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ABSTRACT

SUBTRACTED GEOMETRY

Zain Hamid Saleem

Mirjam Cvetič

In this thesis we study a special class of black hole geometries called subtracted geometries.

Subtracted geometry black holes are obtained when one omits certain terms from the warp

factor of the metric of general charged rotating black holes. The omission of these terms

allows one to write the wave equation of the black hole in a completely separable way

and one can explicitly see that the wave equation of a massless scalar field in this slightly

altered background of a general multi-charged rotating black hole acquires an SL(2,R) ×

×SL(2,R)× SO(3) symmetry. The subtracted limit is considered an appropriate limit for

studying the internal structure of the non-subtracted black holes because new ’subtracted’

black holes have the same horizon area and periodicity of the angular and time coordinates

in the near horizon regions as the original black hole geometry it was constructed from.

The new geometry is asymptotically conical and is physically similar to that of a black hole

in an asymptotically confining box. We use the different nice properties of these geometries

to understand various classically and quantum mechanically important features of general

charged rotating black holes.
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Chapter 1

Introduction

The discovery that black holes behave as thermodynamic objects has been one of the most

important developments in fundamental physics. In the early 1970s Bekenstein and Hawking

showed that black holes radiate as black bodies with a characteristic entropy that depends

on the area of the black hole horizon S = A/4ℏG. The quantity is naturally quantum

gravitational since the planck constant and gravitational constant appear in the same equa-

tion. This is the reason why physicists have been searching for the quantum microscopic

interpretation of the black hole entropy.

One of the most important hurdles in explaining the black hole entropy in terms of quantum

microstates is the limited understanding of quantum gravity. However string theory, as the

best available theory of quantum gravity has been instrumental in making breakthroughs

in this direction. A very important step forward was achieved with Vafa-Strominger [1]

calculation of the counting of the supersymmetric black hole microstates employing string

theory and D-branes. Vafa and Strominger’s results however worked for only certain type

of black holes, called extremal black holes. These black holes have the property that they

carry the maximum amount of electric and magnetic charge that is possible without making

the black hole unstable.

Maldacena’s [2] AdS/Cft correspondence was also very useful in understanding black hole

thermodynamics using quantum field theory. Maldacena in his seminal paper conjectured

that quantum gravity in higher dimensional AdS space is dual to a conformal gauge field

theory in one less dimensional flat minkowski space. Soon after the AdS/Cft conjecture was

proposed, Witten [3] showed how the thermodynamics of AdS black holes can be understood

in terms of the dual gauge theory. Another success of the Maldacena conjecture was how
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it illuminated on the calculation of the entropy of BTZ black holes, raising the Brown-

Hanneux[4] result from an anology to an actual counting of the states in a dual conformal

field theory. This was really important for the black holes that arise in string theory since

most of the times these have near horizon geometries of the form BTZ × S. These results

were also mostly obtained for the case of extremal or near extremal black holes.

The entropy matching of extremal black holes was also one of the main motivations for

the proposed Kerr/Cft correspondence [5]. In the near-horizon extremal Kerr (NHEK)

geometry with enhanced isometry group SL(2;R) × U(1), one can find a set of boundary

conditions for metric fluctuations, whose asymptotic symmetry group (ASG) enhances the

U(1) to a single copy of the Virasoro algebra with central charge cL = 12J . Such symmetry

of the geometry however does not exist for non extremal black holes.

However even in the non-extremal case, the thermodynamic features, such as the entropy

formula [10] and the first law of thermodynamics [7–9], are very strongly suggestive of a

possible microscopic interpretation in terms of a two-dimensional conformal field theory

of the general multi-charged rotating black holes in four [10] and five [11] dimensions.

Furthermore, the wave equation for massless scalars in non-extremal black hole backgrounds

exhibits an approximate SL(2,R)×SL(2,R) conformal symmetry at low energies, which is

spontaneously broken by the temperatures [8, 9, 12]. Thus, one may expect that at least

the low-energy dynamics of general black holes are described by a Cft.

Recently, [13, 14] advanced a concrete proposal - deemed “subtraction” - for how to relate

general black holes to Cfts. The subtraction procedure consists of removing certain terms

in the warp factor of the black hole geometry, in such a way that the scalar wave equation

acquires a manifest local SL(2,R) × SL(2,R) conformal symmetry. The horizon area and

the periodicities of the angular and time coordinates remain fixed. For this reason, the

subtraction process is expected to preserve the internal structure of the black hole. Given

that the geometry becomes asymptotically conical [15], rather than asymptotically flat,

the physical interpretation of subtraction is the removal of the ambient asymptotically

2



Minkowski space-time in a way that extracts the “intrinsic” SL(2,R)×SL(2,R) symmetry

of the black hole.

The subtraction procedure has been explicitly implemented both for five-dimensional three-

charge rotating black holes [13] and four-dimensional four-charge ones [14]. It works partic-

ularly well in the context of the four-dimensional STU model [16] and its five-dimensional

uplift, since in these cases the non-trivial matter field configurations that support the sub-

tracted geometries are still solutions of the same Lagrangian as the original black holes.

Moreover, one can use the extra dimensions available in the string-theory embedding of

these models to show that the four-dimensional subtracted geometries uplift to AdS3 × S2

[14] and the five-dimensional ones, to AdS3 × S3 [13], thus making the connection with

two-dimensional Cfts entirely explicit.

In chapter 2 we will introduce the framework in which subtracted geometries are introduced.

We will also discuss the solution generating methods used to generate these geometries.

Using these solution generating methods we will show how the entropy matching is achieved.

The uplift of these geometries in five and six dimensions to AdS3 × S2 and AdS3 × S3

respectively will also be discussed. In chapter 3 we will study the electrodynamic properties

of these geometries. We will again be employing solution generating methods to obtain these

electrically and magnetically complex and interesting black hole geometries. In chapter 4

we will study the quasinormal modes for the rotating and magnetic cases and will obtain

analytical results that were not obtained before for rotating and magnetic black holes.

In chapter 5 we will obtain results for the entanglement entropy across the horizon of

these subtracted black holes and show in what ways the logarithmic corrections differ from

the original black holes. In chapter 6 we use the simple hypergeometric property of the

wave equation solutions to obtain an analytical formula for the vacuum polarization of a

minimally coupled scalar field. This has also not been obtained before. In chapter 7 we

will explain the asymptotically conical behaviour of these geometries and try to understand

the thermodynamic properties such as mass, charge and angular momentum. We will also

3



derive the first law of thermodynamics and Smarr’s law for these asymptotically conical

geometries. We will present our conclusions and future directions in the last chapter.

4



Chapter 2

Solution Generation

In this chapter we use solution-generating techniques to construct interpolating geometries

between general asymptotically flat, charged, rotating, non-extremal black holes in four

and five dimensions and their subtracted geometries. In the four-dimensional case, this is

achieved by the use of Harrison transformations, whereas in the five-dimensional case we use

STU transformations. We also give the interpretation of these solution-generating transfor-

mations in terms of string (pseudo)-dualities, showing that they correspond to combinations

of T-dualities and Melvin twists. Upon uplift to one dimension higher, these dualities allow

us to untwist general black holes to AdS3 times a sphere.

2.1 Un-twisting general 4d black holes

2.1.1 STU black holes and subtracted geometries

In this section, we will be working in the context of the four-dimensional STU model [16]

- an N = 2 supergravity theory coupled to three vector multiplets, characterized by the

prepotential1

F = −X
1X2X3

X0
(2.1.1)

As usual, the bosonic content of this theory consists of the metric, four gauge fields AΛ,

Λ = {0, . . . , 3} and three complex scalars

zI =
XI

X0
, I = {1, 2, 3} (2.1.2)

1Throughout this article, we will be using the conventions and definitions of [27].
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All the couplings of the theory, as well as the relationship between the various fields are

entirely determined by the above N = 2 prepotential.

We consider non-extremal rotating black hole solutions of this theory that are magnetically

charged under three of the field strengths, with charges pI , and electrically charged under

the fourth field strength, with charge q0. The metric of these solutions can be parametrized

as

ds2 = −e2U (dt+ ω3)
2 + e−2Uds23 (2.1.3)

The three-dimensional base metric only depends on the rotation (a) and mass (m) param-

eters of the solutions, and takes the form

ds23 =
G

X
dr2 +Gdθ2 +X sin2 θdϕ2 (2.1.4)

X = r2 − 2mr + a2 , G = r2 − 2mr + a2 cos2 θ (2.1.5)

The dependence on the charges is encoded in the conformal factor U and the angular velocity

ω3, as well as in the gauge fields and scalars that support the geometry. Parameterizing the

charges as

q0 = m sinh 2δ0 , pI = m sinh 2δI (2.1.6)

and introducing the shorthands ci = cosh δi, si = sinh δi, one finds that

ω3 =
2ma sin2 θ

G
[(Πc −Πs)r + 2mΠs]dϕ (2.1.7)

where

6



Πc = c0c1c2c3 , Πs = s0s1s2s3 (2.1.8)

The conformal factor U is traded for a new quantity ∆

∆ ≡ G2e−4U (2.1.9)

which has the nice property that it is polynomial in r. For the above, asymptotically flat,

solutions

∆ =
(
a2 cos2 θ + (r + 2ms20)(r + 2ms21)

) (
a2 cos2 θ + (r + 2ms22)(r + 2ms23)

)
−

−4a2m2(s0s1c2c3 − c0c1s2s3)2 cos2 θ (2.1.10)

The black hole solutions are also supported by non-trivial gauge fields and scalars2.

An interesting property of general black holes is that the wave equation for mass-

less scalar perturbations is separable, and moreover it has a low-energy approximate

SL(2,R) × SL(2,R) symmetry. In order to render this SL(2,R) × SL(2,R) symmetry

exact, [14] have introduced the so-called “subtracted” geometries, which differ from the

original black hole metrics only by a change in the conformal factor ∆

∆→ ∆sub = (2m)3r(Π2
c −Π2

s) + (2m)4Π2
s − (2m)2(Πc −Πs)

2a2 cos2 θ (2.1.11)

The rotation parameter ω3 in (2.1.7) is kept fixed. Since the asymptotic behaviour of ∆sub

is linear in r - as opposed to quartic - the new solutions are no longer asymptotically flat.

Rather, they are asymptotically Lifshitz with dynamical exponent z = 2 and hyperscaling

2The scalar and vector sources are related by a subset of U-duality transformations to the original four-
charge solution [11, 35]

7



violating exponent θ = −2 (for definition and applications, see e.g. [36]). The physical

picture that lies behind this replacement is that the subtraction procedure corresponds to

enclosing the black hole into an “asymptotically conical box”, which isolates its intrinsic

dynamics from that of the ambient spacetime, while preserving its thermodynamic proper-

ties.

In [14] it was shown that in the static case the matter fields AΛ, zI supporting the sub-

tracted geometry are still solutions of the STU model, albeit with unusual asymptotics.

Furthermore, the explicit sources for the subtracting geometry of multi-charged rotating

black holes were obtained in [15] as a scaling limit of certain STU black holes. Uplifting the

subtracted geometries to five dimensions, one finds AdS3 × S2 [14], which realizes the con-

formal symmetry of the four-dimensional wave equation in a linear fashion. In the following

we will try to better understand the relationship between the original, asymptotically flat

black holes, their subtracted geometries, and their five-dimensional uplift.

2.1.2 Solution-generating transformations

A powerful tool that we will be using extensively are solution-generating transformations

that relate backgrounds of the four-dimensional STU model with a timelike isometry. These

solution generating techniques can be used to both generate all the charged black holes of

the previous subsection from the non-extremal Kerr solution3, and to relate these general

asymptotically flat black holes to their subtracted geometries.

The procedure is as follows. The four-dimensional STU Lagrangian itself has an O(2, 2) ∼

SL(2,R)× SL(2,R) T-duality symmetry, which is enlarged at the level of the equations of

motion to include a third SL(2,R) electric/magnetic S-duality symmetry. Upon reduction

to three dimensions, it is well known [37] that the “näıve” O(3, 3) three-dimensional global

symmetry is enhanced to O(4, 4), since in three dimensions all one-form potentials can be

dualized to scalars. When reducing along time the scalar Lagrangian becomes a non-linear

3 They were employed in [11, 35] to generate four charge rotating black holes in four dimension with
two magnetic and two electric charges. Here we are interested in the solution with one electric and three
magnetic charges.
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sigma model whose target space is an SO(4, 4)/(SO(2, 2)× SO(2, 2)) coset.

The four-dimensional origin of the sixteen scalars that parametrize the above coset is:

• four scalars, ζΛ, correspond to the electric potentials associated to the vector fields

AΛ

• four scalars, ζ̃Λ, are Hodge dual to the magnetic potentials associated to AΛ

• six scalars, xI and yI , correspond to the real and respectively imaginary parts of the

moduli fields zI

• the scalar U corresponds to gtt in the dimensional reduction (2.1.3)

• one scalar, σ, is Hodge dual to the Kaluza-Klein one-form ω3

The symmetric coset space can be parametrized by the following coset element [38]

V = e−U H0 ·

 ∏
I=1,2,3

e−
1
2
(log yI)HI · e−xIEI

 · e−ζΛEqΛ−ζ̃ΛEpΛ · e−
1
2
σE0 (2.1.12)

where the EpΛ , EqΛ etc. are generators of the so(4, 4) Lie algebra. An explicit parametriza-

tion of these generators is given in [27]. Thus, to any four-dimensional solution of the STU

model one can associate a coset element V via the above procedure.

The SO(4, 4) symmetries act simply on the matrixM, defined as

M = V♯V , V♯ = ηVT η (2.1.13)

where η is the quadratic form preserved by SO(2, 2) × SO(2, 2). Namely, if g ∈ SO(4, 4),

then the matrixM transforms as

M→ g♯Mg (2.1.14)

9



We will be interested in several specific types of SO(4, 4) transformations.

Charging transformations

To each type of electric or magnetic charge that the four-dimensional back hole can have,

there is an associated so(4, 4) Lie algebra element that generates it, while leaving the asymp-

totics of the solution flat

qΛ → EqΛ + FqΛ , pΛ → EpΛ + FpΛ (2.1.15)

The expression for the so(4, 4) generators FqΛ and FpΛ is again given in [27]. Then, the

charged black hole discussed in the previous section can be generated from the uncharged

Kerr black hole by acting with the following group elements

gch(q0, p
I) = e−δ0(Eq0+Fq0 )+

∑
I δI(EpI+FpI ) (2.1.16)

where the various4 δA have been defined in (2.1.6). Thus,

M4−charge = g♯chMKerr gch (2.1.17)

In order to obtain the four-dimensional solution, one naturally has to re-dualize the three-

dimensional scalars into vectors using (2.4.2) and then uplift.

Rescalings

One can also consider the action of the so(4, 4) Cartan generators HI ,H0. Letting

gS = e−c0H0+
∑
I cIHI (2.1.18)

4Our notation is as follows. The index I ∈ {1, 2, 3}, the symplectic index Λ ∈ {0, . . . , 3}, while the
non-symplectic index A ∈ {0, . . . , 3}.

10



one finds that they simply rescale the target space scalars as

U → U + c0 , σ → e2c0σ , xI → e−2cIxI , yI → e−2cIyI (2.1.19)

ζ0 → eAζ0 , ζI → eA−2cI ζI , ζ̃0 → eB ζ̃0 , ζ̃I → eB+2cI ζ̃I (2.1.20)

where we have let

A = c0 +
∑
I

cI , B = c0 −
∑
I

cI (2.1.21)

Harrison transformations

Harrison transformations are generated by Lie group elements eα
ΛF

pΛ or eα̃ΛFqΛ . In this

paper, we will only be interested in the following Harrison transformations5

h0 = e−α0Fq0 , hI = eαIFpI (2.1.22)

The hI transformations, eventually accompanied by certain rescalings, have been shown to

relate non-rotating black holes to their subtracted geometries in [15, 27]. In this paper we

would like to study the effect of all four Harrison transformation on a given four-dimensional

asymptotically flat black hole, carrying arbitrary charge parameters δ0, δI . Letting

gH(α0, αI) = e−α0Fq0+
∑
I αIFpI (2.1.23)

we compute

MH(α0, αI) = g♯HM4−charge gH (2.1.24)

5Note that we dropped the tilde on α0.
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The effect of the Harrison transformations on the conformal factor ∆ defined in (2.1.9) is

to multiply the powers of r by various combinations of (1− α2
A), where A ∈ {0, . . . , 3}

∆H = (1− α2
0)(1− α2

1)(1− α2
2)(1− α2

3) r
4 + . . . (2.1.25)

in such a way that the coefficient of the r4 term vanishes when any of the αA equals one, the

coefficient of r3 is zero when any two of the αA equal one, and so on. We give an explicit

example of such a ∆H in (2.6.18). It is thus clear that by performing at least three Harrison

“infinite boosts” (α = 1), we will obtain the same degree of divergence of ∆ with r as the

subtracted geometry has.

The subtracted geometry

To obtain the subtracted geometry, to theMH defined in (2.1.24), we need to further apply

a scaling transformation of the type (2.1.18). We find that when

αI = 1 , α0 =
Πs cosh δ0 −Πc sinh δ0
Πc cosh δ0 −Πs sinh δ0

(2.1.26)

e2c0 =
eδ1+δ2+δ3

Πc cosh δ0 −Πs sinh δ0
, e2cI =

e2δI

2m
e2(c0−δ1−δ2−δ3) (2.1.27)

we recover precisely the subtracted geometries of [14] in the general rotating charged case.

This result is very similar to that of [27], who showed that the subtracted geometry of a

general charged rotating black hole can be obtained by applying the hI Harrison transfor-

mations followed by a particular charging transformation and rescalings. We will further

comment on the relationship with the result of [27] at the end of the next subsection.

The set of solutions to the STU model encoded in the matrix MH(α0, αI) represent a

four-parameter family of interpolating solutions between the original black hole and its
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subtracted geometry. In the non-rotating case, these interpolating solutions precisely co-

incide with those of [17], which we review in appendix 2.6.2. We also present the solution

interpolating from the Kerr black hole to its subtracted geometry in appendix 2.6.3.

2.1.3 Discussion of the five-dimensional uplift

The microscopic interpretation of the subtracted geometry is clearest in the five-dimensional

picture, since its uplift is AdS3×S2, which is holographically described by a CFT2. In this

subsection we will consider the five-dimensional uplift of a slightly generalized version of

the subtracted geometries, namely the Harrison-transformed black holes with αI = 1 and

α0 arbitrary. Interestingly, all these backgrounds uplift to AdS3 × S2, irrespective of the

value of α0.

The uplift Ansatz is given by

ds25 = f2(dz +A0)2 + f−1ds24 , f = (y1y2y3)
1
3 (2.1.28)

where ds24 is given in terms of the three-dimensional fields by (2.1.3) and A0 by (2.4.1).

Plugging in the solution discussed above we obtain

ds25 = ds23 + ℓ2

[
dθ2 + sin2 θ

(
dϕ− ae−δ0−δ1−δ2−δ3

4m2
(dt+ (α0 − 1)dz)

)2
]

(2.1.29)

where

ℓ = 2me
2
3
(δ1+δ2+δ3) (2.1.30)

is the radius of the S2. The three-dimensional part of the metric, ds23, is AdS3 of radius 2ℓ

in an unusual coordinate system
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ds23 =
ℓ2dr2

r2 − 2mr + a2
+
e−

2
3
(δ1+δ2+δ3)

4m2

[
−(a2e−2δ0 + 2mr − 4m2c20) dt̃

2+

+ 2(a2e−2δ0 + 4m2c0s0) dt̃dz + (2mr − a2e−2δ0 + 4m2s20) dz
2
]

(2.1.31)

The entire α0 dependence is encoded in the new coordinate t̃

t̃ = t+ α0z (2.1.32)

Thus, the effect of the h0 Harrison transformation, which is non-trivial from a four-

dimensional perspective, corresponds to a simple coordinate transformation in five dimen-

sions6. In appendix 2.5.1 we show that the effect of the α0 Harrison transformation on the

five-dimensional uplift of any four-dimensional STU geometry with a timelike isometry is

that of the coordinate transformation t→ t+ α0z.

The above five-dimensional geometry is supported by magnetic flux through the S2, given

by

AI = e2δI
( a

2m
(dt+ (α0 − 1)dz) e−δ0−δ1−δ2−δ3 − 2mdϕ

)
cos θ (2.1.33)

The associated magnetic charges are

pI = 2me2δI (2.1.34)

Note that they are different from the original charges (2.1.6). The Brown-Henneaux asymp-

6When α0 = 1, the AdS3 factor can be written as a U(1) Hopf fibre over AdS2, where the Hopf fibre
coordinate is the fifth dimension z. Also, the z component of the Kaluza-Klein gauge field in (2.1.29)
vanishes. Thus, for α0 = 1, the four-dimensional geometry itself becomes AdS2 × S2. This is in agreement
with the well-known result that when all αA are equal, the resulting Harrison transformation acts within
Einstein-Maxwell gravity only, and that in the infinite boost limit it transforms the Schwarzschild metric to
the Robinson-Bertotti one. This type of transformation was recently employed in [39].
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totic symmetry group analysis [4] applied to the AdS3 factor (2.1.31) yields a central charge

c =
3(2ℓ)

2G3
=

12πℓ3

G5
=

48m3

G4
e2(δ1+δ2+δ3) (2.1.35)

It is easy to check that c = 6 p1p2p3, as expected.

Let us now understand the five-dimensional uplift of the subtracted geometry itself. As

explained, in order to get precisely the subtracted geometry one needs to perform the

additional rescaling transformations H0,HI , with coefficients given by (2.1.27). From a

five-dimensional point of view, these transformations simply multiply the metric by an

overall factor

ds
′2
5 = e

2
3
(c1+c2+c3)−2c0ds25 (2.1.36)

provided that we replace t and z by the rescaled coordinates

t′ = e2c0t , z′ = ec0−c1−c2−c3z (2.1.37)

Under the above rescaling, the radius of the AdS3 becomes ℓAdS3 = 2
√
2m. The associated

Brown-Henneaux central charge is then

c =
6(2m)

3
2

G4
(2.1.38)

which only depends on the mass parameter. The action of the rescalings on the magnetic

fields is

AI → e−c0+c1+c2+c3−2cIAI (2.1.39)

which implies that all magnetic charges are now equal p1 = p2 = p3 =
√
2m. One can easily
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perform a coordinate transformation to put the metric (2.1.31) into BTZ form7

ds2

ℓ2
= T 2

−du
2 + T 2

+dv
2 + 2ρ dudv +

dρ2

4(ρ2 − T 2
+T

2
−)

(2.1.40)

where we have defined

u =

√
m2 − a2
8m2T−

(−t′ + (1 + α0)z
′) e−

∑
I δI+δ0 , v =

1

8mT+
(t′ + (1− α0)z

′) e−
∑
I δI−δ0

(2.1.41)

r = m+

√
m2 − a2
T+T−

ρ (2.1.42)

Requiring that u, v be identified mod 2π as z → z+2π and plugging in the values (2.1.26),

(2.1.27) for α0, cA fixes the temperatures to

T+ =
(Πc −Πs)

√
m

2
√
2

, T− =
(Πc +Πs)

√
m2 − a2

2
√
2m

(2.1.43)

It is then trivial to check that the Cardy formula in the dual CFT

SCardy =
π

3
c (T+ + T−) (2.1.44)

with c given by (2.1.38), reproduces the Bekenstein-Hawking entropy of the general rotating

black hole

SBH =
2πm

G4
[(Πc −Πs)(m+

√
m2 − a2) + 2mΠs] (2.1.45)

The central charge (2.1.38) does not agree with the Kerr/CFT central charge c = 12J in

7The parameters T± are related to the dimensionless left/right moving temperatures in the dual CFT as
T+ = πTL, T− = πTR. This redefinition slightly changes the form of Cardy’s entropy formula (2.1.44).

16



the extremal limit. This could be explained by the fact that we are using different “frames”

for computing the entropy. Nevertheless, we can bring the central charge to any desired

value while keeping the entropy invariant by performing any rescaling transformation with

c0 = 0. Under it, the central charge transforms as

c→ c ec1+c2+c3 (2.1.46)

while the temperatures transform in the opposite way, thus leaving (2.1.44) unchanged. We

further discuss these rescalings in the next subsection.

