeing up the Ru(bpy)2(H2O)2 core to bind to DNA and trigger apoptosis, 

increasing the effectivity of the drug as an anti-cancer target. 

In other cases, two free coordination sites (as in Ru(bpy)2 complexes) are not necessary, and 

more multidentate polypyridyl ligands can be used to eliminate one of those positions. For this, 

the Ru(tpy)(LL)(X) complex is popular, where tpy is tripyridine, LL is one of several bidentate 

ligands, and X is the photolabile ligand. Lameijmer and coworkers recently caged a cytotoxic 

nicotinamide phosphoribosyltransferase (NAMPT) inhibitor with Ru(tpy)(biq), which exhibited 

phototriggered activity using red light (625 nm).47  

The Turro group has also worked with the Ru(LLL)(LL) platform, incorporating a variety of bi- and 

tridentate ligands to shift the MLCT max further red. An example of this is the recently published 

Ru(py-dppn)(biq)(py)2+ complex that has dual actionality to intercalate with DNA via the py-dppn, 

absorb light into the photodynamic therapy window (600-850 nm) due to the extended pi structure 

of the biq, and exchange the pyridine upon irradiation with visible light.48 

My first project built on this core principle: a pyridine-based ligand coordinated to Ru(bpy)2
2+ will 

be exchanged rapidly upon irradiation with visible light, and likely only one of two coordinated 

pyridines will be exchanged in this process. Our initial goal for this project was to generate a 

visible-light responsive photodegrading crosslinker with alkyne groups for subsequent copper 

mediated azide-alkyne cycloaddition (CuAAC). The immediate application was to circularize and 

cage DNA oligonucleotides (ODNs) via azide modifications on both termini, wherein a series of 

ruthenium crosslinkers was proposed to complement the variety of constructs with o-nitrobenzyl 

caging groups. The first alkyne modified ruthenium crosslinker used for ODN cyclization was 

Rubpy2(3-ethynylpyridine)2
2+, or RuBEP. 
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2.2 Results 

Synthesis of RuBEP 

RuBEP was synthesized via a triflate intermediate from commercially available cis-

Ru(bipyridine)2Cl2 (Acros Organics) (Scheme 2.1)  and 3-ethynylpyridine (3EP).49 Reaction 

progress was monitored by UV-Vis spectroscopy until an MLCT band at 450 nm was observed. 

The PF6
- salt (RuBEP[PF6]2), synthesized by metathesis with ammonium hexafluorophosphate in 

cold water, was purified in the dark by silica column chromatography using 1:9 acetonitrile: 

dichloromethane as the eluent. The water-soluble chloride salt (RuBEP) was then generated by 

metathesis with TBACl in cold acetone. Final yield was 60-70%. 

 

Scheme 2.1. Synthesis of RuBEP 

Photochemistry 

Various techniques are used to characterize the important electronic transitions for these 

compounds and discuss their viability for ligand photosubstitution. The ligand exchange is 

facilitated by the population of a metal-centered state with an excited electron. Irradiation into the 

low-lying singlet metal-to-ligand charge transfer (1MLCT) band (~450 nm for RuBEP) excites an 

electron into the 1MLCT, which is electronically coupled to two triplet states, the 3MLCT and a 

metal centered state (3MC). The 3MC has antibonding character between the ruthenium and its 

ligands, and is thought to be responsible for ligand exchange. (Figure 2.1). Photoinduced ligand 

exchange occurs rapidly, on the order of tens of ps. Seminal work from the Turro lab described  
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the electronic process for Rubpy2MeCN2  Rubpy2MeCN(H2O), which involves the generation of 

a pentacoordinate intermediate Rubpy2MeCN formed within 18 ps of excitation, followed by water 

coordination over 77 ps.33 

 

Figure 2.1. Jablonski diagram (left) showing the relevant electronic structure leading to ligand exchange.  

The absorbance spectrum for a Rubpy2py2
2+ compound exhibits several maxima in the UV and in 

the blue region of the visible spectrum:50 ~250 nm corresponds to a high energy MLCT, ~300 nm 

are the primary   * transitions in the bpy, the band at 350 nm corresponds to the t2g  eg 

metal centered state, and the important maximum at ~450 nm from the low-level MLCT. (Figure 

2.2) Irradiation into any one of these maxima results in photoinduced ligand exchange, as the 

3MC state responsible for ligand exchange is accessible from any one of them. 
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A4.3 RuAldehyde COSY 

In CD3CN 
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A4.4 Ru(bpy)2(4-pentynenitrile)2 (Ru420) 

In D2O 
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A4.4 Ru420 COSY 

In CD3CN 
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A4.5 Ru(biq)2(4-pentynenitrile)2 (Ru530) 

In D2O 
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A4.6 Ru(bpy)(biq)(4-pyridinepropanal)2 (RuAldehyde-Red) COSY 

In CD3CN 
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