Finally, let us comment on the relationship with [27]. In that paper, the author applies the

three maximal hI Harrison transformations (followed by certain rescalings) to a black hole

with arbitrary magnetic charges δI , but with electric charge given by δ̃0, where

sinh δ̃0 =
Πs√

Π2
c −Π2

s

(2.1.47)

rather than δ0. Also, he does not use the h0 Harrison transformation at all to reach the

subtracted geometry.

Of course, one can reinterpret this procedure as starting with a general black hole with

charge parameters δ0, δI , to which one applies the hI Harrison transformations with αI = 1,

and then performs a charging transformation with parameter δ̃0 − δ0, followed by certain

rescalings. It is not hard to check that the q0 charging transformation simply corresponds

to a boost in five dimensions. Thus, Virmani’s procedure to obtain the subtracted geometry

and ours simply differ by a five-dimensional coordinate transformation and some rescalings.

Note that in both cases, the parameters of the transformations only depend on α0, Πs and

Πc.
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2.1.4 Duality interpretation

The uplift of the subtracted geometry is AdS3 × S2, supported by magnetic fluxes. This

is the near-horizon geometry of three intersecting M5-branes in M-theory [40, 41], each of

which wraps a different four-cycle on a six-torus T 6

w1 w2 w3 w4 w5 w6 z

M5 - - - - -

M5 - - - - -

M5 - - - - -

p -

Here z denotes the M-theory direction. The number of branes of each type is given by the

flux of the corresponding gauge field through the S2. Before the rescalings, we have

p1 = 2me2δ1 , p2 = 2me2δ2 , p3 = 2me2δ3 (2.1.48)

whereas after the scaling transformations we have p1 = p2 = p3 =
√
2m. The dual CFT

(known as the MSW CFT), whose central charge c = 6p1p2p3 has been microscopically

derived in [42], describes the low-energy excitations of the M5-brane worldvolume theory.

The above AdS3 × S2 geometry has been obtained by applying to the five-dimensional

uplift of a general non-extremal rotating four-dimensional black hole a set of hI Harrison

transformations with αI = 1, followed by an α0 Harrison with parameter (2.1.26) and

a rescaling. We will analyze the string/M-theory duality interpretation of each of these

transformations, in reverse order.

The rescalings

The action of the rescalings (2.1.18) on the five-dimensional geometry is given by (2.1.36),

(2.1.37) and (2.1.39). Since they change the radius of AdS3, the M5 magnetic fluxes and
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the periodicity of the M-theory circle parametrized by z, these transformations do not act

within the same theory. Rather, they take us from a given MSW CFT to another, of

different central charge and defined on a circle of a different radius.

These transformations also do not generally leave the entropy invariant. On the AdS3 length

and temperatures they act as

ℓ→ e
1
3
(c1+c2+c3)−c0 ℓ , T± → ec0−(c1+c2+c3) T± (2.1.49)

Since the central charge c ∝ ℓ3, they leave invariant Cardy’s formula (2.1.44) only if c0 = 0.

It is interesting to note that the only case in which the rescalings are not needed in order

to match the entropy is that of the neutral Kerr black hole, which is also the one of most

phenomenological interest.

The α0 transformation

In appendix 2.5.1, we show that the α0 Harrison transformation always corresponds to a

coordinate transformation in M-theory, mixing the AdS3 boundary coordinates as

 z

t

→
 1 0

α0 1


 z

t

 (2.1.50)

Note that the above diffeomorphism is not part of the Brown-Henneaux asymptotic symme-

try group, because it mixes the left- and right-moving coordinates u = z − t and v = z + t.

Thus, this transformation changes the metric on the AdS3 boundary, and therefore it cor-

responds to turning on a source for the dual stress tensor. For α0 infinitesimal, we have

SCFT → SCFT − α0

∫
dtdz T zt (2.1.51)
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This would be the entire story if the theory was defined on the plane. Nevertheless, in our

case the M-theory circle is identified as z ∼ z+2π, so the theory is defined on the cylinder.

The transformation (2.1.50) does not preserve the cylinder, and thus it is not a symmetry of

the theory. In particular, it changes the entropy of the black holes. It would be interesting

to precisely understand the holographic dual of this coordinate reidentification.

The αI transformation

As we have discussed, the formula for the conformal factor ∆ is completely symmetric under

the interchange of the αA. In the above, we have shown that the h0 Harrison transformation

corresponds to uplifting to M-theory and performing a specific coordinate transformation.

It is then natural to ask whether the remaining αI can also be interpreted as coordinate

transformations in the appropriate frame.

That the answer should be yes is rather clear from the work of [31]. Those authors showed

that a general static black hole can be “untwisted” to AdS3 by going to the duality frame

in which each of its charges becomes momentum and then performing an SL(2,R) trans-

formation in the (t, z) directions.

The black holes that we are considering carry D0 and D4 charges associated to various four-

cycles in the compactification T 6. We have already observed that the h0 Harrison transfor-

mation corresponds to uplifting to M-theory (which turns the D0 charge into momentum)

and then performing the “shift” SL(2,R) transformation (2.1.50). The remaining three

Harrison transformations should then be identified with combinations of four T-dualities

(which turn a given D4 into D0, and thus M-theory momentum), the shift transformation,

reduction to type IIA, and four T-dualities back. In appendix 2.5.2 we show that, indeed,

these combination of T-dualities and coordinate transformations has the same effect on

certain scalars as the corresponding Harrison transformation.

Thus, we have succeeded in extending the results of [31] to general rotating black holes.

While we only considered Harrison transformations represented by matrices of the form
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(2.1.50), [31] also considered more general SL(2,R) transformations

 a b

c d

 , ad− bc = 1 (2.1.52)

The entries were further constrained by a condition essentially equivalent to reducing the

degree of divergence of ∆. It was found that for the specific choice

a = cosh−1 δ , b = 0 , c = −e−δ , d = cosh δ (2.1.53)

the entropy of the black hole is also preserved. As we have already discussed, all trans-

formations with c ̸= 0 do not preserve the cylinder that the theory is defined on, so they

generically change the entropy, as we saw explicitly in the previous section. It is thus very

interesting that - at least in the static case - there exists a choice of SL(2,R) transforma-

tions that leave the entropy invariant. It would be instructive to check whether this choice

persists in the general rotating case.

2.2 Un-twisting 5d black holes

2.2.1 Setup

Let us now turn to the analysis of five-dimensional black holes. We consider the non-

extremal rotating generalization of the D1-D5-p black hole, first presented in [11]. These

black holes are solutions of N = 2 5d supergravity coupled to two vector multiplets. The

metric can again be written as a timelike fibre over a four-dimensional base space8

ds25 = −∆− 2
3 G̃(dt+At)2 +∆

1
3dŝ24 (2.2.1)

8In this section we completely reset the notation of the previous one. Thus, the quantities ∆, G,Πs,Πc, ℓ
etc. have different interpretation from before. There is no simple relationship between the four-dimensional
black holes studied in the previous section and the five-dimensional ones we study now.
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The four-dimensional base space is spanned by the spatial coordinates {r, θ, ϕ, ψ}, and its

metric is given by (2.7.3). As before, the base metric does not depend on the charges, but

only on the mass and rotation parameters9. The remaining quantities are

∆ = f3H0H1H5 , G̃ = f(f − 2m) (2.2.2)

where

Hi = 1 +
2m sinh2 δi

f
, f = r2 + a2 cos2 θ + b2 sin2 θ (2.2.3)

As before, the parameters δi encode the electric charges of the black hole. As r → ∞,

∆ ∝ r6, and the solutions are asymptotically flat. The main observation of [13] was that if

one changes the conformal factor ∆ as

∆→ ∆sub = (2m)2f(Π2
c −Π2

s) + (2m)3Π2
s (2.2.4)

while keeping At and dŝ24 fixed, the wave equation of a massless scalar propagating in

the black hole geometry has exact local SL(2R) × SL(2,R) symmetry and the black hole

thermodynamics is unchanged. In the five-dimensional case, the definition of Πc and Πs

has changed to

Πc = c0c1c5 , Πs = s0s1s5 (2.2.5)

Moreover, [13] showed that the five-dimensional subtracted geometry uplifts to AdS3 × S3,

thus geometrically realizing the hidden conformal symmetry visible in five dimensions.

In this section we will show that the “subtraction” procedure can again be implemented

using combinations of string dualities and coordinate transformations. As before, these

9This suggests that one should be able to generate the general solutions of [11] by only reducing to four
dimensions along time, rather than along both time and ψ as it was originally done.
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transformations act naturally in one dimension higher, in this case six dimensions. Thus,

we uplift the metric to a six-dimensional black string [43] using

ds26 = Gyy(dy +A3)2 +G
− 1

3
yy ds

2
5 , Gyy =

H0√
H1H5

(2.2.6)

where the Kaluza-Klein gauge field A3 can be found e.g. in [15]. This black string is a

solution of a very simple six-dimensional theory, namely

S =

∫
d6x
√
g

(
R+ (∂ϕ)2 − 1

12
F 2
(3)

)
(2.2.7)

which contains a three-form gauge field and a dilaton in addition to the metric. This theory

is a consistent truncation of the type IIB supergravity action on T 4 with only Ramond-

Ramond three-form field.

Given that the uplifts of both the original and the subtracted geometry are solutions of the

theory (2.2.7) that share the same base metric dŝ24, it is natural that they be related by a

symmetry that the six-dimensional action acquires upon reduction to four dimensions along

{y, t}. The symmetries of the resulting four-dimensional action are nothing but the STU

SL(2,R)3 symmetries. The action of STU transformations directly on the six-dimensional

geometry has been worked out in [34]. In the following subsection we will briefly review

these transformations and show that they indeed connect the uplifts of the original and

subtracted five-dimensional geometries.

2.2.2 Subtraction via STU

STU transformations are the symmetries of the N = 2 four-dimensional supergravity theory

with prepotential (2.1.1). This theory can be understood as the dimensional reduction of

the six-dimensional action (2.2.7) on a two-torus. From the six-dimensional perspective,

the STU transformations relate solutions of (2.2.7) which can be written as T 2 fibrations

over the same four-dimensional base. We parametrize the metric as
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ds26 = ds24 +Gαβ(dy
α +Aα)(dyβ +Aβ) , yα = {y, t} (2.2.8)

The six-dimensional C(2) field can be similarly decomposed as

C
(2)
αβ = ζϵ̂αβ , C(2)

µα = Bµα − CαβAβ

C(2)
µν = Cµν −Aα[µBν]α +AαµCαβAβν (2.2.9)

and there is additionally the dilaton ϕ. We will be interested in the general rotating black

string solution of [43]. We give the expressions for the four-dimensional fields Aα, Bα, Gαβ ,

ds24, ζ, ϕ that characterize this solution in appendix 2.7.1.

Let us now briefly review the interpretation of the STU transformations in the type IIB

frame, which is discussed at length in [34]. The last one, U, simply corresponds to a

coordinate transformation in six dimensions, of the type

U :

 y

t

→
 a b

c d


 y

t

 (2.2.10)

where ad− bc = 1.

The T transformation corresponds to a type IIB S-duality, followed by a T-duality along y,

then by a coordinate transformation as above, a T-duality back on the new y coordinate,

and finally an S-duality back. At least when a = d = 1 and b = 0, it was shown in [34] that

it can alternatively be interpreted as

• a T-duality along y

• a timelike Melvin twist with t→ t+ c x11
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• a T-duality back.

The S transformation is the same as the T transformation, both preceded and followed by

four T-dualities on the internal T 4, whose role is to implement 6d electromagnetic duality

on the initial and final geometries.

The T transformation

The first transformation that we will apply to the black string solution (2.7.2) - (2.7.5) is a

T-type transformation, given by the SL(2,R) matrix

T =

 1 0

λ1 1

 (2.2.11)

This transformation acts on (2.2.8) as

ds26 →
√
Σ1 ds

2
4 +

Gαβ√
Σ1

(dyα +Aα + λ1ϵ̂
αγBγ)(dyβ +Aβ + λ1ϵ̂

βγBγ) (2.2.12)

where ϵ̂αβ is the ϵ symbol (ϵ̂yt = 1) and Σ1 is given by

Σ1 = (1 + λ1ζ)
2 + λ21e

−2ϕ detGαβ (2.2.13)

The scalars ζ, ϕ and the determinant detGαβ are inputs of the original geometry, which

read

detGαβ = −1− 2mf−1

H1H5
, e2ϕ =

H1

H5
, ζ =

2ms1c1
fH1

(2.2.14)

Plugging in, we find that Σ1 takes the form

Σ1 =
4m2s21(s1 + c1λ1)

2 + f2
(
1− λ21

)
+ 2fm

(
2s21 + 2c1s1λ1 + λ21

)(
f + 2ms21

)2 (2.2.15)
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where the function f is given in (2.2.3). Whenever λ1 ̸= ±1, the quantity Σ1 asymptotically

approaches a constant. Nevertheless, when λ1 = ±1, then Σ1 ∼ O(r−2). This fact has a

direct consequence on the asymptotic behaviour of the conformal factor ∆, which under T

transforms as

∆→ ∆1 = Σ1∆ (2.2.16)

Thus, for λ1 = 1, we can reduce the degree of divergence of ∆ from r6 to r4. For precisely

this value, Σ1 is

Σ1|λ1=1 =
2me2δ1

fH1
⇒ ∆1 = 2me2δ1f2H0H5 (2.2.17)

and ∆1 remains polynomial in r. The details of the above manipulations are given in

appendix 2.7.2.

The S transformation

We can also act with the S transformation, whose action on the metric is very similar to

(2.2.12)

ds26 →
√
Σ2 ds

2
4 +

Gαβ√
Σ2

(dyα +Aα + λ2ϵ̂
αγB′γ)(dyβ +Aβ + λ2ϵ̂

βγB′γ) (2.2.18)

The four-dimensional gauge field B′α is - roughly speaking - the Hodge dual of Bα. The

quantity Σ2 is given by

Σ2 = (1 + λ2ζ
′)2 + λ22 e

2ϕ detGαβ (2.2.19)

where the scalar ζ ′ is (roughly) the four-dimensional Hodge dual of the two form Cµν . On

the original black string background,
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ζ ′ =
2ms5c5
fH5

(2.2.20)

With these, we can compute Σ2 explicitly. It is given by

Σ2 =
4m2s25(s5 + c5λ2)

2 + f2
(
1− λ22

)
+ 2fm

(
2s25 + 2c5s5λ2 + λ22

)(
f + 2ms25

)2 (2.2.21)

Note that, again, for λ2 = 1 the asymptotics of Σ2 change from O(1) to O(r−2). The

intermediate steps of this calculation can be found in appendix 2.7.3.

To summarize, the combined effect of the S and T transformations on ∆ is

∆→ Σ1Σ2∆ (2.2.22)

When λ1 = λ2 = 1, the final value of ∆ is

∆fin = 4m2fH0 e
2δ1+2δ5 (2.2.23)

This has the same large r asymptotics as ∆sub in (2.2.4), but it is not equal to it. Just like

it is true of the subtracted geometries of the previous section, the uplifted black hole metric

after an S and a T transformation becomes locally AdS3 × S3. Consequently, there exists

a coordinate transformation and a rescaling that takes it into the uplift of the subtracted

geometry. We describe this transformation in the next subsection.

2.2.3 The final geometry

Setting λ1 = λ2 = 1, we find that the final metric is locally AdS3 × S3

ds26 = ds23 + ℓ2
[
dθ2 + sin2 θ(dϕ+Aϕ)2 + cos2 θ(dψ +Aψ)2

]
(2.2.24)
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where

ℓ2 = 2meδ1+δ5 (2.2.25)

The three-dimensional Kaluza-Klein gauge fields are constant and read

Aϕ = −(adt̃+ bdỹ) , Aψ = −(adỹ + bdt̃) (2.2.26)

and the three-dimensional metric is

ds23 = ℓ2
[
r2(dỹ2 − dt̃2)− (a2 + b2 − 2m)dt̃2 − 2abdt̃dỹ +

r2dr2

(r2 + a2)(r2 + b2)− 2mr2

]
(2.2.27)

The new coordinates t̃ and ỹ are related to t, y via

t̃ = ℓ−2(c0t− s0y) , ỹ = ℓ−2(c0y − s0t) (2.2.28)

Thus, the δ0 dependence of the six-dimensional metric can be trivially undone via the above

coordinate transformation. The geometry (2.2.24) differs from the uplift of the subtracted

geometry in two aspects: one needs to replace δ0 by a new δ̃0 and ℓ by ℓ̃, given by

sinh δ̃0 =
Πs√

Π2
c −Π2

s

, ℓ̃2 = 2m
√

Π2
c −Π2

s (2.2.29)

This replacement amounts thus to a coordinate transformation and an overall rescaling.

The metric can again be put in the form (2.1.40), by defining

ρ = r2 −m+
1

2
(a2 + b2) , u = y − t , v = y + t (2.2.30)
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The temperatures that we can read off are

T± =

√
2m− (a± b)2

2ℓ̂2
e∓δ̃0 (2.2.31)

Pugging into Cardy’s formula (2.1.44), we again get perfect match with the Bekenstein-

Hawking entropy of the five-dimensional black hole which, in units of G5 = π/4, reads

S = 2πm
√

2m− (b− a)2 (Πc +Πs) + 2πm
√

2m− (b+ a)2 (Πc −Πs) (2.2.32)

Note that the coordinate transformation δ0 → δ̃0 and the rescaling ℓ → ℓ̃ were absolutely

necessary in order to match the entropy in general. The only case in which these transfor-

mations are not needed is the neutral case δi = 0, for which just the S and T transformations

are enough to produce the subtracted geometry.

2.3 Conclusion

In this chapter, we have shown that all non-extremal four- and five-dimensional black holes

with general rotation and charges can be “untwisted” to AdS3 times a sphere, thus gen-

eralizing the work of [31]. While it is possible that the untwisting may be done in several

different ways [31] - i.e. by using different choices of SL(2,R) matrices - our particular

choice is universal (it does not depend on any of the black hole parameters) and has a very

simple duality interpretation. Moreover, the powerful solution generating techniques that

we use allow us to easily construct solutions that interpolate between the original black

holes and their subtracted geometries, generalizing the work of [17].

2.4 Appendix A: Useful formulae

The 3d→ 4d→ 5d lift

Here we describe the relationship of the four-dimensional fields that appear in the STU

Lagrangian to the three-dimensional fields and dualized scalars, as well as their uplift to
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five dimensions.

The four-dimensional gauge fields can be reduced to three dimensions via

AΛ
4d = ζΛ(dt+ ω3) +AΛ

3 (2.4.1)

Next, the three-dimensional gauge fields are dualized into scalars via

− dζ̃Λ = e2U (ImN)ΛΣ ⋆3 (dA3
Σ + ζΣdω3) + (ReN)ΛΣdζ

Σ

− dσ = 2e4U ⋆3 dω3 − ζΛdζ̃Λ + ζ̃Λdζ
Λ (2.4.2)

The relationship between the five-dimensional gauge fields and the four-dimensional ones is

AI5d = −xI(dz +A0
4d) +AI4d (2.4.3)

The real scalars in the five-dimensional N = 2 Lagrangian are given by

hI = f−1yI , f3 = y1y2y3 (2.4.4)

and the uplift of the metric is given in (4.6.2).

The 5d→ 6d lift

Here we describe the relationship between the five-dimensional black hole geometries and

the six-dimensional black string ones that we use in section 2.2. The reduction from six-

dimensional Einstein frame to five dimensions is
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ds26 = Gyy(dy +A3
5d)

2 +G
− 1

3
yy ds

2
5 , Gyy = h

− 3
2

3 (2.4.5)

In terms of the four-dimensional fields that we have introduced in (2.2.8), we have

A3
5d = Ay +

Gyt
Gyy

(dt+At) (2.4.6)

and

ds25E = G
1
3
yy ds

2
4 +

detGαβ

G
2
3
yy

(dt+At)2 (2.4.7)

Comparing this expression with (2.2.1), we find that

∆ = Gyy

(
f(f − 2m)

| detG|

) 3
2

(2.4.8)

which is the equation we used to derive (2.2.22).

2.5 Appendix B: The Harrison transformations as dualities

2.5.1 The α0 transformation

The action of the α0 Harrison transformation on the various three-dimensional fields in the

theory can be read off from the transformation of the matrixM and reads

e4U → Ξ−1
0 e4U , yI → Ξ

1
2
0 y

I , Ξ0 = (1 + α0ζ
0)2 − α2

0 f
−3e2U

ζΛ → ζΛ(1 + α0ζ
0)− α0 x

Λ f−3e2U

Ξ0
, xI → xI(1 + α0ζ

0)− α0ζ
I (2.5.1)
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where we have introduced x0 = 1. The transformation rules for ζ̃Λ and σ are rather

cumbersome; instead, we can use (2.4.2) to compute the transformation of the Hodge dual

fields ω3, A
Λ
3 , which behave simply as

ω3 → ω3 − α0A
0
3 , AΛ

3 → AΛ
3 (2.5.2)

We would like to understand the effect of the α0 Harrison on the five-dimensional uplifted

geometry. In terms of three-dimensional fields, the five-dimensional metric reads

ds2 = f2(dz + ζ0(dt+ ω3) +A3
0)2 − f−1e2U (dt+ ω3)

2 + e−2Uf−1ds3
2 (2.5.3)

and the accompanying supporting gauge fields are

AI = −xI(dz + ζ0(dt+ ω3) +A0
3) + ζI(dt+ ω3) +AI3 (2.5.4)

Upon re-completing the squares in the required order, it is rather easy to see that the above

transformations are induced by a simple change of coordinates

t→ t+ α0z (2.5.5)

in the five-dimensional background (2.5.3).

2.5.2 The αI transformations

We will concentrate for concreteness on α1, which acts as

e4U → Ξ−1
1 e4U , y1 → Ξ

1
2
1 y

1 , x1 → x1(1− α1ζ̃1)− α1ζ̃0
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Ξ1 = (1− α1ζ̃1)
2 − α2

1 f
−3e2U (x22 + y22)(x

2
3 + y23) (2.5.6)

Other fields that transform simply are

ζ̃0 → ζ̃0(1− α1ζ̃1)− α1x
1e2Uf−3(x22 + y22)(x

2
3 + y23)

Ξ1

ζ̃1 → ζ̃1(1− α1ζ̃1) + α1e
2Uf−3(x22 + y22)(x

2
3 + y23)

Ξ1

ζ2 → ζ2(1− α1ζ̃1) + α1x
3e2Uf−3(x22 + y22)

Ξ1

ζ3 → ζ3(1− α1ζ̃1) + α1x
2e2Uf−3(x23 + y23)

Ξ1
(2.5.7)

The transformation rules for the remaining fields are rather complicated, and we will not

include them here. The claim is that the above transformations are equivalent to four T-

dualities along the w3,4,5,6 directions, a coordinate transformation as in (2.5.5), followed by

four T-dualities back.

Uplifting to ten dimensions, the type IIA string frame metric is

ds210 = ds24 + y1(dw2
1 + dw2

2) + y2(dw2
3 + dw2

4) + y3(dw2
5 + dw2

6) (2.5.8)

and the NS-NS B-field reads

B(2) = −x1dw1 ∧ dw2 − x2dw3 ∧ dw4 − x3dw5 ∧ dw6 (2.5.9)

Under four T-dualities along w3,4,5,6, the fields transform as
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y2 → y2

y22 + x22
, x2 → x2

y22 + x22
(2.5.10)

and similarly for x3, y3. The action of the four T-dualities on the Ramond-Ramond fields

is roughly to interchange A0
4d with (minus) the Hodge dual of A1, and A2 with −A3. At

the level of the three-dimensional scalars, we expect these exchanges to act as

ζ0 → −ζ̃1 , ζ1 → ζ̃0 , ζ2 → −ζ3 (2.5.11)

while U and ω3 stay invariant.

Back to the general formulae, it is easy to check that combining the replacements (2.5.10)-

(2.5.11) with the coordinate transformation (2.5.1)-(2.5.2), we obtain precisely the α1 Har-

rison transformation formulae (2.5.6)-(2.5.7). Thus, for the subset of fields that we checked

explicitly, this interpretation is correct.

2.6 Appendix C: Explicit “four-dimensional” examples

In this appendix we present explicit formulae for various four-dimensional black holes and

interpolating geometries. The quotes above are due to the fact that we present the four-

dimensional geometries either in terms of the three-dimensional scalar data, or in the form

of the five-dimensional uplift.

In appendix 2.6.1 we present the scalar fields that yield the geometry of the general four-

charge rotating black holes with three magnetic and one electric charge. To our best knowl-

edge, the complete solution for all fields has not been published in the literature10. In

appendix 2.6.2 we rederive the solution presented in [17] and relate our notation to theirs.

Finally, in appendix 2.6.3 we present the five-dimensional uplift of the interpolating solution

from the Kerr asymptotically flat black hole to its subtracted geometry. Since the formulae

are rather cumbersome to write down, we present only the special cases α1 = α2 = α3 = α

10The general solution with three magnetic charges can be found in [27], whereas the explicit solution
with two electric and two magnetic charges has been written down in [35], minus the gauge potentials.
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and α2 = α3 = 1, both with α0 set to its subtracted value α0 = 0.

2.6.1 The general four-charge black hole

We write herein the general four-dimensional asymptotically flat solution. The scalar field

U is given implicitly in (2.1.10). Note that, despite the way it is presented, the expression

for ∆ is completely symmetric under interchanging the charges. The other scalar fields are

given by

y1 =

√
∆

a2 cos2 θ + (r + 2ms22)(r + 2ms23)
(2.6.1)

x1 =
2am cos θ(c0c1s2s3 − s0s1c2c3)
a2 cos2 θ + (r + 2ms22)(r + 2ms23)

(2.6.2)

The formulae for the remaining xi, yi are obtained by permutations of the above. The next

simplest scalar is

ζ̃0 =
2am cos θ

∆

[
s0c1c2c3(a

2 cos2 θ + r(r + 2ms20))− c0s1s2s3(a2 cos2 θ + (r − 2m)(r + 2ms20))
]

(2.6.3)

The formulae for the ζi are simply obtained from the above by replacing δ0 ↔ δi. Next,

we have

ζ0 =
1

∆

[
4m2a2 cos2 θ

(
(c20 + s20)s1c1s2c2s3c3 − s0c0(2s21s22s23 + s21s

2
2 + s22s

2
3 + s23s

2
1)
)
+

+2ms0c0
(
ra2 cos2 θ +Π3

i=1(r + 2ms2i )
)]

(2.6.4)

The expressions for the ζ̃i are given by minus the above expression, after replacing δ0 ↔ δi.

It may be useful to also note that ζ̃2,3 can also be written as
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ζ̃2 = ζ̃⋆2 + x1ζ3 , ζ̃⋆2 = − 2ms2c2(r + 2ms23)

a2 cos2 θ + (r + 2ms22)(r + 2ms23)
(2.6.5)

and similarly for ζ̃3, with the obvious replacements. Finally, the expression for σ is given

by

σ =
4am cos θ(Πc −Πs)

a2 cos2 θ + (r + 2ms22)(r + 2ms23)
− (ζ0ζ̃0 − ζ1ζ̃1 + 2x1ζ0ζ̃1 + ζ2ζ̃⋆2 + ζ3ζ̃⋆3 ) (2.6.6)

The fields σ and ζ̃Λ should be dualized to the one-forms ω3 and AΛ
3 , which upon uplift yield

the four-dimensional matter fields. It should be possible to check that ω3 has the simple

expression (2.1.7).

2.6.2 The static charged interpolating solution

The solution in the non-rotating charged case has been already given in [17]. We include

a re-derivation of it in our notation. After four Harrison transformations with parameters

αA, the scale factor ∆ takes the form

∆ = ξ0 ξ1 ξ2 ξ3 (2.6.7)

where

ξA = (1− α2
A) r +

1

2
me2δA

(
1 + αA + e−2δA(αA − 1)

)2
, A ∈ {0, . . . , 3} (2.6.8)

The relationship between the parameters αA and the ones - called aA - used to parametrize

the interpolating solutions in [17] is

aA =

√
1− α2

A

sinh δA + αA cosh δA
(2.6.9)
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Note that the values of the parameters aA which correspond to the subtracted geometry

in [17] match precisely with the values quoted in (2.1.26). One small advantage of our

parametrization is that - unlike that of [17] - it is not singular when one of the charges

vanishes.

The uplifted five-dimensional geometry takes the form

ds25 = (ξ1ξ2ξ3)
2
3

(
dΩ2

2 +
dr2

G

)
+ (ξ1ξ2ξ3)

− 1
3ds22 (2.6.10)

where

ds22 = ξ0(dz +A0)2 − G

ξ0
dt2 (2.6.11)

and the Kaluza-Klein gauge field reads

A0 = ξ−1
0

(
−α0r +

1

2
m(1 + e2δ0)

(
1 + α0 + e−2δ0(α0 − 1)

))
dt (2.6.12)

As before, the α0 dependence of the above metric, which is present only in the last paren-

thesis, ds22, can be completely gauged away via the coordinate transformation (2.5.5). The

3d Einstein metric reads

ds23 = (ξ1ξ2ξ3)
2

(
dr2

r(r − 2m)
+

ds22
ξ1ξ2ξ3

)
(2.6.13)

When αI = 0, this spacetime is AdS3 of radius ℓ = 4me
2
3
(δ1+δ2+δ3). When at least two αI

are non-zero, including the asymptotically flat case, it is asymptotically conformal to AdS3.

It would be interesting if holography could be understood for this spacetime.

We also list the remaining five-dimensional fields, for completeness. We have
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hI =
ξI

(ξ1ξ2ξ3)
1
3

, AI(5d) = −
1

2
m
[
(1 + αI)

2e2δI − (1− αI)2e−2δI
]
cos θdϕ (2.6.14)

2.6.3 The neutral rotating interpolating solution

While it is straightforward to generate the geometries that interpolate between the general

charged rotating black holes and their subtracted geometry, the resulting formulae are rather

uninspiring. Thus, we will limit ourselves to presenting only the simplest such rotating

solution, for the neutral Kerr black hole. Introducing the notation

ϵA = 1− α2
A (2.6.15)

and

Π4 = ϵ0ϵ1ϵ2ϵ3 , Π3 = ϵ0ϵ1ϵ2 + perms (2.6.16)

Π2 = ϵ0ϵ1 + perms , Π1 = ϵ0 + ϵ1 + ϵ2 + ϵ3 (2.6.17)

we find that the resulting warp factor is

∆ = Π4 r
4 + (2mΠ3 − 8mΠ4) r

3 + [4m2Π2 − 12m2Π3 + (24m2 + 2a2 cos2 θ)Π4] r
2 +

+ [8m3Π1 − 16m3Π2 + (24m3 + 2a2m cos2 θ)Π3 − (32m3 + 8a2m cos2 θ)Π4]r +

+ 4m2(a2 cos2 θ − 4m2)Π1 + 16m4Π2 − 4m2(4m2 + a2 cos2 θ)Π3 + (a2 cos2 θ + 4m2)2Π4 +

+ 16m4 + 8a2m2α0α1α2α3 cos
2 θ (2.6.18)

Note that it has all the properties that we have mentioned in section 2.1.2. Turning on

ϵ1,2,3 corresponds to turning on certain irrelevant deformations of the subtracted geometry.
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Since the solution for the remaining fields is still rather cumbersome, we will be focusing

on two special cases:

• equal deformations: ϵ1 = ϵ2 = ϵ3 = 1− α2

• one nonzero deformation: ϵ1 = 1− α2
1 and ϵ2 = ϵ3 = 0

Since for neutral black holes we do not need to perform a h0 Harrison transformation in

order to reach the subtracted geometry, in both cases we will set α0 = 0.

Equal deformations

In this subsection we present the uplifted five-dimensional geometry after a deformation

with α1 = α2 = α3 = α and α0 = 0. As a useful intermediate step, we write the three-

dimensional one-forms

ω3 =
2amr sin2 θ

G
dϕ , A0

3 =
2am(r − 2m)α3 sin2 θ

G
dϕ (2.6.19)

A1
3 = A2

3 = A3
3 = −

2mXα cos θ

G
dϕ (2.6.20)

To write down the final interpolating solution, it is useful to introduce some shortcuts.

Thus, we let

ρ = (1− α2) r + 2mα2 , ϵ = 1− α2 , Y = ρ2 + a2ϵ2 cos2 θ (2.6.21)

but we still don’t replace α by ϵ when it appears with an odd power. The five-dimensional

gauge fields then read

A1
5d = −

2mα

Y
[a(αdz − dt) + (ρ2 + a2ϵ2)dϕ] cos θ (2.6.22)
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We were unable to find much structure in the above solution, but it would be interesting if

it existed. To reduce to three dimensions, we write the metric as

ds25 = e−2U−2V ds23 + 4m2e2Udθ2 + 4m2e2V sin2 θ(dϕ+ Â)2 (2.6.23)

and find that, to first order in ϵ,

e2U = e2V = 1 +
(r − 2m)ϵ

m
+ . . . (2.6.24)

Ât = −
a

4m2
+

3a(r − 2m)ϵ

8m3
+ . . . , Âz =

a

4m2
+

3a(m− r)ϵ
8m3

+ . . . (2.6.25)

The r-dependence of the three-dimensional vector field indicates the presence of a (1, 2)

operator (in addition to the (2, 2) ones found in [17]), whose coupling is proportional to the

rotation parameter a. Note that unlike in the static case, beyond the leading order in ϵ, U

and V will no longer be equal. The deformation of the three-dimensional Einstein metric

reads

gtt = −
2mr − 4m2 + a2

4m2
− 3(r − 2m)2ϵ

4m2
, gzz =

2mr − a2

4m2
+

3(r2 − 2mr + a2)ϵ

4m2

gtz =
a2

4m2
− 3a2ϵ

8m2
, grr =

4m2

X
+

12m(r − 2m)ϵ

X
(2.6.26)

There are also additional massive vector fields coming from the dimensional reduction of

the five-dimensional gauge field (2.6.22).
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Single deformation

To study the effect of a single deformation, we set α2 = α3 = 1. The angular velocity ω3

stays the same, whereas the gauge fields change to

A0
3 =

2am(r − 2m)α1 sin
2 θ

G
, A1

3 = −
2mXα1 cos θ

G
, A2

3 = A3
3 = −

2mX cos θ

G

(2.6.27)

The five-dimensional gauge fields read

A1
5d = −

(
2mα1dϕ+

a(dz − α1dt)

2m

)
cos θ (2.6.28)

A2
5d = A3

5d =

(
−2mdϕ+

a(dt− α1dz)

ρ1

)
cos θ (2.6.29)

where we have again introduced the shorthand

ρ1 = (1− α2
1) r + 2mα2

1 (2.6.30)

Note that the magnetic flux through the sphere is decreased. The metric takes the form

(2.6.23) with U = V , where

e2U =
( ρ1
2m

) 2
3
, Â =

a(α1dz − dt)
2mρ1

(2.6.31)

gtt = −
r2(1− α2

1) + 2mr(2α2
1 − 1) + a2 − 4m2α2

1

4m2
, gtz =

a2α1

4m2

gzz =
r2(1− α2

1) + 2mrα2
1 − a2α2

1

4m2
, grr =

ρ21
X

(2.6.32)
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The scalars that support the geometry are

h1 =
( ρ1
2m

) 2
3
, h2 = h3 =

(
2m

ρ1

) 1
3

(2.6.33)

It would be interesting if one could construct a consistent truncation of the five-dimensional

action to three-dimensions, that contains this solution and then perform a detailed holo-

graphic analysis.

2.7 Appendix D: Details of the spectral flows

2.7.1 The general black string solution

The Einstein-frame metric of the general six-dimensional black string solution [43] is given

by

ds26 = ds24 +Gαβ(dy
α +Aα)(dyβ +Ab) (2.7.1)

where yα = {y, t} and

ds24 =
√
H1H5

[(
a2 + r2 +

2a2m sin2 θ

f − 2m

)
sin2 θdϕ2 +

(
b2 + r2 +

2b2m cos2 θ

f − 2m

)
cos2 θdψ2+

+
2abm sin2 θ cos2 θ

f − 2m
2dϕdψ +

fr2dr2

(r2 + a2)(r2 + b2)− 2mr2
+ fdθ2

]
(2.7.2)

The four-dimensional base metric is related to dŝ24 that appears in (2.2.1) by the rescaling

ds24 = f
√
H1H5 dŝ

2
4 (2.7.3)

The Kaluza-Klein gauge fields read
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Ay = 2m

(
a
s0c1c5
f − 2m

− bc0s1s5
f

)
sin2 θdϕ+ 2m

(
b
s0c1c5
f − 2m

− ac0s1s5
f

)
cos2 θdψ

At = 2m

(
a
c0c1c5
f − 2m

− bs0s1s5
f

)
sin2 θdϕ+ 2m

(
b
c0c1c5
f − 2m

− as0s1s5
f

)
cos2 θdψ (2.7.4)

Gαβ =
1√
H1H5

 H0 −m sinh 2δ0
f

−m sinh 2δ0
f

2m cosh2 δ0
f − 1

 , detGαβ = −1− 2mf−1

H1H5
(2.7.5)

We have defined

Hi = 1 +
2m sinh2 δi

f
, f = r2 + a2 cos2 θ + b2 sin2 θ (2.7.6)

The solution is also supported by the ten-dimensional dilaton, which in RR frame reads

e2ϕ =
H1

H5
(2.7.7)

and by the Ramond-Ramond two-form field, which can be found in [48]. Using (2.2.9), we

also decompose the six-dimensional C(2) field to four dimensions, obtaining

ζ =
2ms1c1
fH1

, C = ms5c5 cos
2 θ

(
a2 + r2

f
+
a2 + r2 − 2m

f − 2m

)
dϕ ∧ dψ (2.7.8)

By = 2m

(
a
c0s1c5
f − 2m

− bs0c1s5
f

)
sin2 θdϕ+ 2m

(
b
c0s1c5
f − 2m

− as0c1s5
f

)
cos2 θdψ

43



Bt = 2m

(
−a s0s1c5

f − 2m
+ b

c0c1s5
f

)
sin2 θdϕ+ 2m

(
−b s0s1c5

f − 2m
+ a

c0c1s5
f

)
cos2 θdψ (2.7.9)

For our future manipulations, it is useful to introduce the scalar ζ ′, defined as

dζ ′ = v2
√
| detG| ⋆4 H(3) , H(3) = d C − 1

2
Aα ∧ dBα −

1

2
Bα ∧ dAα (2.7.10)

where v2 = e2ϕ is the volume of the internal four-torus. We simply find

ζ ′ =
2ms5c5
fH5

(2.7.11)

2.7.2 The T transformation

The action of the T transformation on the four-dimensional fields is

e2ϕ1 = e2ϕΣ1 , ζ1 =
ζ + λ1(ζ

2 + e−2ϕ detG)

Σ1
, Aα1 = Aα + λ1ϵ̂

αβBβ (2.7.12)

where Σ1 is given by

Σ1 = (1 + λ1ζ)
2 + λ21e

−2ϕ detG (2.7.13)

Note that in Lorentzian signature, the transformation of Aα differs by a sign from its

spacelike counterpart, due to the different definition of ϵ̂αβ . The fields Bα and ζ ′ are

unchanged, and

G1
αβ =

Gαβ√
Σ1

, ds14
2
=
√

Σ1 ds
2
4 (2.7.14)
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2.7.3 The S transformation

Let us now perform the S transformation. Its action on the four-dimensional fields is

e2ϕ2 = Σ−1
2 e2ϕ1 =

Σ1

Σ2
e2ϕ , ζ2 = ζ1 , Aα2 = Aα1 + λ2ϵ̂

αβB′β (2.7.15)

The factor Σ2 is given by

Σ2 = (1 + λ2ζ
′)2 + λ22 e

2ϕ1 detG1 = (1 + λ2ζ
′)2 + λ22 e

2ϕ detG (2.7.16)

The four-dimensional gauge field B′α is determined by

dB′α = e2ϕ1ϵα
β ⋆4 dBβ + ζ ′ϵ̂αβ dAβ1 −

e2ϕ1ζ1√
detG

Gαβ ⋆4 dAβ1 (2.7.17)

Note the sign difference with respect to the Euclidean signature formulae in [34]. To solve

for B′α, it is useful to rewrite the above expression in terms of the fields before the T

transformation

dB′α = e2ϕ
Gαβ√
detG

(
ϵ̂βγ ⋆4 dBγ − ζ ⋆4 dAβ

)
+ ζ ′ ϵ̂αβ dAb + (2.7.18)

+ λ1

[
e2ϕ

Gαβ√
detG

(
ζ ϵ̂βγ ⋆4 dBγ − (ζ2 + e−2ϕ detG) ⋆4 dAβ

)
+ ζ ′ dBα

]

Writing

B′α = B′(0)
α + λ1B

′(1)
α (2.7.19)

and integrating the above equation, we find
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B
′(0)
y = 2m

(
ac0c1s5
f − 2m

− bs0s1c5
f

)
sin2 θdϕ− 2m

(
as0s1c5
f

− bc0c1s5
f − 2m

)
cos2 θdψ

B
′(0)
t = −2m

(
as0c1s5
f − 2m

− bc0s1c5
f

)
sin2 θdϕ+ 2m

(
ac0s1c5
f

− bs0c1s5
f − 2m

)
cos2 θdψ

(2.7.20)

and

B
′(1)
y = 2m

(
ac0s1s5
f − 2m

− bs0c1c5
f

)
sin2 θdϕ− 2m

(
as0c1c5
f

− bc0s1s5
f − 2m

)
cos2 θdψ

B
′(1)
t = −2m

(
as0s1s5
f − 2m

− bc0c1c5
f

)
sin2 θdϕ+ 2m

(
ac0c1c5
f

− bs0s1s5
f − 2m

)
cos2 θdψ

(2.7.21)

Finally, the metric becomes

G2
αβ =

G1
αβ√
Σ2

=
Gαβ√
Σ1Σ2

, ds24
2
=
√

Σ2 ds
1
4
2
=
√

Σ1Σ2 ds
2
4 (2.7.22)
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Chapter 3

Electrodynamics: Melvin solutions

External magnetic fields can probe the composite structure of black holes in string theory.

With this motivation we study magnetised four-charge black holes in the STU model, a con-

sistent truncation of maximally supersymmetric supergravity with four types of electromag-

netic fields. We employ solution generating techniques to obtain Melvin backgrounds,and

black holes in these backgrounds. For an initially electrically charged static black hole im-

mersed in magnetic fields, we calculate the resultant angular momenta and analyse their

global structure. Examples are given for which the ergoregion does not extend to infinity.

We calculate magnetic moments and gyromagnetic ratios via L armors formula. Our results

are consistent with earlier special cases. A scaling limit and associated subtracted geometry

in a single surviving magnetic field is shown to lift to AdS3×S2. Magnetizing magnetically

charged black holes give static solutions with conical singularities representing strings or

struts holding the black holes against magnetic forces. In some cases it is possible to balance

these magnetic forces.

3.1 The STU Model and its Black Holes

The Lagrangian for the bosonic sector of the STU model, in the notation of [35], is

L4 = R ∗1l− 12∗dφi ∧ dφi − 12e2φi ∗dχi ∧ dχi − 12e−φ1

(
eφ2−φ3 ∗F(2)1 ∧ F(2)1

+eφ2+φ3 ∗F(2)2 ∧ F(2)2 + e−φ2+φ3 ∗F1
(2) ∧ F1

(2) + e−φ2−φ3 ∗F2
(2) ∧ F2

(2)

)
+χ1 (F(2)1 ∧ F1

(2) + F(2)2 ∧ F2
(2)) , (3.1.1)
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where the index i labelling the dilatons φi and axions χi ranges over 1 ≤ i ≤ 3. The four

field strengths can be written in terms of potentials as

F(2)1 = dA(1)1 − χ2 dA2
(1) ,

F(2)2 = dA(1)2 + χ2 dA1
(1) − χ3 dA(1)1 + χ2 χ3 dA2

(1) ,

F1
(2) = dA1

(1) + χ3 dA2
(1) ,

F2
(2) = dA2

(1) . (3.1.2)

Note that (4.4.1) could be obtained by reducing the six-dimensional bosonic string action

on S1×S1, and then dualising the 2-form potential A(2) to the axion that is called χ1 here.

Four-charge rotating black hole solutions in the STU theory were constructed in [10]. We

shall use the conventions and notation of [35], in which the metric for the four-charge black

holes is given by

ds24 = −
ρ2 − 2mr

W
(dt+ B(1))

2 +W
(dr2

∆
+ dθ2 +

∆ sin2 θ dϕ2

ρ2 − 2mr

)
. (3.1.3)

where

∆ = r2 − 2mr + a2, ρ2 = r2 + a2 cos2 θ ,

B(1) =
2ma sin2 θ(rΠc − (r − 2m)Πs)

(ρ2 − 2mr)
dϕ ,

W 2 = r1 r2 r3 r4 + a4 cos4 θ

+a2 cos2 θ [2r2 + 2mr
4∑
i=1

s2i + 8m2ΠsΠc − 4m2(2Π2
s +

4∑
i=1

Πis)] , (3.1.4)

ri = r + 2ms2i , si = sinh δi, ci = cosh δi, and Πc = c1c2c3c4 and Πs = s1s2s3s4. We also

define

Πis = s−1
i Πs , Πic = c−1

i Πc . (3.1.5)

The expressions for the gauge potentials, axions and dilatons can be found [35].
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The mass physical M , angular momentum J , charges Qi and dipole moments µi were

calculated in [10]. In the notation and conventions of [35] that we are using here, they are

given by

M = 14m

4∑
i=1

(c2i + s2i ) , J = ma (Πc −Πs) ,

Qi = 2msi ci , µi = 2ma (siΠ
i
c − ciΠis) . (3.1.6)

In standard Maxwell electrodynamics, the magnetic moment of a particle of mass M and

angular momentum J carrying a charge Q is given by µ = gJQ/(2M), where g is the

gyromagnetic ratio. Generically, for the four-charge black holes in the STU model, we can

expect a relation of the form

µi =
J

2M

4∑
j=1

gij Qj . (3.1.7)

From the quantities (7.0.14) given above it is not possible, in the absence of additional

criteria, to derive a unique form for the “gyromagnetic matrix” gij . However, if we impose

the additional requirements that it be a symmetric matrix, and furthermore that it exhibit

the same symmetries as the metric under permutation of the four charge parameters δi,

then we are led to the following result:

i = j : gii =
1

2c2i

4∑
k=1

(c2k + s2k) ,

i ̸= j : gij = −
Πs

6cicjsisj

∑4
k=1(c

2
k + s2k)

Πc −Πs
. (3.1.8)

In special cases the expression (3.1.8) for the gyromagnetic ratio reduces to previously-

known results. For example, if we consider the single-charge case where δ2 = δ3 = δ4 = 0

then we obtain the “Kaluza-Klein” result [58, 59]

g = g11 = 2− tanh2 δ1 . (3.1.9)
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If two or more of the charges are non-zero, the gyromagnetic matrix has off-diagonal com-

ponents. If we take all four charges to be equal, then

gij =
2(c2 + s2)

c2
, i = j , gij = −

2s2

3c2
, i ̸= j , (3.1.10)

and so with Qi = Q we have gijQj = 2Q, implying the standard result [60] that g = 2 for

the Kerr-Newman black hole.

In the case of two non-zero equal charges, say, Q1 = Q2 = Q and Q3 = Q4 = 0, we obtain

the following nonzero gyromagnetic matrix coefficients:

g11 = g22 = 2 , g33 = g44 = 2 c2 , g34 = g43 = −
2

3
s2 . (3.1.11)

Thus, g1jQj = g2jQj = 2Q which implies g = 2 for Q.

In the case of three non-zero equal charges, say, Q1 = Q2 = Q3 = Q and Q4 = 0, we get

the following nonzero gyromagnetic matrix coefficients:

g11 = g22 = g33 = 2 + tanh2 δ , g44 = 3c2 − 1 , (3.1.12)

gi4 = g4i = −
1

3
tanh2 δ(2 + tanh2 δ) , i = 1, 2, 3 .

In this case gijQj = (2 + tanh2 δ)Q for i = 1, 2, 3, and thus g = 2 + tanh2 δ. Furthermore,

even though Q4 = 0, a nonzero µ4 is induced, since g4jQj = − tanh2 δ(2+tanh2 δ) and thus

g4 = − tanh2 δ(2 + tanh2 δ).

Another explicit example can be obtained with pair-wise equal charges, say, Q1 = Q3 and

Q2 = Q3. In this case the pair-wise equal magnetic moments µ1 = µ3 and µ2 = µ4 are

related to the pair-wise equal charges as:

µI =
J

2M

2∑
J=1

GIJQJ , I = 1, 2 , (3.1.13)
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where the coefficients of the gyromagnetic matrix G are

G11 =
2(3c21 − 2 + 2c22)

3c21
, G22 =

2(3c21 − 2 + 2c22)

3c22
, G12 = G21 = −

4

3

s1s2
c1c2

(3.1.14)

The matrix G has eigenvalues 2 and 2 + 4
3(tanh

2 δ1 + tanh2 δ2).

3.2 Pure Melvin-type Solution in the STU Model

Later in the chapter, we shall be constructing solutions in the STU model describing four-

charge black holes immersed in external magnetic fields. These solutions will, under ap-

propriate circumstances, be asymptotic to the STU model generalisations of the Melvin

universe of Einstein-Maxwell theory. It is useful, therefore, first to consider the simpler

case of these pure Melvin-type solutions, where there is no black hole but just the external

magnetic fields. (To be precise, as explained in the introduction, when we use the expression

“external magnetic fields” we mean that the fields numbered 1 and 3 carry external electric

fields, while those numbered 2 and 4 carry external magnetic fields.) The STU model in the

conventions we are using is given in appendix A. Melvin-type solutions can be found using

the results presented in appendix A, starting from a purely Minkowski seed solution. They

can also be read off from the expressions for magnetised black holes presented in section 3,

by setting the black hole mass and charges to zero. Thus the metric is given by (4.5.1) and

(4.5.5) with ω = 0 and

∆ =
4∏
i=1

∆i , ∆i = 1 + β2i r
2 sin2 θ , (3.2.1)

and so

ds24 =
√
∆(−dt2 + dr2 + r2 dθ2) +

1√
∆
r2 sin2 θ dϕ2 . (3.2.2)

Note that here, and throughout the rest of the chapter, we use the notation that

βi = 12Bi , (3.2.3)
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where Bi is the physical asymptotic strength of the i’th field on the symmetry axis at large

distance. This is done in order to avoid many cumbersome factors of 12 and powers of 12

in subsequent formulae. In the pure Melvin case under discussion here, where there is no

black hole, the field strengths are in fact constant along the axis.

The scalar fields are given by

e2φ1 =
∆1∆3

∆2∆4
, e2φ2 =

∆2∆3

∆1∆4
, e2φ3 =

∆1∆2

∆3∆4
, (3.2.4)

with the axions all vanishing. The four electromagnetic potentials {A(1)1, A(1)2,A1
(1),A2

(1)}

are given by

A(1)1 = −2β1 r cos θ dt , A1
(1) = −2β3 r cos θ dt ,

A(1)2 =
β2 r

2 sin2 θ

∆2
dϕ , A2

(1) =
β4 r

2 sin2 θ

∆4
dϕ . (3.2.5)

In terms of cylindrical coordinates (ρ, z) defined by ρ = r sin θ and z = r cos θ, we have

ds24 =
√
∆(−dt2 + dρ2 + dz2) +

ρ2√
∆
dϕ2 (3.2.6)

with ∆i in (3.2.1) now given by ∆i = 1 + β2i ρ
2. Making the further coordinate transfor-

mations to x = ρ cosϕ and y = ρ sinϕ, the metric near the axis approaches Minkowski

spacetime ds24 → −dt2 + dx2 + dy2 + dz2, and near the axis the field strengths approach

F(2)1 → B1 dt∧dz , F(2)2 → B2 dx∧dy , F1
(2) → B3 dt∧dz , F2

(2) → B4 dx∧dy . (3.2.7)

Thus, as mentioned above, the electric and magnetic field strengths have magnitude Bi on

the axis for all values of z, in this pure Melvin case.

It is interesting to note that the 4-field Melvin solution can be obtained instead by means
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of a limiting procedure and analytic continuation from the four-charge static black hole

solution in the STU model, generalising the procedure described in [56] for the Melvin

solution in the Einstein-Maxwell theory. The four-charge black hole metric, which can be

read off from the magnetised black holes in section 3 by sending the magnetic fields Bi to

zero, is given by

ds2 = −r(r − 2m)
√
r1r2r3r4

dt2 +
√
r1r2r3r4

[ dr2

r(r − 2m)
+ dθ2 + sin2 θ dϕ2

]
, (3.2.8)

where ri = r + 2ms2i . We then write the 2-sphere metric in the form dθ2 + sin2 θ dϕ2 =

4(1 + |ζ|2)−2 dζdζ̄, where ζ = tan 12θ eiϕ, and perform the scalings

r = r̃ λ−1 , t = t̃ λ , m = m̃ λ−3 , si = s̃i λ , ζ = ζ̃ λ . (3.2.9)

Sending λ→ 0 gives the metric

ds2 =
2m̃r̃√
r̃1r̃2r̃3r̃4

dt̃2 +
√
r̃1r̃2r̃3r̃4

(
− dr̃2

m̃r̃
+ 4dζ̃d

¯̃
ζ
)
. (3.2.10)

Defining

r̃ = −12m̃ ρ2 , ζ̃ = x+ iy , (3.2.11)

and taking

x = 12i t̂ , y = 12z , t̃ =
i

m̃
ϕ̃ , s̃i =

i

2βi
, m̃ = 2

√
β1β2β3β4 , (3.2.12)

we obtain the 4-field Melvin metric

ds2 =
√
∆(−dt̂2 + dρ2 + dz2) +

ρ2√
∆
dϕ̃2 , (3.2.13)

where ∆ =
∏
i∆i with ∆i = 1+ β2i ρ

2. We see that this metric coincides with (3.2.6), after

a minor change of notation. Applying the same scalings and analytic continuations to the

scalar fields and gauge fields in the four-charge black hole solutions, one reproduces the
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results given in (3.2.4) and (3.2.5).

3.3 Magnetised Electrically Charged Black Holes

Here, we consider the magnetisation of the four-charge solution of the STU model that

reduces, when the charges are set equal, to the magnetisation of the electrically-charged

Reissner-Nordström solution. Using the notation and conventions of [35], this is achieved

when the field strengths numbered 1 and 3 carry magnetic charges, while the field strengths

numbered 2 and 4 carry electric charges. In order to be able to present the magnetised solu-

tion in the most compact way, we shall denote the four charge parameters by (q1, q2, q3, q4).

Applying the procedure described in appendix A, we find that the metric is given by

ds24 = H [−r(r− 2m)dt2 +
r1r2r3r4
r(r − 2m)

dr2 + r1r2r3r4dθ
2 ] +H−1 sin2 θ (dϕ− ωdt)2 , (3.3.1)

where

ri = r + 2ms2i , (3.3.2)

and we shall use the notation si = sinh δi and ci = cosh δi. The function ω is given by

ω =

4∑
i=1

[
− qi βi

ri
+
qi Ξi [ri + (r − 2m) cos2 θ]r

ri

]
, (3.3.3)

where

qi = 2msici , Ξi =
β1β2β3β4

βi
, βi = 12Bi , (3.3.4)

and Bi denotes the external magnetic field strengths for each of the four gauge fields.

Finally, the function H is given in this case by

H =

√
∆

√
r1r2r3r4

, (3.3.5)
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where

∆ = 1 +
∑
i

β2i r1r2r3r4
r2i

sin2 θ + 2[β3β4q1q2 + · · · ] cos2 θ + [β23 β
2
4 R

2
1R

2
2 + · · · ]

−2(
∏
j

βjrj)
∑
i

q2i
r2i

sin2 θ cos2 θ + [2β2β3β
2
4q2q3R

2
1 + · · · ] cos2 θ +

∏
i

β2i R
2
i

+r1r2r3r4
∑
i

Ξ2
i R

2
i

r2i
sin2 θ + [2β1β2β

2
3β

2
4q3q4R

2
1R

2
2 + · · · ] cos2 θ , (3.3.6)

and we have defined

R2
i = r2i sin2 θ + q2i cos2 θ . (3.3.7)

Note that in each of the square-bracketed terms, the ellipses denote all the analogous terms

that arise by taking all inequivalent permutations of the indices 1, 2, 3 and 4.

The periodicity ∆ϕ of the azimuthal coordinate ϕ is determined by the requirement that

there should be no conical singularity at the north and south poles of the sphere. Since ∆

is an even function of cos θ, the requirements at the north and the south poles are identical,

and they imply that ϕ should have period given by

∆ϕ = 2πα , α =
(
1 + [β1β2q3q4 + · · · ] +

∏
i

βiqi

)
, (3.3.8)

where the ellipses in the square brackets represent the five additional terms that follow from

the indicated term by taking all inequivalent permutations of the labels 1, 2, 3 and 4.

The physical charges carried by the four gauge fields can be calculated easily using the

expressions in appendix 3.7.3. The non-zero ones are (P1, Q2, P3, Q4). For the sake of

uniformity we shall change the notation and call these (Q̃1, Q̃2, Q̃3, Q̃4) respectively. They

turn out to be given by

Q̃i =
(qi − β2i q1q2q3q4/qi)

α

∆ϕ

2π
, (3.3.9)
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where α is defined in (3.3.8). We therefore have

Q̃i = qi −
β2i q1 q2 q3 q4

qi
. (3.3.10)

The solutions for the gauge potentials are given by

A(1)1 = β1 r(r − 2m) cos θ
[ 1
r1
− 1

r2
− 1

r3
− 1

r4

]
dt+ σ1 (dϕ− ωdt) ,

A(1)2 =
[
− q2
r2

+
∑

i=1,3,4

r qi β1β3β4 [ri + (r − 2m) cos2 θ]

βi ri

]
dt+ σ2 (dϕ− ωdt) ,

A1
(1) = β3 r(r − 2m) cos θ

[ 1
r3
− 1

r1
− 1

r2
− 1

r4

]
dt+ σ3 (dϕ− ωdt) ,

A2
(1) =

[
− q4
r4

+
3∑
i=1

r qi β1β2β3 [ri + (r − 2m) cos2 θ]

βi ri

]
dt+ σ4 (dϕ− ωdt) , (3.3.11)

where σi ≡ σ̃i/∆. When ellipses occur within a bracketed expression, they denote the two

additional terms obtained by cycling the three index values taken from the set {1, 2, 3, 4}

that are not equal to i.

The axions and dilatons are given by

χi =
Zi cos θ

Yi
, e2φi =

Y 2
i

∆ r1r2r3r4
, i = 1, 2, 3 , (3.3.12)

where

Z1 = r2r4[(β1q3 + β3q1) + β2β4(β1q1R
2
3 + β3q3R

2
1)]

−r1r3[(β2q4 + β4q2) + β1β3(β2q2R
2
4 + β4q4R

2
2)] , (3.3.13)

Y1 = r1r3(1 + 2β1β3q2q4 cos
2 θ + β21β

2
3R

2
2R

2
4)

+r2r4(β
2
1R

2
3 + β23R

2
1 + 2β1β3q1q3 cos

2 θ) , (3.3.14)

(Z2, Y2) = (−Z1, Y1) with 1↔ 2 , (3.3.15)

(Z3, Y3) = (Z1, Y1) with 2↔ 3 . (3.3.16)
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3.3.1 Angular momentum

The angular momentum can be calculated using the standard procedure developed by Wald.

The details of this calculation, and, in particular, the evaluation of the angular momentum

in terms of the quantities in the dimensionally-reduced three-dimensional theory, are given

in [51]. A subtlety in the calculation concerns the different boundary conditions that arise

depending upon whether a gauge field carries an electric charge or a magnetic charge. If

the charges were all electric, then the conserved angular momentum corresponding to the

Killing vector ξ = ∂/∂ϕ̃, where ϕ̃ = ϕ/α is the rescaled azimuthal coordinate that has

period 2π and α is defined in (3.3.8), would be [51]

J =
α

16π

∫
S2

d(χ4 + σi ψi) ∧ dϕ =
(∆ϕ)2

32π2

[
χ4 + σi ψi

]θ=π
θ=0

. (3.3.17)

As discussed in [51], this expression is invariant under the U(1)4 abelian gauge transforma-

tions of the four gauge potentials that preserve the condition that the Lie derivatives of the

gauge potentials with respect to the azimuthal Killing vector ∂/∂ϕ vanish.

In our case, however, the fields A(1)1 and A1
(1) carry magnetic, rather than electric, charges.

A simple way to evaluate the angular momentum is to perform dualisations of these two

fields. Although rather involved in the four-dimensional theory itself, the dualisations can

be easily implemented in the reduced three-dimensional theory, since then they amount to

exchanging the roles of the σi and ψi axions for the fields in question. As can be seen from

(3.7.3), since the the Kaluza-Klein vector B̄(1) must be invariant under duality it follows

that the required duality transformations require also sending

χ4 + σi ψi −→ χ4 + σi ψi − σ1 ψ1 − σ3 ψ3 . (3.3.18)

The conserved angular momentum for the four-charge black holes is therefore given by

J =
(∆ϕ)2

32π2

[
χ4 + σ2 ψ2 + σ4 ψ4

]θ=π
θ=0

. (3.3.19)
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Evaluating this, we find

J = 12[β1 q2q3q4 + · · · ] + 12q1q2q3q4 [q1β2β3β4 + · · · ] , (3.3.20)

where the ellipses in each case denote the additional three symmetry-related terms.

3.3.2 Pairwise equal charges

A considerable simplification arises in the function ∆ if we set the fields pairwise equal, so

that

B3 = B1 , B4 = B2 , δ3 = δ1 , δ4 = δ2 . (3.3.21)

We then find that

∆ =
[
1 +

2∑
i=1

β2i (r
2
i sin

2 θ + q2i cos
2 θ) + 4β1β2q1q2 cos

2 θ +

2∏
i=1

β2i (r
2
i sin

2 θ + q2i cos
2 θ)
]2
.

(3.3.22)

With the fields set pairwise equal, i.e. q3 = q1, q4 = q2 and β3 = β1 and β4 = β2. We then

find

A2
(1) =

[
− q2
r2

+ β21q2 r
(
1 +

(r − 2m)

r2
cos2 θ

)
+ 2β1β2q1 r

(
1 +

(r − 2m)

r1
cos2 θ

)]
dt

+σ4 (dϕ− ωdt) ,

A1
(1) = −2β1r(r − 2m)

r2
cos θ dt+ σ3 (dϕ− ωdt) , (3.3.23)

with analogous expressions for A(1)1 and A1
(1). The fields σ3 and σ4 are given by

σ3 = −q1 cos θ (1− β21R2
2)Y

−1 ,

σ4 =
[
β2R

2
1 + 2β1q1q2 cos

2 θ + β21β2R
2
1R

2
2

]
Y −1 , (3.3.24)
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where

R2
i = r2i sin2 θ + q2i cos2 θ ,

Y = 1 + β21R
2
2 + β22R

2
1 + 4β1β2q1q2 cos

2 θ + β21β
2
2R

2
1R

2
2 . (3.3.25)

A different specialisation arises if we instead reverse the sign of the fields B3 and B4 before

the pairwise identification, in other words, if we set

B3 = −B1 , B4 = −B2 , δ3 = δ1 , δ4 = δ2 . (3.3.26)

Now, the function ∆ becomes instead

∆ = [1 + 2β1q2 cos θ + β2
1(r

2
1 sin

2 θ + q21 cos
2 θ)][1− 2β1q2 cos θ + β2

1(r
2
1 sin

2 θ + q21 cos
2 θ)]×

[1 + 2β2q1 cos θ + β2
2(r

2
2 sin

2 θ + q22 cos
2 θ)][1− 2β2q1 cos θ + β2

2(r
2
2 sin

2 θ + q22 cos
2 θ)] . (3.3.27)

Note that in this case the function ω now vanishes, and so the metric is purely static. In

fact it is not hard to show that all the possible ways of making ω vanish involve making

one or another of the following choices

(1) qi = qj , qk = qℓ , Bi = −Bj , Bk = −Bℓ

(2) qi = qj , qk = −qℓ , Bi = −Bj , Bk = Bℓ

(3) qi = −qj , qk = qℓ , Bi = Bj , Bk = −Bℓ

(4) qi = −qj , qk = −qℓ , Bi = Bj , Bk = Bℓ , (3.3.28)

where i, j, k and ℓ are all different and are chosen from 1, 2, 3 and 4. It can easily be seen

that, as one would expect, the angular momentum (3.3.20) vanishes in all of these cases.

3.3.3 Asymptotic structure and ergoregions

It was observed in [50] that the metric component gtt in the magnetised electrically charged

Reissner-Nordström solution becomes arbitrarily large and positive at large distances near
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to the z axis, thus indicating the presence of an ergoregion extending to infinity. Not

surprisingly, the same is in general true in the STU model generalisations of this solution

that we are considering here. Specifically, if we introduce cylindrical coordinates ρ = r sin θ

and z = r cos θ, then it is easily seen from (4.5.1), (4.5.3) and (4.5.5) that to leading order

in large z and small ρ we shall in general have

gtt ∼ +z2 ρ2
(∑

i

βi Ξi

)2
, (3.3.29)

and thus an ergoregion extending to infinity. The reason for this metric behaviour is that

the function ω given in (4.5.3) has the large-z expansion

ω = 2z

4∑
i=1

qi Ξi − 2m

4∑
i=1

qi Ξi (1 + s2i ) +O(
1

z
) . (3.3.30)

The ergoregion is avoided if one imposes the condition
∑

i qi Ξi = 0 on the charges and

magnetic fields, i.e. if

β1β2β3β4

4∑
i=1

qi
βi

= 0 . (3.3.31)

One way to achieve this is if one (or more) of the four field strengths is set to zero; for

example, by taking q4 = 0 and β4 = 0. Under these circumstances the metric is still

stationary, as opposed to static, but is asymptotically non-rotating at infinity. It can be

seen from (3.3.20) that the angular momentum also vanishes in such a case.

Clearly there are also more general ways to satisfy (3.3.31), where all four fields are non-

vanishing. If we assume that (3.3.31) is satisfied then it follows from (3.3.30) that the

asymptotic metric near the axis is rotating with an angular velocity

Ω∞ = 2m

4∑
i=1

qi Ξi s
2
i = 4m2β1β2β3β4

4∑
i=1

sinh3 δi cosh δi
βi

. (3.3.32)

It can also be seen from (4.5.3) that if (3.3.31) holds then on the black hole horizon at
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r = 2m, the angular velocity will be

ΩH =
4∑
i=1

qi βi
2mc2i

=
4∑
i=1

βi tanh δi . (3.3.33)

Note that in general, the angular momentum (3.3.20) is non-vanishing if (3.3.31) is satisfied.

Of course if any of the conditions enumerated in (3.3.28) holds, then not merely is (3.3.31)

satisfied but the metric is non-rotating everywhere, and also J = 0.

3.4 Scaling Limit, and Lift to Five Dimensions

The scaling limits of our magnetised non-extremal black holes, which will be parameterised

by m̃, Π̃s, Π̃c and β̃i (i = 1, · · · , 4), can be obtained by taking a specific scaling limit [15] of

the magnetised electric black holes of section 3 parameterised by m, δi, βi with δ1 = δ2 = δ3.

After taking the limit, the solution can then be lifted to five dimensions, where it can be

seen to be AdS3 × S2.

The limit can be implemented by setting δ1 = δ2 = δ3 and making the scaling [15]:

m = m̃ ϵ , r = r̃ ϵ , t = t̃ ϵ−1 , βi = β̃i ϵ , i = 1, 2, 3, 4 ,

sinh2 δ4 =
Π̃2
s

Π̃2
c − Π̃2

s

, sinh2 δi = (Π̃2
c − Π̃2

s)
1/3 ϵ−4/3 , i = 1, 2, 3 , (3.4.1)

where ϵ is then sent to zero.

The implementation of the scaling limit (7.2.2) gives

(dϕ− ωdt) −→ dϕ− (β̃1 + β̃2 + β̃3)dt̃−
2m̃β̃4 Π̃cΠ̃s

(Π̃2
c − Π̃2

s)r̃ + 2m̃Π̃2
s

dt̃ , (3.4.2)

and

∆ −→ 1 +
8m̃3β̃24(Π̃

2
c − Π̃2

s)
2 sin2 θ

(Π̃2
c − Π̃2

s)r̃ + 2m̃Π̃2
s

. (3.4.3)

The quantities β̃1, β̃2 and β̃3 drop out completely in the scaling limit if we send ϕ −→
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ϕ+(β̃1+ β̃2+ β̃3)t̃. We shall assume from now on that this redefinition has been performed.

Therefore, the obtained scaling limit of magnetised non-extremal black holes depend only

on four independent parameters: m̃, Π̃c, Π̃s and β̃4.

In the case of vanishing magnetic fields, βi = 0 it was possible [15] to identify the scaling

limits with the subtracted geometry of a non-extreme black hole parameterised by m̃, δ̃i.

In that case we have Π̃s ≡ Π4
i=1 sinh δ̃i and Π̃c ≡ Π4

i=1 cosh δ̃i, determined by (7.2.2). In

our case we have no independent derivation of a subtracted geometry and so no unique

identification of δ̃i is possible.

The lifting of the subtracted geometry solution to five dimensions is given by

ds25 = eφ1 ds24 + e−2φ1 (dz +A2
(1))

2 . (3.4.4)

Applying the scaling limit (7.2.2) here, together with z = z̃ ϵ−1, we find that the five-

dimensional metric ds25 scales as ϵ−2/3, and defining ds25 = ϵ−2/3 ds̃25 we have

ds̃25 = 4m̃2(Π̃2
c − Π̃2

s)
2/3 [dθ2 + sin2 θ (dϕ+ β̃4dz̃)

2] (3.4.5)

+
(Π̃2

c − Π̃2
s)r̃ + 2m̃Π̃2

s

2m̃(Π̃2
c − Π̃2

s)
4/3

dz̃2 − (Π̃2
c − Π̃2

s)r̃ − 2m̃Π̃2
c

2m̃(Π̃2
c − Π̃2

s)
4/3

dt̃2

− 2Π̃cΠ̃s

(Π̃2
c − Π̃2

s)
4/3

dt̃dz̃ +
4m̃2(Π̃2

c − Π̃2
s)

2/3

r̃(r̃ − 2m̃)
dr̃2 .

It can be seen that β̃4 disappears from the five-dimensional metric if we make the further

coordinate redefinition

ϕ = ϕ̃− β̃4 z̃ , (3.4.6)

This is a reflection of the fact that the magnetisation of the four-dimensional gauge field

associated with the Kaluza-Klein vector A2
(1) of the five-dimensional reduction can be im-

plemented (or, in the above calculation, undone) by performing a rotation in the (ϕ, z̃)

plane 11. This transformation is related to a spectral flow in a dual conformal field theory

11The role of the specific Melvin transformation as a coordinate transformation in the (ϕ, z̃) plane of the
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interpretation of AdS3 geometries.

Finally, if we define new coordinates ρ, σ and τ by

r̃ = 2m̃ cosh2 ρ , z̃ = 2i (2m̃)3/2 (Π̃c τ+Π̃s σ) , t̃ = 2i (2m̃)3/2 (Π̃c σ+Π̃s τ) , (3.4.7)

the five-dimensional metric can be seen to become

ds̃25 = 16m̃2(Π̃2
c− Π̃2

s)
2/3
[
(− cosh2 ρ dτ2+dρ2+sinh2 ρ dσ2)+14(dθ2+sin2 θdϕ̃2)

]
, (3.4.8)

which is the metric on AdS3 × S2 .

3.5 Magnetostatic Black Holes

3.5.1 Magnetised magnetically charged black holes

Here we exchange the roles of the electric and the magnetic charges in the original four-

charge seed solution. That is, the charges numbered 1 and 3 are now electric, while those

numbered 2 and 4 are magnetic, in the conventions of [35]. (Some of the properties of the

resulting metrics were discussed previously in [61–64].) We shall denote the four charge pa-

rameters by (p1, p2, p3, p4) in this case. In the case that the charges are set equal, the solution

reduces to the magnetised magnetically-charge Reissner-Nordström black hole. Concretely,

in the original seed solution, reduced to three dimensions, we replace (3.7.9) and (3.7.10)

by

e2φ1 =
r2 r4
r1 r3

, e2φ2 =
r1 r4
r2 r3

, e2φ3 =
r3 r4
r1 r2

, e2φ4 = r1 r2 r3 r4 sin4 θ , (3.5.1)

lifted geometry was first observed for dilatonic black holes in [57].
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and

χ1 = 0 χ2 = 0 , χ3 = 0 , χ4 = 0 ,

σ1 = 0 , σ2 = p2 cos θ , σ3 = 0 , σ4 = p4 cos θ ,

ψ1 = p1 cos θ , ψ2 = 0 , ψ3 = p3 cos θ , ψ4 = 0 , (3.5.2)

The metric of the magnetised solution will still be given by (4.5.1), but now we have ω = 0

and the function ∆ in (4.5.5) is given by

∆ =
4∏
i=1

∆i , ∆i = (1 + βipi cos θ)
2 + β2i r

2
i sin2 θ . (3.5.3)

Because ∆ is not an even function of cos θ in this case, the periodicity conditions on ϕ for

the metric to be free of conical singularities are different at the north and south poles of

the sphere. Specifically, we find that the required periodicities are

θ = 0 : ∆ϕ = 2π
∏
i

(1 + βipi) ,

θ = π : ∆ϕ = 2π
∏
i

(1− βipi) . (3.5.4)

The metric can be rendered free of conical singularities if the charges and magnetic fields

satisfy the “no-force condition”

∏
i

(1 + βipi) =
∏
i

(1− βipi) . (3.5.5)

Using the expressions given in section 3.7.3, we can calculate the physical electric and

magnetic charges carried by the four gauge fields. In this case, the non-vanishing ones

are (Q1, P2, Q3, P4). For the sake of uniformity, we shall relabel these as (P̃1, P̃2, P̃3, P̃4)
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respectively. They turn out to be given by

P̃i =
pi

(1− β2i p2i )
∆ϕ

2π
. (3.5.6)

The electromagnetic potentials are given by

Â(1)1 =
[
− p1
r1

+
2β1r(r − 2m) cos θ

r1
− β21 p1 [r

2
1 + r(r − 2m) cos2 θ]

r1

]
dt ,

Â(1)2 =
p2 cos θ + β2R

2
2

∆2
dϕ ,

Â1
(1) =

[
− p3
r3

+
2β3r(r − 2m) cos θ

r3
− β23 p3 [r

2
3 + r(r − 2m) cos2 θ]

r3

]
dt ,

Â2
(1) =

p4 cos θ + β4R
2
4

∆4
dϕ , (3.5.7)

where R2
i = r2i sin

2 θ + p2i cos
2 θ. The scalar fields are given by

e2φ1 =
r2 r4∆1∆3

r1 r3∆2∆4
, e2φ2 =

r1 r4∆2∆3

r2 r3∆1∆4
, e2φ3 =

r3 r4∆1∆2

r1 r2∆3∆4
,

χ1 = 0 , χ2 = 0 , χ3 = 0 . (3.5.8)

3.5.2 SL(2,R)4 truncations of the sigma model

The three-dimensional scalar sigma model associated with the timelike or spacelike reduc-

tion of the four-dimensional STU model has an O(4, 4) global symmetry. The Lagrangian

in the case of the timelike reduction can be found in section 2.1 of [35]. The sixteen scalars

comprise the original three dilatons (φ1, φ2, φ3) and three axions (χ1, χ2, χ3) of the STU

model; the Kaluza-Klein scalar φ4 and the axion χ4 dual to the Kaluza-Klein vector; the

four axions σi coming from the direct dimensional reductions of the four gauge potentials;

and finally the four axions ψi coming from the dualisations of the four gauge potentials in

the dimensionally-reduced theory.
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If we restrict attention to purely static configurations then χ4 will vanish. If we furthermore

restrict to configurations where the axions (χ1, χ2, χ3) of the STU model vanish, then it

can be seen from the sigma-model Lagrangian in eqn (7) of [35] that there are two possible

disjoint truncations of the remaining scalar fields for which the vanishing of the four χi

axions is consistent with their equations of motion.12 Specifically, we can have either

σ1 = ψ2 = σ3 = ψ4 = 0 (3.5.9)

or

ψ1 = σ2 = ψ3 = σ4 = 0 . (3.5.10)

In the truncation (3.5.9), if we define

u1 = 12(φ1 − φ2 + φ3 − φ4) , u2 = 12(−φ1 + φ2 + φ3 − φ4) ,

u3 = 12(φ1 + φ2 − φ3 − φ4) , u4 = 12(−φ1 − φ2 − φ3 − φ4) ,

α1 = ψ1 α2 = σ2 , α3 = ψ3 , α4 = σ4 , (3.5.11)

then the three-dimensional sigma-model Lagrangian in equation (7) of [35], after the ap-

propriate sign-changes because we are making a spacelike reduction, becomes

Lscal =
4∑
i=1

(
− 12(∂ui)

2 − 12e2ui (∂αi)
2
)
. (3.5.12)

This can be recognised as describing the coset [SL(2,R)/O(2)]4. Similarly, if we consider

12In [35] a timelike reduction to three dimensions was performed. Here, we are instead reducing on the
spacelike azimuthal Killing vector ∂/∂ϕ rather than the timelike Killing vector ∂/∂t. The formulae in [35]
can be repurposed to the spacelike reduction with very straightforward modifications. In particular, the
three-dimensional sigma-model Lagrangian in eqn (7) of [35] will take the same form in the case of the
spacelike reduction, except that the kinetic terms for all the scalar fields will now have the standard negative
sign appropriate to a Minkowski-signature theory.
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instead the truncations (3.5.10), then defining instead

u1 = 12(−φ1 + φ2 − φ3 − φ4) , u2 = 12(φ1 − φ2 − φ3 − φ4) ,

u3 = 12(−φ1 − φ2 + φ3 − φ4) , u4 = 12(φ1 + φ2 + φ3 − φ4) ,

α1 = σ1 α2 = ψ2 , α3 = σ3 , α4 = ψ4 (3.5.13)

gives again an [SL(2,R)/O(2)]4 sigma model with Lagrangian (3.5.11).

(Note that if we considered a timelike reduction on the coordinate t rather than a spacelike

reduction on the coordinate ϕ, we would end up with a Lagrangian like (3.5.12) except

with a minus sign in front of the exponential terms. The coset in this case would be

[SL(2,R)/O(1, 1)]4.)

The truncation described by (3.5.11) corresponds to the case where the gauge fields num-

bered 1 and 3 are purely electric, while those numbered 2 and 4 are purely magnetic. Since

in this chapter we always consider Melvin backgrounds where fields 1 and 3 carry external

electric fields, while 2 and 4 carry external magnetic fields, this means that we can remain

within the truncation if we additionally allow fields 1 and 3 to carry electric charges, and

fields 2 and 4 to carry magnetic charges. This is precisely the situation we considered

in section 4, namely the STU model generalisations of the magnetically-charged Reissner-

Nordström black hole in an external magnetic field. It can indeed be seen from equations

(3.5.7) and (3.5.8), together with the staticity of the metric, that the solutions fall within

the class described by the truncation (3.5.9) and (3.5.11).

By contrast, although the charges carried by the gauge fields in the solutions in section 3

are compatible with the truncation described by (3.5.10) and (3.5.13), the external fields

are still appropriate for the other truncation, (3.5.9) and (3.5.11), and so the solutions in

section 3 are not described by either of the truncated theories. And indeed, the axions χi

are non-zero and the metric is not static.
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3.5.3 Multi-centre BPS black holes in external magnetic fields

Returning to the truncation (3.5.9) and (3.5.11), we can in fact use it to describe more

general situations than the “magnetised magnetically charged” black holes obtained in sec-

tion 4. In particular, we can consider the case of multi-centre BPS black holes that are

then immersed in external fields, provided that we align them all along a line so that we

can apply the “Melvinising” transformation. For these purposes, it is useful first to present

the general expressions for the transformations of the scalar fields under the “Melvinising”

transformations. If we start with a seed solution for which the fields are denoted by bars,

then after the transformation we will have

eui = eūi [(1 + βi ᾱi)
2 + β2i e

−2ūi ] , αi =
ᾱi (1 + βi ᾱi) + βi e

−2ūi

(1 + βi ᾱi)2 + β2i e
−2ūi

. (3.5.14)

In particular this means that the transformed function φ4 that appears in the metric ansatz

(3.7.1) is given by

e−2φ4 = e−2φ̄4

4∏
i=1

[(1 + βi ᾱi)
2 + β2i e

−2ūi ] . (3.5.15)

The multi-centre black holes in the STU model have metrics given by

ds2 = −
( 4∏
i=1

Hi

)−1/2
dt2 +

( 4∏
i=1

Hi

)1/2
dy⃗2 , (3.5.16)

where the functions Hi are harmonic in the 3-dimensional Euclidean space with metric dy⃗2.

For black holes aligned along an axis we can conveniently use cylindrical coordinates in

which

dy⃗2 = dρ2 + ρ2 dϕ2 + dz2 . (3.5.17)

We shall take the harmonic functions to be given by

Hi = 1 +
∑
a

p
(a)
i√

ρ2 + (z − za)2
, (3.5.18)
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where the charges p
(a)
i are constants and the black holes are located at the point za on the

z axis. The metric is free of conical singularities on the z axis provided that ϕ has period

2π.

A field strength carrying an electric charge is described by a potential of the form

Aielec = −H−1
i dt , (3.5.19)

while a field strength carrying a magnetic charge is described by a potential of the form

Aimag =
∑
a

p
(a)
i (z − za)√
ρ2 + (z − za)2

dϕ . (3.5.20)

In our case, therefore, the potentials for fields 1 and 3 are of the form (3.5.19), while those

for fields 2 and 4 are of the form (3.5.20). In the dimensionally-reduced three-dimensional

language this implies that the axionic scalars αi defined in (3.5.11) are all given in this seed

solution by

ᾱi =
∑
a

p
(a)
i (z − za)√
ρ2 + (z − za)2

. (3.5.21)

The dilatonic scalar fields φ⃗ = (φ1, φ2, φ3) in this multi-centre seed solution are given by

φ⃗ = 12
∑
i

ϵi c⃗i logHi , (3.5.22)

where

L =
√
−g(R− 12(∂φ⃗)2 − 14

∑
i

ec⃗i·φ⃗ (F i)2) (3.5.23)

and ϵi is +1 if field i carries an electric charge and −1 if it carries a magnetic charge (see,

for example, section 2.2 of [65]). Comparing the multi-centre metric given by (3.5.16) and

(3.5.17) with the reduction ansatz (3.7.1), we see that in the multi-centre seed solution we

shall have

eφ̄4 = ρ2
(∏

i

Hi

)1/2
, (3.5.24)
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and hence, from (3.5.11),

e−ūi = ρHi . (3.5.25)

Applying the Melvinising transformations (3.5.14), we obtain the “magnetised magnetic”

multi-centre black holes with metrics

ds2 = e−φ4 ρ2
[
− dt2 +

(∏
i

Hi

)
(dρ2 + dz2)

]
+ eφ4 dϕ2 , (3.5.26)

where φ4 is given by (3.5.15). Thus the metric is given by

ds2 = Z1/2
[
−
( 4∏
i=1

Hi

)−1/2
dt2 +

( 4∏
i=1

Hi

)1/2
(dρ2 + dz2 + Z−1 ρ2 dϕ2)

]
, (3.5.27)

where

Z =
4∏
i=1

[(1 + βi ᾱi)
2 + β2i e

−2ūi ] . (3.5.28)

There will in general now be conical singularities along the z axis. This can be seen by

looking at the form of the metric in the (ρ, ϕ)) plane as ρ tends to zero. From (3.5.21) and

(3.5.25) we see that as ρ tends to zero we shall have

Z →
4∏
i=1

(1 + βi ᾱi)
2 , ᾱi →

∑
a

p
(a)
i sign(z − za) . (3.5.29)

In the case of a single-centre black hole, the periodicity conditions for ϕ in order to avoid a

conical singularity can be seen to reduce to those in equation (3.5.5).

3.6 Conclusions

In string theory charged black holes may be regarded as having a composite structure

arising from their microscopic description in terms of intersecting D-branes/M-branes. This

composite structure is reflected in the interactions of the black holes. In this chapter we have

demonstrated this by using as external probes the various types of magnetic fields capable
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of exciting each of these constituents. We have found that the behaviour of black holes is

indeed rather sensitive to which type of magnetic field is applied. By far the simplest case

is that of Kaluza-Klein black holes, which are made up of a single constituent. Somewhat

counterintuitively it turns out that the Maxwell-Einstein case is the most complex, which

may be ascribed to the fact that all the constituents and probes are turned on.

Utilising the composite structure of charges and magnetic fields allows for a balance of

different forces and torques and the taming of the extent of ergoregions. This work samples

only a restricted subset of static four-charge generating black hole solutions. We anticipate

that further studies of rotating five-charge generating solutions will reveal an even richer

structure.

3.7 Appendix A: The STU Model

3.7.1 Reduction of the STU model to D = 3

We can “magnetise” the black hole solutions by performing a spacelike reduction to three

dimensions on the azimuthal Killing vector ∂/∂ϕ, and then acting with the appropriate

O(4, 4) transformations. This is analogous to the discussion in [35], except that there the

reduction was performed on the timelike Killing vector ∂/∂t13. Thus we make a standard

Kaluza-Klein reduction with

ds24 = e−φ4 ds̄23 + eφ4 (dϕ+ B̄(1))
2 , (3.7.1)

and

A(1)1 = Ā(1)1 + σ1 (dϕ+ B̄(1)) , A(1)2 = Ā(1)2 + σ2 (dϕ+ B̄(1)) ,

A1
(1) = Ā1

(1) + σ3 (dϕ+ B̄(1)) , A2
(1) = Ā2

(1) + σ4 (dϕ+ B̄(1)) . (3.7.2)

13One can also employ a seed solution with analytically continued coordinates: t → iϕ and ϕ → it,
perform the reduction on the the timelike Killing vector of the analytically continued solution, act on it with
the appropriate generators of O(4, 4) transformations defined in [35], and finally, analytically continue the
obtained solution back to original coordinates (t, ϕ).
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where, when necessary, we place bars on three-dimensional quantities in order to dis-

tinguish them from four-dimensional ones. Note that throughout, we use the ordering

(A(1)1, A(1)2,A1
(1),A2

(1)) for the potentials, with σi being the axionic scalar coming from the

direct Kaluza-Klein reduction of the i’th potential, and so on.

In three dimensions we then dualise 1-form potentials to scalars, in a fashion that is precisely

analogous to the one described for the timelike reduction in [35]. The upshot is that the

Kaluza-Klein 1-form B̄(1), whose field strength is Ḡ(2) = dB̄1, is replaced by the axion χ4

with

e2φ4 ∗̄Ḡ(2) = dχ4 + σ1 dψ1 + σ2 dψ2 + σ3 dψ3 + σ4 dψ4 , (3.7.3)

and the 1-form potentials in three dimensions coming from the reduction of the four 1-form

potentials in four dimensions are dualised to axions ψi where

−e−φ1+φ2−φ3+φ4 ∗̄F̄(2)1 = dψ1 + χ3 dψ2 − χ1 dσ3 − χ1 χ3 dσ4 ,

−e−φ1+φ2+φ3+φ4 ∗̄F̄(2)2 = dψ2 − χ1 dσ4 ,

−e−φ1−φ2+φ3+φ4 ∗̄F̄1
(2) = dψ3 − χ2 dψ2 − χ1 dσ1 + χ1 χ2 dσ4 ,

−e−φ1−φ2−φ3+φ4 ∗̄F̄2
(2) = dψ4 + χ2 dψ1 − χ3 dψ3 − χ1 dσ2 + χ2 χ3 dψ2

−χ1 χ2 dσ3 + χ1 χ3 dσ1 − χ1 χ2 χ3 dσ4 . (3.7.4)

The three-dimensional Lagrangian in terms of the dualised fields is a non-linear sigma model

coupled to gravity, and can be written as

L̄3 =
√
−ḡ [R̄− 12 tr(∂M−1 ∂M)] , (3.7.5)

whereM = VTV and

V = e12φiHi Uχ Uσ Uψ . (3.7.6)
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Here

Uχ = eχ1 Eχ1 eχ2 Eχ2 eχ3 Eχ3 eχ4 Eχ4 ,

Uσ = eσ1 Eσ1 eσ2 Eσ2 eσ3 Eσ3 eσ4 Eσ4 ,

Uψ = eψ1 Eψ1 eψ2 Eψ2 eψ3 Eψ3 eψ4 Eψ4 . (3.7.7)

Hi are the Cartan generators of O(4, 4), whilst Eχi , Eσi and Eψi are the positive-root

generators. (See [35] for a detailed description of the notation we are using here.)

3.7.2 Magnetisation of the four-charge static black hole

The usual four-charge black hole carries electric charges (Q) and magnetic charges (P) in

the order (P1, Q2, P3, Q4), where we use our standard ordering (A(1)1, A(1)2,A1
(1),A2

(1)) for

the gauge fields. The static four-charge solution corresponds, in three dimensions, to

ds̄23 = [−r(r − 2m)dt2 +
r1r2r3r4
r(r − 2m)

dr2 + r1r2r3r4dθ
2 ] sin2 θ ,

ri = r + 2ms2i , (3.7.8)

with

e2φ1 =
r1 r3
r2 r4

, e2φ2 =
r2 r3
r1 r4

, e2φ3 =
r1 r2
r3 r4

, e2φ4 = r1 r2 r3 r4 sin4 θ , (3.7.9)

and

χ1 = 0 χ2 = 0 , χ3 = 0 , χ4 = 0 ,

σ1 = −q1 cos θ , σ2 = 0 , σ3 = −q3 cos θ , σ4 = 0 ,

ψ1 = 0 , ψ2 = q2 cos θ , ψ3 = 0 , ψ4 = q4 cos θ , (3.7.10)
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The magnetisation of the four-charge solution can be implemented by transforming the

coset representativeM defined above according to

M−→ SMST , (3.7.11)

where S is the O(4, 4) matrix

S = exp(12B1Eψ1 + 12B2Eσ2 + 12B3Eψ3 + 12B4Eσ4) , (3.7.12)

with (constant) parameters Bi being the asymptotic values of the magnetic fields of the four

field strengths. One then retraces the steps of dualisation and lifts the transformed solution

back to four dimensions to obtain the magnetised black hole.14 The results are presented

in section 3.

3.7.3 Magnetic and electric charges

The physical charges can be calculated very easily using the dimensionally-reduced quan-

tities in three dimensions. Using the standard ordering of the U(1) gauge fields, namely

{A(1)1, A(1)2,A1
(1),A2

(1)}, the magnetic charges are given by

P1 =
1

4π

∫
S2

dA(1)1 =
1

4π

∫
S2

dσ1 ∧ dϕ =
∆ϕ

4π

[
σ1

]θ=π
θ=0

,

P2 =
1

4π

∫
S2

dA(1)2 =
1

4π

∫
S2

dσ2 ∧ dϕ =
∆ϕ

4π

[
σ2

]θ=π
θ=0

,

P3 =
1

4π

∫
S2

dA1
(1) =

1

4π

∫
S2

dσ3 ∧ dϕ =
∆ϕ

4π

[
σ3

]θ=π
θ=0

,

P4 =
1

4π

∫
S2

dA2
(1) =

1

4π

∫
S2

dσ4 ∧ dϕ =
∆ϕ

4π

[
σ4

]θ=π
θ=0

, (3.7.13)

14We remind the reader that, as discussed in the introduction, when we speak, for the sake of brevity,
of the “magnetised electrically-charged black hole” in the STU model we mean the one for which the field
strengths numbered 1 and 3 carry magnetic charges and external electric fields, while those numbered 2 and
4 carry electric charges and external magnetic fields.
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where ∆ϕ is the period of the azimuthal coordinate ϕ.

The electric charges are given by integrating the equations of motion of the four fields

{A(1)1, A(1)2,A1
(1),A2

(1)}. These give

Q1 =
1

4π

∫
S2

e−φ1+φ2−φ3 ∗F(2)1 + · · · =
1

4π

∫
S2

dψ1 ∧ dϕ =
∆ϕ

4π

[
ψ1

]θ=π
θ=0

,

Q2 =
1

4π

∫
S2

e−φ1+φ2+φ3 ∗F(2)2 + · · · =
1

4π

∫
S2

dψ2 ∧ dϕ =
∆ϕ

4π

[
ψ2

]θ=π
θ=0

,

Q3 =
1

4π

∫
S2

e−φ1−φ2+φ3 ∗F1
(2) + · · · =

1

4π

∫
S2

dψ3 ∧ dϕ =
∆ϕ

4π

[
ψ3

]θ=π
θ=0

,

Q4 =
1

4π

∫
S2

e−φ1−φ2−φ3 ∗F2
(2) + · · · =

1

4π

∫
S2

dψ4 ∧ dϕ =
∆ϕ

4π

[
ψ4

]θ=π
θ=0

. (3.7.14)

(The ellipses here denote the additional terms in the equations of motion. In each case, the

full set of terms conspire to give just the simple expressions presented here in terms of the

fields ψi.)

3.8 Appendix B: STU Model in Other Duality Complexions

As we discussed before, in the formulation [35] that we are using in this chapter for the STU

model, the usual four-charge black hole carries electric charges (Q) and magnetic charges

(P) in the order (P1, Q2, P3, Q4), where we use our standard ordering (A(1)1, A(1)2,A1
(1),A2

1)

for the gauge fields. To convert into the parameterisation used, for example, in [27], we

need to dualise the potential A(1)2 to B(1), whose field strength is the dual of F(2)2. To do

this, we start from the Lagrangian (4.4.1) and then add a Lagrange multiplier

LLM = 4dB(1) ∧ (F(2)2 − χ2 dA1
(1) + χ3 dA(1)1 − χ2χ3 dA2

(1)) , (3.8.1)
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treating F(2)2 now as an independent field that we solve for algebraically and substitute

back into the total Lagrangian. This leads to the dualised Lagrangian

L̃4 = R ∗1l− 12∗dφi ∧ dφi − 12e2φi ∗dχi ∧ dχi − 2eφ1−φ2−φ3 ∗G(2) ∧G(2)

−2e−φ1

(
eφ2−φ3 ∗F(2)1 ∧ F(2)1 + e−φ2+φ3 ∗F1

(2) ∧ F1
(2) + e−φ2−φ3 ∗F2

(2) ∧ F2
(2)

)
−4χ1 F(2)1 ∧ F1

(2) + 4dB(1) ∧ (χ3 dA(1)1 − χ2 dA1
(1) − χ2χ3 dA2

(1)) , (3.8.2)

where G(2) = e−φ1+φ2+φ3 ∗F(2)2, which is written in terms of the potential B(1) as

G(2) = dB(1) − χ1 dA2
(1) . (3.8.3)

If we now define

χ̃1 = −χ1 , χ̃2 = −χ2 , χ̃3 = χ3 ,

hI = f−1 e−φi , f3 = e−φ1−φ2−φ3 , GIJ = diag{(h1)−2, (h2)−2, (h3)−2} ,

A
[0]
(1) = A2

(1) , A
[1]
(1) = B(1) , A

[2]
(1) = A(1)1 , A

[3]
(1) = A1

(1) , (3.8.4)

then (3.8.2) can be written,

L̃ = R∗1l− 12GIJ ∗dhI ∧ dhJ − 32f−2 ∗df ∧ df − 12f3 ∗F [0]
(2) ∧ F

[0]
(2)

−12f−2GIJ ∗dχ̃I ∧ dχ̃J − 12f GIJ (∗F [I]
(2) + χ̃I ∗F [0]

(2) ) ∧ (F
[J ]
(2) + χ̃J F

[0]
(2) )

+12CIJK

[
χ̃I F

[J ]
(2) ∧ F

[K]
(2) + χ̃I χ̃J F

[0]
(2) ∧ F

[K]
(2) + 13χ̃I χ̃J χ̃K F

[0]
(2) ∧ F

[0]
(2)

]
,(3.8.5)

where F
[Λ]
(2) = dA

[Λ]
(1) and CIJK = |ϵIJK |. The charges carried by the four-charge black hole

in [35] will now be of the form (Q,P, P, P ), where the fields are ordered (A
[0]
(1), A

[1]
(1), A

[2]
(1),

A
[3]
(1)).

Note that we can in principle perform a further transformation on the Lagrangian (3.8.2),

and dualise the gauge potential A2
(1) also. This would result in a formulation where the
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standard four-charge black hole in [35] would be supported by four gauge fields that all

carried magnetic charge. This dualisation can be achieved by adding a Lagrange multiplier

4dB̃(1) ∧ F2
(2) to (3.8.2), and then solving algebraically for F2

(2) and substituting back into

the total Lagrangian. The equation for F2
(2) is quite complicated, taking the form

α ∗F2
(2) = H(2) + β F2

(2) , (3.8.6)

where

α = e−φ1−φ2−φ3 + χ2
1 e

φ1−φ2−φ3 + χ2
2 e

−φ1+φ2+φ3 + χ2
3 e

−φ1−φ2+φ3 , β = 2χ1 χ2 χ3 ,

H(2) = dB̃(1) − χ2 χ3 dB(1) − χ1 χ3 dA(1)1 + χ1 χ2 dA1
(1) + χ1 e

φ1−φ2−φ3 ∗dB(1)

+χ2 e
−φ1+φ2+φ3 ∗dA(1)1 − χ3 e

−φ1−φ2+φ3 ∗dA1
(1) . (3.8.7)

Equation (3.8.6) can be solved for F2
(2), giving

F2
(2) = −

α ∗H(2) + β H(2)

α2 + β2
, (3.8.8)

but the result seems to be rather too complicated to be useful.
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Chapter 4

Quasi-normal modes: Static and Rotating

The aim of this chapter is to analyse the quasi-normal solutions of the scalar wave equation

in the background of the above mentioned subtracted rotating geometry and the subtracted

magnetised geometry, by employing their hidden SL(2,R) × SO(2,R) × SO(3) symmetry.

We do so by first explicitly solving the wave equation for a massless scalar field in four

dimensions, which due to the very special structure of the metric is separable and solvable

in terms of hypergeometric functions and spherical harmonics both for subtracted rotating

and subtracted magnetised geometries. In each case we obtain two branches of quasi-normal

modes, with remarkably simple values of complex eigenfrequencies, one over-damped and

one under-damped. Specifically, in the case of magnetised geometries the effect of the

magnetic field turns out to be an additive shift of the real part of the eigenfrequency of the

quasi-normal modes. The regularity of these solutions near the outer horizon is analysed in

terms of Kruskal-Szekeres coordinates. These results are presented for subtracted rotating

geometries in Section 2 and for subtracted magnetised geometries in Section 3.

The analysis is further extended by studying the wave equation for a minimally coupled

massive scalar field in the five-dimensional lift of these subtracted geometries. For both

rotating and magnetised cases, the lift on a circle S1 results in a geometry that is locally

BTZ × S2, a product of the BTZ black hole and a two-sphere. As a consequence, the

wave equation for a massive minimally coupled scalar field is separable and may be solved

again in terms of the hypergeometric functions, spherical harmonics and a plane wave along

the S1 circle direction. Remarkably simple, explicit expressions for the frequencies of the

two branches of the quasi-normal modes are obtained , where the quantised wave number

along the S1 circle shifts the real part of he eigenfrequencies. For the special case of the

zero wave number and zero five-dimensional mass, one reproduces the results of Sections 2
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and 3 as expected. Solutions for the non-zero wave numbers can be interpreted as quasi-

normal modes for the massive four-dimensional Kaluza-Klein modes whose electric charge

is proportional to the wave number. The regularity of these modes near the outer horizon is

manifest after performing a Kaluza-Klein U(1) gauge transformation on the wave function.

All of these results are presented in Section 4.

4.1 Subtracted Rotating Geometry

The metric for the four-charge rotating black hole solution of the STU model can be written

in the form [68, 123]:

ds24 = −∆
− 1

2
0 G(dt+A)2 +∆

1
2
0 (
dr2

X
+ dθ2 +

X

G
sin2 θdϕ2), (4.1.1)

with

X = r2 − 2mr + a2 ,

G = r2 − 2mr + a2 cos2 θ ,

A ≡ a sin2 θAred
G

=
2ma sin2 θ

G
[(Πc −Πs)r + 2mΠs] dϕ , (4.1.2)

and the warp factor ∆0 given by

∆0 =

4∏
i=1

(r + 2m sinh2 δi) + 2a2 cos2 θ[r2 +mr

4∑
i=1

sinh2 δi + 4m2(Πc −Πs)Πs

−2m2
∑
i<j<k

sinh2 δi sinh
2 δj sinh

2 δk] + a4 cos4 θ . (4.1.3)

The mass, four charges and the angular momentum are parameterised as

G4M =
1

4
m

4∑
i=1

cosh 2δi ,

G4Qi =
1

4
m sinh 2δi , i = 1, 2, 3, 4 ,

G4J = ma(Πc −Πs) , (4.1.4)
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with G4 the four-dimensional Netwon’s constant and we employ the abbreviations

Πc ≡
4∏
i=1

cosh δi , Πs ≡
4∏
i=1

sinh δi . (4.1.5)

The two horizons, given by X = 0, are at

r± = m±
√
m2 − a2 . (4.1.6)

It was shown in [68] that the replacement

∆0 → ∆ = (2m)3r(Π2
c −Π2

s) + (2m)4Π2
s − (2m)2(Πc −Πs)

2a2 cos2 θ , (4.1.7)

in the metric (6.0.5) reduces the highest power of r in ∆0 and renders in the radial part of

the massless scalar wave equation the irregular singular point at infinity regular, allowing

for solutions in terms of hypergeometric functions. Moreover, the massless scalar wave

equation is separable in terms of ordinary spherical harmonics, rather than the complicated

spheroidal functions needed for the full four-charge black hole solution. This new metric

has been dubbed a “subtracted geometry” and the massless scalar wave equation in this

background exhibits a hidden SL(2,R)×SL(2,R)×SO(3) symmetry. Furthermore, at the

outer and inner horizons the entropies

S± =
2πm

G4

[
(Πc +Πs)m± (Πc −Πs)

√
m2 − a2

]
, (4.1.8)

the inverse surface gravities

1

κ±
= 2m

[
m√

m2 − a2
(Πc +Πs)± (Πc −Πs)

]
, (4.1.9)

and the angular velocities

Ω± = κ±
a√

m2 − a2
, (4.1.10)

remain unchanged by this replacement, thus preserving the local geometry and thermo-
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dynamic properties of the metric. The expressions simplify significantly in the static case

when a = 0.

It is straightforward to see that these black hole solutions and their subtracted geometry

encompasses the following special cases:

Kerr-Newman: δ1 = δ2 = δ3 = δ4 ,

Kerr: δi = 0 , i = 1, 2, 3, 4 ,

Reissner-Nordström: δ1 = δ2 = δ3 = δ4 , a = 0 ,

Schwarzschild: δi = 0 , a = 0 , i = 1, 2, 3, 4 . (4.1.11)

4.1.1 Kruskal-Szekeres Coordinates for Subtracted Rotating Geometry

In the following we construct Kruskal-Szekeres type coordinates to cover the outer horizon

which allow us to identify suitable boundary conditions there15. At infinity the appropriate

boundary condition is boundedness of the solution. The construction of Kruskal-Szekeres

coordinates is in fact considerably simpler than that used for the Kerr solution [79, 80].

The subtracted metric (6.0.5), (4.1.2) with (4.1.7) can be cast in the following remarkably

simple form16:

ds2 =
√
∆
X

F 2

(
−dt2 + F 2dr2

X2

)
+
√
∆dθ2 +

F 2 sin2 θ√
∆

(dϕ+Wdt)2 , (4.1.12)

with

W = −aAred
F 2

, F 2 = (2m)2
[
2m(Π2

c −Π2
s)r + (2m)2Π2

s − a2(Πc −Πs)
2
]
. (4.1.13)

15One can analogously construct Kruskal-Szekeres type coordinates to cover the inner horizon region.
16This structure was also anticipated in [68] by evaluating the Laplacian of the subtracted rotating geom-

etry.

81



X and Ared are defined in (4.1.2) and we display them again

X = r2 − 2mr + a2 , Ared = 2m(Πc −Πs)r + (2m)2Πs . (4.1.14)

Importantly, X, F and W are only functions of r. We also note that the factor ∆ (4.1.7)

can be written in terms of F 2 as

∆ = F 2 + (2m)2a2(Πc −Πs)
2 sin2 θ . (4.1.15)

It is straightforward to show that

1

κ±
=

2F (r±)

r+ − r−
, (4.1.16)

and

Ω± = −W (r±) . (4.1.17)

This special property of the angular velocities and surface gravities leads to an asymmetry

of two branches of the quasi-normal modes as analysed later in this Section.

We now construct Kruskal-Szekeres type coordinates to cover the horizon which allow us

to identify suitable boundary conditions there. Due to the structure of the metric (4.1.12)

the construction of Kruskal-Szekeres coordinates is straightforward.

The metric (4.1.12) allows for the introduction of retarded and advanced co-rotating

Eddington-Finkelstein coordinates:

u = t− r∗ , v = t+ r∗ , ϕ+ = ϕ+W (r+)t , (4.1.18)

which satisfy

gαβ∂αu∂βu = 0 = gαβ∂αv∂βv . (4.1.19)
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The Hamilton-Jacobi equation is separable, yielding a solution

r∗ =
∫ r Fdr

X
, (4.1.20)

which is manifest for the metric (4.1.12).

The co-rotating Kiling vector

l+ =
∂

∂t
−W (r+)

∂

∂ϕ
, (4.1.21)

coincides with the null generator of the horizon. The angle ϕ+ is constant along the orbits

of the co-rotating Killing vector l+:

l+ϕ+ = (∂t −W (r+)∂ϕ)ϕ+ = 0 . (4.1.22)

We introduce Kruskal-Szekeres coordinates:

U = −e−κ+u , V = eκ+v , (4.1.23)

and thus

dV

V
+
dU

U
=

2κ+Fdr

X
,

dV

V
− dU

U
= 2κ+dt . (4.1.24)

In terms of Kruskal-Szekeres coordinates the metric (4.1.12) takes the following form:

ds2 =
√
∆
X

F 2

dUdV

κ2+UV
+
√
∆dθ2

+
F 2 sin2 θ√

∆

[
dϕ+ +

1

2κ+
(W (r)−W (r+))(

dV

V
− dU

U
)

]2
. (4.1.25)
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In the vicinity of the outer horizon r ∼ r+ one has

r∗ =
∫ r F (r)dr

X
∼ F (r+)

r+ − r−
ln(r − r+) =

1

2κ+
ln(r − r+) , (4.1.26)

where we used (4.1.16) at the last step. This ensures

− UV = e2κ+r∗ ∼ (r − r+) , (4.1.27)

and the metric (4.1.25) is regular and analytic.

An argument given by Hawking and Reall [81] in the asymptotically AdS case may be

adapted to show that if the co-rotating Killing vector l+ (4.1.21) is timelike outside the

horizon then there can be no super-radiance instability or a black hole bomb [82, 83].

The length squared of the co-rotating Killing vector l+ (4.1.21) is

gαβl+α l
+
β = − 1√

∆

[
X +

a2 sin2 θ(Πc −Πs)
2(r+ − r−)(r − r+)

[(Πc −Πs)r+ + 2mΠs]
2

]
. (4.1.28)

which is manifestly negative for r > r+ and thus their is no super-radiance.

4.1.2 Massless Wave Equation and Quasi-Normal Modes

The massless scalar wave equation for the multi-charge black hole metric (6.0.5) is separable

and the solutions expressible in terms of spheroidal functions of θ [66, 67]. The radial

function may be expressed in terms of solutions of a confluent form of Heun’s equation

which has two regular singular points and an irregular singular point at infinity.

For the subtracted geometry metric (4.1.12) the massless scalar wave equation is also sep-

arable and of a specific form:

e−iωteinϕPnl (θ)χ(x) , (4.1.29)
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where Pnl (θ) is an associated Legendre polynomial, the solution of the unit two-sphere S2

Laplacian with eigenvalues l(l + 1), l = 0, 1, . . . and n = ±l,±(l − 1), . . .

The radial equation takes the form [66, 67]:

[ ∂
∂x

(x2 − 1

4
)
∂

∂x
+

1

4(x− 1
2)

( ω
κ+
− nΩ+

κ+

)2 − 1

4(x+ 1
2)

( ω
κ−
− nΩ−

κ−

)2 − l(l + 1)
]
χ(x) = 0 ,

(4.1.30)

where

x =
r − 1

2(r+ + r−)

r+ − r−
, (4.1.31)

is designed so that the two horizons r± are at x = ±1
2 .

Due to (4.1.10) rotating solutions have the property:

Ω+

κ+
=

Ω−
κ−

, (4.1.32)

and thus the solutions to (4.1.30) depend only on one ratio Ω+κ
−1
+ , only.

Solutions which are ingoing on the future horizon must be regular at U = 0 in Kruskal-

Szekeres coordinates and this implies [66–68]

χ(x) = (x+
1

2
)−(l+1)

(x− 1
2

x+ 1
2

)−i(ω−nΩ+)
βH
4π

× F (l + 1− iβRω − 2nβHΩ+

4π
, l + 1− iβLω

4π
, 1− iβH(ω − nΩ+)

2π
;
x− 1

2

x+ 1
2

) , (4.1.33)

where

βH
2π

=
1

κ+
,

βR
2π

=
1

κ+
+

1

κ−
,

βL
2π

=
1

κ+
− 1

κ−
. (4.1.34)

Near the outer horizon r⋆ → −∞, (x− 1
2)(x+ 1

2)
−1 → e2κ+r

⋆
and so

χ(x) ≈ e−i(ω−nΩ+)r⋆F (l + 1− iβRω − 2nβHΩ+

4π
, l + 1− iβLω

4π
, 1− iβH(ω − nΩ+)

2π
; e2κ+r

⋆
) .

(4.1.35)
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In Kruskal-Szekeres coordinates therefore

e−iωteinϕχ(x) ≈ einϕ+V −iω−nΩ+
κ+ (1 + . . . ) , (4.1.36)

where the ellipses denote a power series in UV which is convergent in a neighbourhood of

the future horizon U = 0 .

At large x [66, 67]

χ(x) ≈ x−(l+1) Γ(1− iβH(ω−nΩ+)
2π )Γ(−2l − 1)

Γ(−l − iβLω4π )Γ(−l − iωβR−2nβHΩ+

4π )

+ xl
Γ(1− iωβH(ω−nΩ+)

2π )Γ(2l + 1)

Γ(l + 1− iβLω4π )Γ(l + 1− iωβR−2nβHΩ+

4π )
. (4.1.37)

In order that χ be finite at spatial infinity, we must set

iω
βL
4π

= l + 1 +NL ,

or i
ωβR − 2nβHΩ+

4π
= l + 1 +NR , (4.1.38)

where NL,R = 0, 1, . . . This gives remarkably simple formulae for the frequencies of the

quasi-normal modes

ω = − i

2m(Πc −Πs)
(1 + l +NL) ,

or ω = − i
√
m2 − a2

2m2(Πc +Πs)
(1 + l +NR) +

a

2m2(Πc +Πs)
n . (4.1.39)

Both frequencies result in damped modes, with the under-damped branch exhibiting os-

cillatory behaviour and the damping absent in the extremal limit a → m. The specific

asymmetry in frequencies of the two branches, resulting in the oscillatory behaviour of the

under-damped branch only, is due to the special relationship between ratios (4.1.32). It is

intriguing that the expressions are no more complex than those in the Kerr case [84]. In

particular, eq. (4.1.39) agrees with eq. (0.28) of [84] which was obtained for the subtracted
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geometry of the neutral Kerr solution, i.e. the case with δi = 0, and thus Πc = 1 and

Πs = 0.

The subtracted geometry has a remarkable property that in the near-BPS limit (m → 0,

a→ 0, δi →∞, with me2δi and ma−1 finite) the near-horizon geometry of such black holes

and their subtracted geometry are the same. As a consequence, the quasi-normal modes of

the near-BPS black holes and those of their subtracted geometry are the same17.

4.2 Subtracted Magnetised Geometry

The original subtracted Melvin metric was derived in [75] as a scaling limit of magnetised

STU black holes. It describes a generalization of the (static) subtracted geometry, parame-

terised by an additional magnetic field parameter β4 which is associated with the magnetic

component of the Kaluza-Klein gauge field A2. The full solution is given in the Appendix

5.2.

Remarkably, one may cast this metric in the same form as the rotating subtracted metric

(4.1.12), which we display again

ds2 =
√
∆
X

F 2

(
−dt2 + F 2dr2

X2

)
+
√
∆dθ2 +

F 2 sin2 θ√
∆

(dϕ+Wdt)2 , (4.2.1)

17 We are grateful for Shahar Hod for pointing out to us after the appearance of [84] that if one specialises
to the near-BPS case of slowly rotating (a ≪ m) Kerr-Newman black holes then βR ≃ 2βH and the family
of modes given by eq. (11) of [85] have identical frequencies to those of the second family of modes in eq.
(0.28) of [84] and hence to the second family of (4.1.39) of this paper. The first family of (4.1.39) in this
limit corresponds to negative imaginary frequencies whose absolute values are much larger than those of the
second family, and thus this (ultra-damped) branch did not appear in [85].
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where now

X = r2 − 2mr ,

F 2 = (2m)3
[
(Π2

c −Π2
s)r + (2m)Π2

s

]
,

W = −16m4ΠsΠcβ4
F 2

,

∆ = F 2 + (2m)6β24(Π
2
c −Π2

s)
2 sin2 θ .

(4.2.2)

This is effectively a generalization of the static subtracted geometry with the magnetic field

parameter β4 introducing a specific spatial rotation. The metric has two horizons

r+ = 2m, r− = 0 . (4.2.3)

The inverse surface gravities of the inner and outer horizon are determined by

1

κ+
=

2F (r+)

r+ − r−
= 4mΠc ,

1

κ−
=

2F (r−)

r+ − r−
= 4mΠs , (4.2.4)

and are the same as the inverse surface gravities for the static subtracted geometry, i.e.

(7.0.10) with a = 0. The angular velocities at the inner and outer horizon are are given by

Ω+ = −W (r+) = β4
Πs
Πc

, Ω− = −W (r−) = β4
Πc
Πs

. (4.2.5)

Note that in this case the ratios

Ω+

κ+
= 4mβ4Πs ,

Ω−
κ−

= 4mβ4Πc , (4.2.6)

are different, and now the radial part of the massless scalar wave equation (4.1.30) depends

on both independent ratios.
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4.2.1 Kruskal-Szekeres Coordinates for Subtracted Magnetised Geometry

The retarded and advanced co-rotating Eddington-Finkelstein coordinates are of the same

form as in (4.1.18) and the Killing vector l+ (4.1.21) again coincides with the null generator

on the horizon.

We introduce the Kruskal-Szekeres coordinates (4.1.23) which yield (4.1.24) and the metric

(4.2.1) takes the form (4.1.25). In the vicinity of the outer horizon r ∼ 2m one obtains

−UV ∼ (r − 2m), and thus the metric (4.1.25) is regular and analytic there.

We calculate the length squared of the co-rotating Killing vector l+ (4.1.21)

gαβl+α l
+
β = −

√
∆s

F

(r − 2m)

(Π2
c −Π2

s)r + 2mΠ2
s + 8m3β24 sin

2 θ(Π2
c −Π2

s)
2

×
[
(Π2

c −Π2
s)r + 2mΠ2

s

]
×
[
r + 8m3β24 sin

2 θ
1

Π2
c

(Π2
c −Π2

s)
2

]
, (4.2.7)

which is negative outside the horizon, r > 2m. Thus, this geometry is stable with no

super-radiance.

4.2.2 Massless Wave Equation and Quasi-Normal Modes

The massless wave equation is again separable with the same wave function Ansatz as

(4.1.29). The radial wave equation can be cast in the same form as (4.1.30) with the inverse

surface gravities (4.2.4) and angular velocities (4.2.5).

Solutions which are ingoing on the future horizon must be regular at U = 0 in Kruskal-

Szekeres coordinates and this implies that [66–68]

χ(x) = (x+
1

2
)−(l+1)(x− 1

2

x+ 1
2

)−i(ω−nΩ+)
βH
4π

F (l + 1− i
βRω − n(βHΩ+ + β−Ω−)

4π
, l + 1− i

βLω − n(βHΩ+ − β−Ω−)

4π
, 1− i

βH(ω − nΩ+)

2π
;
x− 1

2

x+ 1
2

) ,
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where again

βH
2π

=
1

κ+
,

β−
2π

=
1

κ−

βR
2π

=
1

κ+
+

1

κ−
,

βL
2π

=
1

κ+
− 1

κ−
. (4.2.8)

Near the outer horizon r⋆ → −∞, (x− 1
2)(x+ 1

2)
−1 → e2κ+r

⋆
and so

χ(x) ≈ e−i(ω−nΩ+)r⋆

F (l + 1− i
βRω − n(βHΩ+ + β−Ω−)

4π
, l + 1− i

βLω − n(βHΩ+ − β−Ω−)

4π
, 1− i

βH(ω − nΩ+)

2π
; e2κ+r

⋆

) .

In Kruskal-Szekeres coordinates therefore

e−iωteinϕχ(x) ≈ einϕ+V −iω−nΩ+
κ+ (1 + . . . ) (4.2.9)

where the ellipses denote a power series in UV which is convergent in a neighbourhood of

the future horizon U = 0 .

At large x [66, 67]

χ(x) ≈ x−(l+1) Γ(1− iβH(ω−nΩ+)
2π )Γ(−2l − 1)

Γ(−l − iβLω−n(βHΩ+−β−Ω−)
4π )Γ(−l − iωβR−n(βHΩ++β−Ω−)

4π )

+xl
Γ(1− iωβH(ω−nΩ+)

2π )Γ(2l + 1)

Γ(l + 1− iβLω−n(βHΩ+−β−Ω−)
4π )Γ(l + 1− iωβR−n(βHΩ++β−Ω−)

4π )
. (4.2.10)

In order that χ be finite at spatial infinity, we must set

i

(
ωβL
4π
− nβHΩ+ − β−Ω−

4π

)
= l + 1 +NL ,

or i

(
ωβR
4π
− nβHΩ+ + β−Ω−

4π

)
= l + 1 +NR , (4.2.11)

where NL,R = 0, 1, . . . This gives remarkably simple and symmetric formulae for the fre-
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quencies of the quasi-normal modes

ω = − i

2m(Πc −Πs)
(1 + l +NL)− nβ4 ,

or ω = − i

2m(Πc +Πs)
(1 + l +NR) + nβ4 . (4.2.12)

Both frequencies result in damped modes with a symmetric shift in advanced and retarded

oscillatory behaviour due to the magnetic field parameter β4.

An interesting observation can be made here about the magnetic field parameter in the

above quasi-normal modes. According to the Bohr’s correspondence principle, the fre-

quency of oscillation of a classical system is equivalent to the frequency of transition of the

corresponding quantum system. Guided by this principle, in [76], some observations were

made which indicate that the real part of the quasi-normal modes is related to the quantized

area spectrum of the quantum black hole. In our case the real part of the quasi-normal

modes is related in a very simple way to the magnetic field parameter, thus making it easy

to see how turning on the magnetic field affects the area spectrum of the quantum black

hole.

4.3 Lifted Geometries and Quasi-Normal Modes

In Appendix E we derive the explicit lift of the subtracted geometries on a circle of size 2πR

and parameterised by a coordinate z. The five-dimensional geometry is locally BTZ × S2

with the BTZ coordinates denoted by {t3, r3, ϕ3} and the S2 coordinates denoted by {θ, ϕ̄}.

The explicit transformation between {t, r, θ, ϕ, z} coordinates, and the BTZ×S2 coordinates

is given in the Appendix 5.3, too. The BTZ metric (4.6.5) can also be cast into local AdS3

metric (4.7.7), parameterised by coordinates {T, ρ,Φ}. The explicit transformation between

the BTZ and the local AdS3 coordinates is given in Appendix 5.4, following [77, 78]. The

radius of AdS3 is ℓ and the radius of S2 is ℓ
2 . Specifically, ℓ = 4m(Π2

c −Π2
s)

1
3 .

Since for this five-dimensional geometry the wave equation for the minimally coupled mas-
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sive scalar field is separable and exactly solvable, this allows us to study explicitly the

quasi-normal modes directly in five dimensions. Furthermore, the scalar field wave func-

tion can be expanded in terms of Kaluza-Klein modes, parameterised by a quantised wave

number k along the circle direction z. We can therefore study the quasi-normal modes for

each Kaluza-Klein mode by solving directly the wave equation in five dimensions for the

complete tower of Kaluza-Klein states, i.e. we do not have to resort to solving a complicated

equation for each Kaluza-Klein mode separately.

The wave equation for a massive, minimally coupled scalar field Φ in the local AdS3 × S2

background is separable and solved with the Ansatz

Φ = e−iω̄T eik̄Φeinϕ̄ Pnl (cos θ)χ(ρ) . (4.3.1)

Pnl (cos θ), the associated Legendre function, is a solution for the Laplacian of the unit two-

sphere S2 with eigenvalues l(l+1). Here n = 0,±1,±2...± l and l is a non-negative integer.

Again, {T,Φ, ρ} and {θ, ϕ̄} parameterise the local AdS3 and S2 coordinates, respectively.

Furthermore, in our context the radius of AdS3 is ℓ and that of S2 is ℓ
2 where we have

ℓ = 4m(Π2
c −Π2

s)
1
3 (see Appendix 5.3).

The metric, describing a local AdS3 (4.7.7)

ds2AdS3
= ℓ2 (− sinh2 ρ dT 2 + dρ2 + cosh2 ρ dΦ2) . (4.3.2)

has the Laplacian

□AdS3 = ∂2ρ +
2 cosh(2ρ)

sinh(2ρ)
∂ρ −

1

sinh2 ρ
∂2T +

1

cosh2 ρ
∂2Φ , (4.3.3)

and enters the five-dimensional Klein-Gordon equation equation in the following form:

[ℓ2 (□AdS3 − 4l(l + 1))−M2
5 ]Φ = 0 (4.3.4)
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Note again that 4ℓ2l(l + 1) is the eigenvalue of the two-sphere S2 Laplacian with the two-

sphere radius ℓ
2 . For the Ansatz (4.3.1) this equation becomes

[
ℓ2
(
∂2ρ +

2 cosh(2ρ)

sinh(2ρ)
∂ρ +

ω̄2

sinh2 ρ
− k̄2

cosh2 ρ
− 4l(l + 1)

)
−M2

5

]
)χ(ρ) = 0 . (4.3.5)

The solution, corresponding to the incoming wave at the outer horizon, is

χ(ρ) = (x+
1

2
)−(l̄+1)

(x− 1
2

x+ 1
2

)−i ω̄
2

F (l̄ + 1− i(ω̄ + k̄)

2
, l̄ + 1− i(ω̄ − k̄)

2
, 1− iω̄; tanh2 ρ) . (4.3.6)

Here we have introduced

l̄(l̄ + 1) ≡ l(l + 1) +
M2

5

4ℓ2
. (4.3.7)

While the analysis can be completed for massive minimally coupled five-dimensional scalars,

in the following we will focus on massless ones, i.e. taking M5 = 0 and thus l̄ = l. The

only quantitative difference in the analysis for massive five-dimensional scalars is that the

expressions below involve a change l→ l̄ > l, and thus a shift in the quasi-normal frequen-

cies.

At this point we relate the respective local AdS3 and S2 coordinates {T,Φ, ρ} and {θ, ϕ̄}

to {t, r, θ, ϕ, z}. This can be done by first employing Appendix C, where the explicit lift to

the BTZ × S2 and the map to the BTZ and S2 coordinates is given, and then employing

Appendix D, where the transformation between the BTZ and local AdS3 coordinates is

provided. The result for the subtracted rotating geometry is

T =
4
√
m2 − a2
ℓ3

(
t

κ+
− z

κ−
) ,

Φ =
4
√
m2 − a2
ℓ3

(
z

κ+
− t

κ−
) , (4.3.8)
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and

cosh2 ρ = x+
1

2
, sinh2 ρ = x− 1

2
, (4.3.9)

where x is defined in (4.1.31), i.e. x =
[
r − 1

2(r+ + r−)
]
(r+ − r−)−1. Furthermore, for S2

coordinates, θ is unchanged and the azimuthal angle ϕ̄ is related to ϕ as in (4.6.4):

ϕ̄ = ϕ− 16ma(Πc −Πs)

ℓ3
(z + t) . (4.3.10)

The 2π periodicity of ϕ̄ is ensured if 16ma(Πc −Πs)ℓ
−3 = a(2m)−2(Πc+Πs)

−1 is quantized

in units of R−1.

The radial equation (4.3.5) can be cast in the following form:

[
∂x(x

2 − 1

4
)∂x +

ω̄2

4(x− 1
2)
− k̄2

4(x+ 1
2)
− l(l + 1)

]
χ(x) = 0 . (4.3.11)

The above coordinate transformations allow us to relate the quantum numbers in the Ansatz

(4.3.1) to those of the standard Kaluza-Klein Ansatz:18

Φ = e−iωteikzeinϕ Pnl (cos θ)χ(r) . (4.3.12)

Namely, equating the two Ansätze (4.3.1) and (4.3.12), and employing the coordinate trans-

formations (4.3.8) and (4.3.10) yields the following transformation between quantum num-

bers {ω̄, k̄} and {ω, k}:

ω̄ =
ω

κ+
− k

κ−
− nΩ+

κ+
, k̄ = − ω

κ−
+

k

κ+
+ n

Ω+

κ+
, (4.3.13)

and n unchanged.

For the subtracted magnetised geometry the expressions for (4.3.8) are the same, but with

a = 0 and static expressions for inverse surface gravities (4.2.4), i.e. κ−1
+ = 4mΠc and

18By abuse of notation we use above the same radial function notation.
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κ−1
− = 4mΠs. The azimuthal angle is shifted due to the magnetic field β4 as in (4.6.8):

ϕ̄ = ϕ− β4z . (4.3.14)

Note that 2π periodicity of the S2 azimuthal angle ϕ̄ is ensured if the magnetic field pa-

rameter β4 is quantised in units of R−1.

As a consequence, the transformation between the quantum numbers {ω̄, k̄} and {ω, k} is

ω̄ =
ω

κ+
− k + nβ4

κ−
, k̄ = − ω

κ−
+
k + nβ4
κ+

, (4.3.15)

and again, n unchanged.

These general expressions now allow us to recover results for the massless four-dimensional

field with vanishing wave number k = 0. For the subtracted rotating geometry one obtains

ω̄ =
ω

κ+
− nΩ+

κ+
, k̄ = − ω

κ−
+ n

Ω+

κ+
, (4.3.16)

just as in Section 2. Similarly for the magnetised subtracted geometry:

ω̄ =
ω

κ+
− nβ4
κ−

, k̄ = − ω

κ−
+
nβ4
κ+

, (4.3.17)

in agreement with Section 3.

We can also study massive Kaluza-Klein modes with the wave number k ̸= 0, which is

quantised in units of R−1, where R is the radius of the circle S1. Those are massive four-

dimensional particles with mass m4 ∝ k, and they are charged under the Kaluza-Klein U(1)

gauge symmetry with the charge k = q (see Appendix 5.5). Their quasi-normal modes can

be determined completely analogously to massless modes in Sections 2 and 3.

The solution (4.3.6), corresponding to the incoming wave at the outer horizon, is required
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to be finite at a large x, which is achieved for

ω̄ + k̄

2
= −i(1 + l +NL) , or

ω̄ − k̄
2

= −i(1 + l +NR) , (4.3.18)

where l = 0, 1, . . . , and NL = 0, 1, . . . or NR = 0, 1, . . . This constrains a specific combina-

tion of ω and k. In the rotating case we have

ω = − i

2m(Πc −Πs)
(1 + l +NL) + k ,

or ω = − i
√
m2 − a2

2m2(Πc +Πs)
(1 + l +NR) +

a

2m2(Πc +Πs)
n− k . (4.3.19)

In the subtracted magnetised case we obtain

ω = − i

2m(Πc −Πs)
(1 + l +NL) + nβ4 + k ,

or ω = − i

2m(Πc +Πs)
(1 + l +NR)− nβ4 − k . (4.3.20)

Again, we obtained two branches of damped quasi-normal modes, both with oscillatory

behaviour symmetrically advanced and retarded by nβ4 + k.

It is interesting to point out that the solution (4.3.6) for massive modes with k ̸= 0 has

a regular, analytic behaviour near the outer horizon, after one has made a gauge transfor-

mation χ(x) → eikA2t+tχ(x), where A2t+ = (2m)4ΠcΠsF
−2(r+) is the time component of

the Kaluza-Klein gauge potential A2 (4.4.4) or (4.5.18), evaluated at the outer horizon r+.

Namely, we obtain

eikA2t+te−iωteinϕχ(x) ≈ eikA2t+te−i(ω−nΩ+)teinϕ+e−iω̄κ+r∗(1 + · · · )

≈ einϕ+V
−iω−nΩ+

κ+
+i k

κ− (1 + . . . ) , (4.3.21)

where we wrote the final expression in terms of Kruskal-Szekeres coordinates, and the ellipses

denote a power series in UV which is convergent in a neighbourhood of the future horizon
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U = 0 .

4.4 Appendix A: Subtracted Rotating Geometry with Sources

In [15] it was shown that the subtracted geometry (6.0.5), (4.1.2), (4.1.7) for four-charge

rotating black hole is a solution of the equations of motion for the STU Lagrangian, describ-

ing the bosonic part of the N=2 supergravity Lagrangian coupled to three vector super-

multiplets:

L4 = R ∗1− 1

2
∗dφi ∧ dφi −

1

2
e2φi ∗dχi ∧ dχi −

1

2
e−φ1 (eφ2−φ3 ∗F1 ∧ F1

+ eφ2+φ3 ∗F2 ∧ F2 + e−φ2+φ3 ∗F1 ∧ F1 + e−φ2−φ3 ∗F2 ∧ F2)

− χ1 (F1 ∧ F1 + F2 ∧ F2) , (4.4.1)

where the index i labelling the dilatons φi and axions χi ranges over 1 ≤ i ≤ 3. The four

U(1) field strengths can be written in terms of potentials as

F1 = dA1 − χ2 dA2 ,

F2 = dA2 + χ2 dA1 − χ3 dA1 + χ2 χ3 dA2 ,

F1 = dA1 + χ3 dA2 ,

F2 = dA2 .

The three axio-scalar fields and the four U(1) gauge potentials can be formally obtained as

a scaling limit of a certain black hole solution (for details, see [15]), resulting in

χ1 = −χ2 = χ3 = −
2ma(Πc −Πs) cos θ

Q2
, eφ1 = eφ2 = eφ3 =

Q2

√
∆
, (4.4.2)

and the gauge potentials A1 = A2 = A3 ≡ A for gauge field strengths ∗F1 = F2 = ∗F1 ≡ F
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and A2 for F2 are of the following form:

A = −r −m
Q

dt− (2m)2 a2 (Πc −Πs)[ r (Πc −Πs) + 2mΠs ] cos
2 θ

Q∆
dt

−(2m)4 a (Πc −Πs)[ r (Π
2
c −Π2

s) + 2mΠ2
s ] sin

2 θ

Q∆
dϕ , (4.4.3)

A2 =
Q3[(2m)2ΠcΠs + a2(Πc −Πs)

2 cos2 θ]

2m(Π2
c −Π2

s)∆
dt +

Q32ma(Πc −Πs) sin
2 θ

∆
dϕ ,(4.4.4)

where

Q = 2m(Π2
c −Π2

s)
1
3 ϵ−

1
3 ≡ 1

2ℓϵ
− 1

3 , as ϵ→ 0 . (4.4.5)

and again, ∆ defined as in (4.1.7):

∆0 → ∆ = (2m)3r(Π2
c −Π2

s) + (2m)4Π2
s − (2m)2(Πc −Πs)

2a2 cos2 θ . (4.4.6)

The (formally infinite) factors of Q can in principle be removed from gauge potentials by

removing corresponding factors from scalar fields. However, when lifting the scaling limit

solution to five dimensions, it is useful to keep this scaling factor explicit; in the final

five-dimensional metric an overall factor is not relevant.

4.5 Appendix B: Subtracted Magnetised Geometry with Sources

The magnetised solution of the static STU black hole was obtained in [75] and is of the

form:

ds24 = H [−r(r− 2m)dt2 +
r1r2r3r4
r(r − 2m)

dr2 + r1r2r3r4dθ
2 ] +H−1 sin2 θ (dϕ− ω̃dt)2 . (4.5.1)

Here

ri = r + 2ms2i , (4.5.2)
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and we shall use the notation si = sinh δi and ci = cosh δi, with i = 1, 2, 3, 4. The function

ω̃ is given by

ω̃ =
4∑
i=1

[
− qi βi

ri
+
qi Ξi [ri + (r − 2m) cos2 θ]r

ri

]
, (4.5.3)

where

qi = 2msici , Ξi =
β1β2β3β4

βi
, βi = 12Bi , (4.5.4)

and Bi (i = 1, 2, 3, 4) denote the external magnetic field strengths for each of the four gauge

fields. Finally, the function H is given by

H =

√
∆̄

√
r1r2r3r4

, (4.5.5)

where

∆̄ = 1 +
∑
i

β2i r1r2r3r4
r2i

sin2 θ + 2[β3β4q1q2 + · · · ] cos2 θ + [β23 β
2
4 R

2
1R

2
2 + · · · ]

−2(
∏
j

βjrj)
∑
i

q2i
r2i

sin2 θ cos2 θ + [2β2β3β
2
4q2q3R

2
1 + · · · ] cos2 θ +

∏
i

β2i R
2
i

+r1r2r3r4
∑
i

Ξ2
i R

2
i

r2i
sin2 θ + [2β1β2β

2
3β

2
4q3q4R

2
1R

2
2 + · · · ] cos2 θ , (4.5.6)

and we have defined

R2
i = r2i sin2 θ + q2i cos2 θ . (4.5.7)

The Kaluza-Klein gauge field here is given by

A2 =
[q4
r4
−

3∑
i=1

r qi β1β2β3 [ri + (r − 2m) cos2 θ]

βi ri

]
dt− σ4 (dϕ− ω̃dt) , (4.5.8)

where σ4 = σ̃4∆̄
−1, and
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σ̃4 =
β4r1r2r3

r4
sin2 θ + (β1q2q3 + · · · ) cos2 θ + β4(β

2
1R

2
2R

2
3 + · · · )

+2β4(β2β3q2q3R
2
1 + · · · ) cos2 θ + q4[β

2
1(β2q2R

2
3 + β3q3R

2
2) + · · · ] cos2 θ

+4β1β2β3q1q2q3q4 cos
4 θ

−β1β2β3q
2
4r1r2r3
r4

sin2 θ cos2 θ − β1β2β3 r4
(q21r2r3

r1
+ · · ·

)
sin2 θ cos2 θ

+β1β2β3(β2β3q2q3R
2
1 + · · · )R2

4 cos
2 θ + β4r4

[β22β23r2r3
r1

R4
1 + · · ·

]
sin2 θ

+2β1β2β3β4q4(β1q1R
2
2R

2
3 + · · · ) cos2 θ + β4β

2
1β

2
2β

2
3R

2
1R

2
2R

2
3R

2
4 . (4.5.9)

The dilaton field is given by

eφ1 =
Y1√

∆̄ r1r2r3r4
, (4.5.10)

where

Y1 = r1r3(1 + 2β1β3q2q4 cos
2 θ + β21β

2
3R

2
2R

2
4)

+ r2r4(β
2
1R

2
3 + β23R

2
1 + 2β1β3q1q3 cos

2 θ) . (4.5.11)

For explicit expressions of all the fields see [75]. Note however in order to have the same

sign for the gauge fields of the rotating and magnetised geometries, we have changed an

overall sign for the gauge fields relative to [75].

The Scaling Limit

The subtracted geometry can be obtained by taking a scaling limit of the above magnetised

electric black holes, analogously to the rotating case. The limit can be implemented by

means of the scalings

m→ mϵ , r = r ϵ , t→ t ϵ−1 , βi → βi ϵ , i = 1, 2, 3, 4 ,

sinh2 δ4 →
Π2
s

Π2
c −Π2

s

, sinh2 δi → (Π2
c −Π2

s)
1
3 ϵ−

4
3 , i = 1, 2, 3 , (4.5.12)
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where ϵ is then sent to zero. In particular, this gives

(dϕ− ω̃dt) −→ dϕ− (β1 + β2 + β3)dt−
2mβ4ΠcΠs

(Π2
c −Π2

s)r + 2mΠ2
s

dt , (4.5.13)

and

∆̄ −→ 1 +
(2m)3β24(Π

2
c −Π2

s)
2 sin2 θ

(Π2
c −Π2

s)r + 2mΠ2
s

, r1r2r3r4 −→ (2m)3
[
(Π2

c −Π2
s)r + 2mΠ2

s

]
.

(4.5.14)

The quantities β1, β2 and β3 are removed by a gauge transformation ϕ −→ ϕ+(β1+β2+β3)t.

We shall assume from now on that this transformation has been performed. The final metric

can be cast in the following form:

ds2 =
√
∆
X

F 2

(
−dt2 + F 2dr2

X2

)
+
√
∆dθ2 +

F 2 sin2 θ√
∆

(dϕ+Wdt)2 , (4.5.15)

where

X = r2 − 2mr ,

F 2 = (2m)3
[
(Π2

c −Π2
s)r + (2m)Π2

s

]
,

W = −16m4ΠsΠcβ4
F 2

,

∆ = F 2 + (2m)6β24(Π
2
c −Π2

s)
2 sin2 θ . (4.5.16)

The dilation fields are of the form:

eϕ1 = eφ2 = eφ3 =
Q2

√
∆
, (4.5.17)

and the axion fields vanish. The Kaluza-Klein U(1) gauge field becomes

A2 =
Q32mΠcΠs
(Π2

c −Π2
s)F

2
dt− Q3(2m)3β4(Π

2
c −Π2

s) sin
2 θ

∆
(dϕ+Wdt) . (4.5.18)

Note that at the horizon the combination ϕ +W (r+)t = ϕ+, and thus the second term in
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(4.5.18) becomes the ϕ+ component of the Kaluza-Klein gauge potential. The remaining

three gauge potentials become identified and are of the form (4.4.3) by setting a = 0.

One can of course remove Q in the scalar and gauge fields via a gauge transformation.

However, it is useful to keep it in the discussion of the lift and at the end remove the overall

scaling parameter ϵ.

4.6 Appendix C: Subtracted Geometry Lifted to Five Dimensions

We now provide a lift of the subtracted rotating geometry to five-dimensions19. The five-

dimensional metric for the scaling limit takes the form:

ds25 = eφ1ds24 + e−2φ1(dz +A2)
2 , (4.6.1)

where we have to implement the scaling z → zϵ−1. This metric takes the form:

ds25 = ϵ−
2
3 (ds2S2 + ds2BTZ) , (4.6.2)

where

ds2S2 = 1
4ℓ

2
(
dθ2 + sin2 θdϕ̄2

)
, (4.6.3)

with

ϕ̄ = ϕ− 16ma(Πc −Πs)

ℓ3
(z + t) , (4.6.4)

and

ds2BTZ = −
(r23 − r23+)(r23 − r23−)

ℓ2 r23
dt23 +

ℓ2r23
(r23 − r23+)(r23 − r23−)

dr23 + r23(dϕ3 +
r3+r3−
ℓr23

dt3)
2 ,

(4.6.5)

19Partial results were provided in [15, 68]. Here we take particular care of the dimensions and of the
periodicities of metric coordinates.
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where

ϕ3 =
z

R
,

t3 =
ℓ

R
t ,

r23 =
16(2mR)2

ℓ4
[
2m(Π2

c −Π2
s)r + (2m)2Π2

s − a2(Πc −Πs)
2
]
. (4.6.6)

Here, R is the radius of the circle S1 and ℓ = 4m(Π2
c − Π2

s)
1
3 is the radius of the AdS3.

Furthermore

r3± =
8mR

ℓ2

[
m(Πc +Πs)±

√
m2 − a2(Πc −Πs)

]
. (4.6.7)

The periodicity of z coordinate is 2πR, and thus the angular coordinate ϕ3 has the correct

periodicity of 2π. Note also that the 2π periodicity of ϕ̄ is ensured if 16ma(Πc −Πs)ℓ
−3 =

a(2m)−2(Πc +Πs)
−1 is quantized in units of R−1.

The lifted geometry is indeed locally AdS3×S2 with the radius of AdS3 equal to ℓ and the

radius of S2 equal to ℓ
2 .

Subtracted Magnetised Geometry

This geometry also lifts to (4.6.2) where now ϕ̄ in (4.6.3) is defined as20

ϕ̄ = ϕ− β4 z , (4.6.8)

and we set in all expressions above a = 0, i.e. the BTZ coordinates are related to {t, r, z}

as in (4.6.6) with a = 0. (Obviously, β4 = 0 corresponds to the lift of the static subtracted

geometry.) Note that the shift requires that β4 be quantized in units of R−1, in order for ϕ̄

to have the correct periodicity of 2π.

20It was observed in [87] that such a shift produces a magnetic field for the Kaluza-Klein U(1) gauge
potential and thus a four-dimensional geometry in a Kaluza-Klein magnetic field.
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4.7 Appendix D: Relation of the BTZ Black Hole Coordinates to the AdS3

Coordinates

According to [77, 78] AdS3 is the quadric

u2 + v2 − x2 − y2 = ℓ2 , (4.7.1)

in E2,2 with the metric induced from

ds2 = −du2 − dv2 + dx2 + dy2 . (4.7.2)

In a local patch we have the embedding

u =
√
A(r) coshΦ = ℓ cosh ρ coshΦ , (4.7.3)

x =
√
A(r) sinhΦ = ℓ cosh ρ sinhΦ , (4.7.4)

y =
√
B(r) coshT = ℓ sinh ρ coshT , (4.7.5)

v =
√
B(r) sinhT = ℓ sinh ρ sinhT . (4.7.6)

The metric is of the form:

ds2AdS3
= ℓ2 (− sinh2 ρ dT 2 + dρ2 + cosh2 ρ dΦ2) . (4.7.7)

The relationship to the BTZ metric coordinates and parameters introduced in the Appendix

5.3 (eqs.(4.6.5,4.6.6)) is

A(r) = ℓ2
r23 − r23−
r23+ − r23−

, B(r) = ℓ2
r23 − r23+
r23+ − r23−

, (4.7.8)

T =
r3+t3 − r3−ℓϕ3

ℓ2
Φ =

r3+ℓϕ3 − r3−t3
ℓ2

, (4.7.9)

where r3± is defined in (4.6.7).
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Note that a shift in T is a boost in the Minkowski v− y plane and a shift in Φ corresponds

to a boost in the Minkowski u−x plane. Since ϕ3 of the BTZ metric (4.6.5) is periodic with

period 2π, the coordinates {T,Φ} must be identified under the composition of two discrete

boosts:
(
T,Φ

)
→
(
T − 2πr3−

ℓ ,Φ+ 2πr3+
ℓ

)
.

4.8 Appendix E: Kaluza-Klein Reduction of the Scalar Wave Equation

The five-dimenskonal Kaluza-Klein metric Ansatz

ds25 = eϕ1γαβdx
αdxβ + e−2ϕ1(dz +A2αdx

α)2 , (4.8.1)

where {α, β} = 0, 1, 2, 3, results in the five-dimensional wave equation given by

∇α∇αΦ−∇αA2α∂zΦ− 2A2
α∇α∂zΦ+ (A2)

2∂2zΦ = −eϕ1∂2zΦ . (4.8.2)

If we make the assumption that Φ is separable in term of a four-dimensional wave function

and a function of the fifth coordinate z:

Φ(xα, z) = Φ(xα)eif(z) , (4.8.3)

we can rewrite the above equation as

γαβ (∇α − i(∂zf)A2α)
(
∇β − i(∂zf)A2β

)
Φ(xα) = (∂zf)

2eϕ1Φ(xα) . (4.8.4)

For the compactification on a circle S1 with radius 2πR, the above equation is solved with

the Ansatz for f(z) = kz, where the wave number k is quantised in units of R−1. The

remaining effective four-dimensional wave equation can then be interpreted as the Klein-

Gordon equation of the four-dimensional charged particle with a charge q = k and an

effective mass ∝ k which is modulated by the scalar field eϕ1 :

m2
eff = k2eϕ1 . (4.8.5)

105



Chapter 5

Entanglement Entropy

We compute the entanglement entropy of minimally coupled scalar fields on subtracted

geometry black hole backgrounds, focusing on the logarithmic corrections. We notice that

matching between the entanglement entropy of original black holes and their subtracted

counterparts is only at the order of the area term. The logarithmic correction term is

not only different but also, in general, changes sign in the subtracted case. We apply

Harrison transformations to the original black holes and find out the choice of the Harrison

parameters for which the logarithmic corrections vanish.

5.1 Entanglement entropy of original and subtracted black holes

5.1.1 Black hole entanglement entropy

Entanglement entropy of quantum fields, computed across the black hole event horizon Σ,

gives a divergent expression of the form

Sent ∼ AΣ

ϵ2
+ c0 ln

(
L

ϵ

)
+ Sfinite , (5.1.1)

where ϵ is a short-distance UV cutoff and L an IR cutoff. It is well known [142] that

the divergences in this expression match the divergences in the one-loop effective action for

quantum fields in the black hole background. This means that when we view the total black

hole entropy as composed of a “bare gravitational” or “tree-level” entropy Stree, plus the

entanglement entropy as a “quantum correction” Sloop, then the total entropy S
(tot)
BH takes

the same general form as Stree with the one-loop renormalized couplings replacing the bare

couplings present in Stree. These couplings which renormalize are the Newton constant G4,

and couplings c1,2,3 for higher-order curvature terms R2, RµνR
µν , and RλµνρR

λµνρ added
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to the Lagrangian. (The assumption of a “bare” gravitational entropy can be disposed

of in a specific model in which gravity is effective and wholly induced by quantum fields

[143],[144].)

Both the tree-level entropy and the loop corrections are computed with the conical singu-

larity method. A Euclidean manifold is obtained by Wick rotation of the Lorentzian black

hole geometry. One creates a conical defect around the horizon (giving periodicity 2πα

to the Euclidean time coordinate, which loops around it). The tree-level entropy is then

obtained from the expression:

Stree = (α∂α − 1)SBα |α=1 , (5.1.2)

where SBα is the bare gravitational action, including higher-order curvature terms, evaluated

on the conical Euclidean manifold. The loop correction is given by the same equation but

replacing the bare gravitational action by minus the log of the quantum partition function:

Sloop = − (α∂α − 1) lnZα

∣∣∣
α=1

(5.1.3)

These expressions have been computed for Kerr-Newman black holes by Solodukhin and

Mann [145] and for arbitrary axisymmetric black holes by Jing and Yan [146]. They are

respectively given by

Stree =
AΣ

4GB4
− 8π

∫
Σ

c1BR+
c2B
2

2∑
a=1

Rµνn
µ
i n

ν
i + c3B

2∑
a,b=1

Rµναβn
µ
i n

ν
jn

α
i n

β
j

 , (5.1.4)
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Sloop =
AΣ

48πϵ2
+

{
1

144π

∫
Σ
R− 1

45

1

16π

∫
Σ

( 2∑
a=1

Rµνn
µ
i n

ν
i − 2

2∑
a,b=1

Rµναβn
µ
i n

ν
jn

α
i n

β
j

)
(5.1.5)

− 1

90

1

16π

∫
Σ
(KaKa) +

1

24π

(
λ1 −

λ2
30

)∫
Σ
(KaKa − 2tr(K.K))

}
ln
L

ϵ
, (5.1.6)

where GB4 , c
I
B, (I = 1, 2, 3) represent bare constants (tree-level), Ka

µν = −γαµγ
β
ν∇αnaβ is the

extrinsic curvature, Ka = gµνKa
µν is the trace of the extrinsic curvature, and nµi (i = 1, 2)

are unit vectors normal to Σ.

For the general axisymmetric black holes all the quantities dependent on the extrinsic

curvature vanish, thus verifying that the tree-level and the loop formulas have the same

general form and the entropy renormalizes. We quote from [146] a useful expression for the

combination of Riemann tensor contractions:

Rnn(r+, θ)− 2Rmnmn(r+, θ) =

{
∂2grr

∂r2
+

3

2

∂grr

∂r

∂ ln f

∂r
− 1

2

∂grr

∂r

(
1

gθθ

∂gθθ
∂r

+
1

gφφ

∂gφφ
∂r

)

− 2gφφ
f

[
∂

∂r

(
gtφ
gφφ

)]2}
r+

.

(5.1.7)

Here the Boyer-Lindquist form of the Euclidean metric

ds2 = gttdt
2 + grrdr

2 + 2gtφdtdφ+ gθθdθ
2 + gφφdφ

2, (5.1.8)

is assumed, with gtt, grr, gtφ, gθθ and gφφ functions of the coordinates r and θ. The inverse

metric component is grr = 1/grr, and f = −grr
(
gtt −

g2tφ
gφφ

)
.

Note that because R vanishes on the black hole metrics (6.0.5), the higher-order correction

to the entropy is given essentially by the combination (5.1.7) integrated over the horizon.
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Replacing the metric components of (5.1.7) and evaluating on the horizon we obtain:

Sloop =
AΣ

48πϵ2
− 1

720π

∫
Σ
(Rnn(rH , θ)− 2Rmnmn(rH , θ))

=
AΣ

48πϵ2
− 1

720π

∫
Σ

(
X ′′

∆1/2
+
X ′∆′

2∆3/2
− 2

G′X ′

G∆1/2
− 2

G2(A′)2

∆3/2 sin2 θ

)
r+

, (5.1.9)

where a prime stands for a derivative with respect to r.

In the next subsections we give the results form this expression both for the original and

the subtracted black hole geometries.

5.1.2 Results for original black holes

The evaluation of (5.1.9) for the original black hole geometry that has ∆ = ∆0, in the fully

general case with four charges and rotation that is parametrized by (m, a, δI), is given by

an expression of the form

Sloop =
AΣ

48πϵ2
− Ared(r+)

720

∫ 1

−1
du

κu4 + λu2 + µ

(αu4 + βu+ γ)3/2
, (5.1.10)

where the six parameters (α, β, γ, κ, λ, µ) depend on the black hole parameters (m, a, δI) (as

do, of course, the horizon radius r+ and the function Ared(r+) defined above in (4.1.2)). The

definitions of these six parameters are given in the Appendix. The expression is obtained

through the change of variables u = cos θ. The integral it features is in general expressible

as a lengthy combination of elliptic functions, which can take different forms in different

regions of parameter space. For this reason we will provide here only the results in some

particular cases of physical interest.

The expression derived in [145] for the entanglement entropy of the Kerr-Newman black hole

(with rotation and a single charge parameter) is obtained in the limit δ0 = δ1 = δ2 = δ3 ≡ δ.
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It reads:

SloopKN =
AΣ

48πϵ2
+

1

45

[
1− 3m2 sinh2(2δ)

4R2
+

(
1 +

(a2 +R2
+) arctan

a
R+

aR+

)]
log(

r+
ϵ
) , (5.1.11)

where

R+ = r+ + 2m sinh2 δ . (5.1.12)

The correspondence between this expression and the result given by formula (4.12) in [145]

is manifest if we translate suitably our notation to the one used in this reference. For ease

of comparison we provide the following translation for the notations, where the left hand

side correspond to the notations used in [145] and the right hand side to those used in the

present work :

q ←→ m sinh(2δ) , (5.1.13)

m ←→ m cosh(2δ) , (5.1.14)

r+ ←→ r+ + 2m sinh2 δ = Rr+ . (5.1.15)

The results for the Reissner-Nordstrom and Schwarzschild black holes are obtained from

the previous formula setting a = 0 and a = 0 = δ respectively. They read:

SloopRN =
AΣ

48πϵ2
+

1

90

(2− sinh2 δ)

cosh2 δ
log
(r+
ϵ

)
, (5.1.16)

SloopSch =
AΣ

48πϵ2
+

1

45
log
(r+
ϵ

)
. (5.1.17)

On the other hand, the result for the static black hole with four different charges (a =

0, δ0,1,2,3 ̸= 0) reads
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Sloop4q =
AΣ

48πϵ2
(5.1.18)

+
1

360Πc

8(Π2
c −Π2

s)− 3
∑

s2I − 6
∑
I ̸=J

s2Is
2
J − 9

∑
I<J<K

s2Is
2
Js

2
K − 4

∏
I

s2I

 log
(r+
ϵ

)
,

where sI = sinh δI and I = 0, 1, 2, 3. This result does not feature previously in the literature.

It reduces to (5.1.16) when we set δI = δ for all I. Note that each of the results (5.1.16,

5.1.17, 5.1.18) has a log correction independent of the parameter m.

5.1.3 Results for subtracted black holes

We turn now to the evaluation of the entropy for the black holes with subtracted geometry.

As remarked before, the black hole horizon area AΣ is independent of ∆ and therefore the

leading order term of the entropy always matches the original one. We will show that this

agreement is not preserved for the subleading order, i.e. the logarithmic correction involving

the integral of (5.1.7).

The black hole entanglement entropy for subtracted geometry is computed by evaluating

(5.1.9) with ∆ = ∆sub as given by (2.2.4). The result for the fully general four-charge black

hole with rotation is given by:

Sloop =
AΣ

48πϵ2
(5.1.19)

− 1

180

m3(Πc +Πs)
3 +

√
(m2 − a2)3(Πc −Πs)

3

m[m (Πc +Πs) +
√
m2 − a2(Πc −Πs)][m(Π2

c +Π2
s) +

√
m2 − a2(Π2

c −Π2
s)]

log
(r+
ϵ

)
.

The result at the subleading order is clearly different from the original black hole expression

(5.1.10), which is much more complex and depends on all four charge parameters δI sepa-

rately instead of through the combinations Πc,Πs. For completeness we include below the

results for the subtracted versions of the Kerr-Newmann black hole, the Reissner-Nordstrom
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black hole, the Schwarzschild and the static four-charge black hole. These results are to be

contrasted with the original expressions (5.1.11, 5.1.16, 5.1.17, 5.1.18).

SloopKN−sub =
AΣ

48πϵ2
(5.1.20)

− 1

180

m3(cosh4 δ + sinh4 δ)3 +
√

(m2 − a2)3(cosh4 δ − sinh4 δ)3

m(γ̃1γ̃2)
,(5.1.21)

SloopRN−sub =
AΣ

48πϵ2
− 1

360

(cosh8 δ + 3 sinh8 δ)

cosh8 δ
log
(r+
ϵ

)
, (5.1.22)

SloopSch−sub =
AΣ

48πϵ2
− 1

360
log
(r+
ϵ

)
, (5.1.23)

Sloop4q−sub =
AΣ

48πϵ2
− 1

360

(
(Π2

c + 3Π2
s

Π2
c

)
log
(r+
ϵ

)
. (5.1.24)

In (5.1.21), γ̃1 stands for m (cosh4 δ+sinh4 δ)+(m2−a2)1/2(cosh4 δ−sinh4 δ) and γ̃2 stands

for m (cosh8 δ+sinh8 δ)+(m2−a2)1/2(cosh8 δ− sinh8 δ). These expressions are all obtained

evaluating (5.1.19) in the appropriate limits. Just as before, the static results (5.1.22-5.1.24)

have the log prefactor independent of m. It is seen, however, that they in every case the

expression is different from the corresponding expression for the original black hole.

Nevertheless, there is a limit in which the expressions coincide. The subtracted geometry

is designed to be a modification of the original black hole geometry that preserves the

key features of extremal black holes even for non-extremal parameters. Therefore in the

extremal limit the entropies of the original and the subtracted black holes should match

exactly. In our parametrization, this limit is given by:

m −→ 0 , δI −→ +∞ , with m exp(2δI) = 4G4QI = finite . (5.1.25)

When taking this limit, we find indeed agreement between the original and the subtracted

entropies for extremal black holes:

Sloopext = Sloopext−sub =
AΣ

48πϵ2
− 1

90
log
(r+
ϵ

)
. (5.1.26)
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5.2 Interpolating Schwarzschild geometry and vanishing log correction

If we compare the results (5.1.17) and (5.1.23), which express the entanglement entropy for

the original and subtracted versions of the Schwarzschild black hole respectively, we notice

an interesting feature: the sign of the logarithmic correction has changed from positive to

negative. This raises the question of whether there exists an interpolating geometry for

which this correction vanishes. One could interpret such a solution as a fixed point for the

entropy, in the sense of the renormalization group, since the tree-level result is unaffected

by the log correction.

As it happens, we can indeed construct solutions that interpolate between the original black

hole geometry and the subtracted geometry. This is done through Harrison transforms,

which are a four-parameter group of transformations acting on the black hole solution. It

is shown in [71] that a four-parameter Harrison transform interpolates between the original

geometry and a new black hole geometry, which after a rescaling yields the subtracted

version of the original geometry. (A version of this construction requiring only two Harrison

parameters had appeared previously in [15].) Therefore, one should expect to find a suitable

combination of Harrison transformation parameters that corresponds to a geometry with a

vanishing log term in the entropy.

Let us review briefly how the general Harrison transform is defined in [71]. We have four

Harrison parameters (α0, αj), with j = 1, 2, 3. The effect of a Harrison transformation

gH(α0, αj) on the black hole geometry is to modify the warp factor ∆ (which is, in general,

a polynomial of the fourth order in r) in the following way: The term with r4 gets multiplied

by (1−α2
0)
∏
j(1−α2

j ), so that it vanishes when any of the four parameters is set to 1. The

term with r3 is multiplied by a suitable permutation of terms combining three factors of

the form (1 − α2), so that it vanishes when any two of the parameters are set to 1. The

analogous operation happens with the second and first order terms. Detailed formulas, too

long to quote here, are to be found in Appendix C of [71] for the particular cases of the

Kerr solution and the general static solution.
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To obtain the subtracted geometry from the original geometry, one needs to apply a Harrison

transform with particular values of the four parameters, followed by a specific re-scaling of

the metric. The values of the Harrison parameters that lead to the subtracted geometry

are:

αj = 1 , α0 =
Πs cosh δ0 −Πc sinh δ0
Πc cosh δ0 −Πs sinh δ0

, (5.2.1)

and the subsequent re-scaling of the metric takes the form:

U → U + c0 , e2c0 =
eδ1+δ2+δ3

Πc cosh δ0 −Πs sinh δ0
, (5.2.2)

where exp(−4U) = ∆/G2. The matter fields supporting the geometry get rescaled as well;

we omit these details for briefness and refer the reader once more to [71] for the full formulas.

To move between the original and the subtracted versions of Schwarzschild, there is no

metric re-scaling involved because all δI vanish and therefore so does c0. Also, in this case

both the initial and final values of the α0 parameter are 0, so we may disregard it. The

interpolating geometry we have is given by

ds2 = −∆−1/2Gdt2 +∆1/2

(
dr2

X
+ dθ2 +

X

G
sin2 θ dϕ2

)
, (5.2.3)

with

∆ =
∏
I

((1− α2
I)r + 2mα2

I). (5.2.4)

We can now compute the entropy directly for the interpolating geometries using (5.1.9).

The lack of angular dependence makes the calculation trivial, and the result is

Sloopinterpolating =

(
3α2

0 + 3α2
1 + 3α2

2 + 3α2
3 − 8

45

)
log
(r+
ϵ

)
. (5.2.5)

One can easily see that
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Sloopinterpolating = SloopSch for α0,1,2,3 = 0, (5.2.6)

= SloopSch−sub for α1,2,3 = 1 , α0 = 0,

= Sloopext for α0,1,2,3 = 1,

= 0 for
∑
I

α2
I =

8

3
.

We conclude that a combination of Harrison parameters satisfying
∑

I α
2
I =

8
3 takes us from

the original Schwarzschild black hole to one with vanishing logarithmic corrections to the

entropy.

5.3 Conclusion

We have studied the logarithmic corrections to the entanglement entropy of a minimally

coupled scalar field in the subtracted geometry black hole background. Our main results

are collected in formulas (5.1.19-5.1.24). They all differ from the corresponding results for

non-subtracted black holes, indicating that the agreement of subtracted and non-subtracted

entropies does not extend beyond the tree level. On the other hand, the subtracted results

approach the original ones for the extremal BPS case in the appropriate limit. We noticed

that the logarithmic correction term universally changes sign for all cases of subtracted

black holes. For the schwarzchild case we found the interpolating solution which for certain

choices of the Harrison parameters gives a vanishing logarithmic correction.

5.4 Appendix A: Parameters for the original general black hole expression

In this Appendix we provide the definitions of the parameters in the general expression for

the entropy of original four-charge rotating black holes. We quote again formula (5.1.10):

Sloop =
AΣ

48πϵ2
− Ared(r+)

720

∫ 1

−1
du

κu4 + λu2 + µ

(αu4 + βu+ γ)3/2
, (5.4.1)
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The denominator is simply ∆
3/2
0 with the change of variables u = cos θ. Hence we have:

α = a4, (5.4.2)

β = 2a2(r2+ + C), (5.4.3)

γ =
4∏
I=0

(RI+)
2, (5.4.4)

where RI+ = r+ + 2m sinh2 δI and

C = mr+

3∑
I=0

sinh2 δI + 4m2(Πc −Πs)Πs − 2m2
∑

I<J<K

sinh2 δI sinh
2 δJ sinh

2 δK . (5.4.5)

The remaining three parameters are given by:

κ = 4a4 , (5.4.6)

λ = 4β − 16a2m2 (Πc −Πs)
2 + 2a2(r+ − r−)(2r+ − 2r− −Rb) , (5.4.7)

and

µ =4γ − 16a2m2 (Πc −Πs)
2

+
[
16mAred(r+)(Πc −Πs) +Ra + 4(r2+ + 2mr+ + 2C)

]
(r+ − r−) , (5.4.8)

where we use the abbreviations

Ra = R0
+R

1
+R

2
+ +R0

+R
1
+R

3
+ +R0

+R
2
+R

3
+ +R1

+R
2
+R

3
+, (5.4.9)

and Rb = 2r+ +m
∑

I sinh
2 δI .
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Chapter 6

Vacuum Polarization: Analytical Result

Quantum field theory in curved spacetime can be used to understand a lot of interesting

features of black holes in a semiclassical approximation, most notably particle production

near the black hole horizon [88]. The calculation of vacuum polarization or ⟨ϕ2⟩ (for a scalar

field) is the simplest standard probe of quantum fluctuations in a black hole background,

and can also be used to understand the symmetry breaking and Casimir effects near a black

hole. Computation of ⟨ϕ2⟩ is also a preliminary step in evaluating the stress energy tensor

⟨Tµν⟩, which contributes to the backreaction through the semiclassical Einstein equation.

Candelas studied the vacuum polarization of a scalar field in the Schwarzschild black hole

[89] and was able to obtain an analytical expression for ⟨ϕ2⟩ at the horizon. Candelas’

methods extend easily to charged static black holes; there have also been numerical studies

of vacuum polarization of scalar fields on general static black hole backgrounds beyond the

event horizon (e.g. [90] for asymptotically flat solutions and [91] for the asymptotically

anti-de Sitter case), and analytical computations at the horizon of a black hole threaded

with a cosmic string [92]. The case of rotating black holes is much more challenging. Frolov

[93] was able to calculate the analytical expression for ⟨ϕ2⟩ only at the pole (θ = 0) of the

event horizon, and Ottewill and Duffy [94] have provided a numerical evaluation throughout

the black hole horizon. However so far no one has been able to give an analytical formula

for ⟨ϕ2⟩ throughout the horizon of a four-dimensional rotating black hole. (An analytic

approximation good for fields with large mass is available, however [95], and exact results

are obtainable in d = 3 with AdS asymptotics [96, 97].)

The horizon vacuum polarization in the static subtracted metric was studied in [102]. In

this chapter we shalll consider the subtracted geometry of the uncharged rotating Kerr black
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hole. We shall see that the special features of the subtracted rotating metric, in particular

the well-defined nature of the thermal vacuum and the solvability of the wave equation,

allow us to obtain analytical results that are unavailable for the standard Kerr black hole.

The subtracted Kerr metric is given by:

ds2 = −∆−1/2G (dt+A dφ̃)2

+∆1/2

(
dr2

X
+ dθ2 +

X

G
sin2 θ dφ̃2

)
. (6.0.1)

with

X = r2 − 2Mr + a2 , G = r2 − 2Mr + a2 cos2 θ

A =
2Mar sin2 θ

G
, ∆ = 8M3r − 4M2a2 cos2 θ . (6.0.2)

(The only difference between this metric and the standard Kerr metric is the form of the

“warp factor” ∆. For the explicit form of gauge potentials and axio-dilatons of the STU

model, supporting this geometry, see [15].) The horizons and their surface gravities and

angular velocities are given by:

r± = M ±
√
M2 − a2 ,

κ± =
1

2M

[
M√

M2 − a2
± 1

]−1

,

Ω± = κ±
a√

M2 − a2
. (6.0.3)

We switch to co-rotating coordinates (t, r, θ, φ), with the new angular variable being defined

by:

φ = φ̃− Ω+t . (6.0.4)

These are adapted to observers co-rotating with the black hole at the horizon. A noteworthy
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feature of subtracted geometry is that outside the horizon there is a globally defined timelike

Killing vector, written as ∂t in the co-rotating coordinates [103, 104]. This guarantees that

there are no superradiant modes and ensures the existence of a Hartle-Hawking-like vacuum

state adapted to the co-rotating observers. This is different from the case of ordinary Kerr

black hole, where there is no such Killing vector [105, 106] and a physical co-rotating vacuum

requires enclosing the black hole in a reflective box [94, 107]. The subtracted Kerr resembles

more in this respect the Kerr/AdS black hole [96].

The general algorithm we follow for computing the horizon vacuum polarization in the

Hartle-Hawking state starts by defining the Euclidean Green’s function GH(x, x
′) (in a

state regular at the horizon and infinity, and where the modes are adapted to co-rotating

coordinates). Then we will evaluate −iGH with radial point splitting, perform the mode

sum, and subtract the covariant divergent counterterms.

After writing the metric in coordinates (t, r, θ, φ) we perform the Wick rotation setting

t = −iτ . The metric becomes:

ds2E = − G

∆1/2
[A dφ− i(1 +AΩ+)dτ ]

2

+∆1/2

(
dr2

X
+ dθ2 +

X

G
sin2 θ (dφ− iΩ+dτ)

2

)
. (6.0.5)

On writing the massless minimally coupled wave equation and proposing a solution of the

form einκ+τeimφPml (cos θ)χlmn(r), we obtain straightforwardly a radial equation which, in

the re-scaled variable x = (r − 1
2(r+ + r−))/(r+ − r−), reads:

[ ∂
∂x

(
x2 − 1

4

)
∂

∂x
− n2

4
(
x− 1

2

)
+

βmn

4
(
x+ 1

2

) − l(l + 1)
]
χlmn(x) = 0 , (6.0.6)

where

βmn =
2Mn2r− − a2(4m2 + n2)− 4iamnr−

r2+
. (6.0.7)
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Two independent solutions of the equation, respectively regular at the horizon and at in-

finity, are:

χ
(1,2)
lmn =

(
x− 1

2

)n
2(

x+ 1
2

)n
2
+l+1

F
(
almn, blmn, c

(1,2)
ln ; z(1,2)

)
, (6.0.8)

where

c
(1)
ln = n+ 1 , c

(2)
ln = 2l + 2 , z(1) =

x− 1
2

x+ 1
2

, z(2) =
1

x+ 1
2

,

(almn, blmn) = l + 1 +
|n|
2
±
√
βmn
2

, (6.0.9)

and the symmetry of the hypergeometric function makes irrelevant which branch of the

square root is chosen.

The full Green’s function is expanded as

GH(−iτ, x, θ, φ ;−iτ ′, x′, θ′, φ′) =
iκ

2π r0

∞∑
n=−∞

einκ(τ−τ
′)

∞∑
l=0

l∑
m=−l

Y m
l (θ, φ)Y m∗

l (θ′, φ′)Gmln(x, x
′) , (6.0.10)

where r0 = r+ − r− = 2
√
M2 − a2, κ ≡ κ+ as defined in (6.0.3), and

Gmln(x, x
′) =

Γ(amln)Γ(bmln)

Γ(2l + 2)Γ (1 + |n|)
χ
(1)
mln(x<)χ

(2)
mln(x>) . (6.0.11)

To evaluate the vacuum polarization at the horizon we set x = 1/2, x′ = ϵ + 1
2 (note that

this is a dimensionless regulator ϵ = (r′− r)/r0) and join the points in the other directions,

calling the resulting Green’s function GH(ϵ, θ). All the terms in the sum vanish except
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n = 0, so we are reduced to:

−iGH(ϵ, θ) =
κ

8π2 r0

∞∑
l=0

l∑
m=−l

(l −m)!

(l +m)!
[Pml (cos θ)]2

× Γ(l + 1 + iαm)Γ(l + 1− iαm)

Γ(2l + 1)
(1 + ϵ)−(l+1)

× F
(
l + 1 + iαm, l + 1− iαm, 2l + 2,

1

1 + ϵ

)
, (6.0.12)

where the parameter α ≡ a/r+ takes values between 0 and 1. We replace the hypergeometric

by an integral expression using formula 9.111 of [108], leading to:

−iGH(ϵ, θ) =
κ

8π2 r0

∞∑
l=0

(2l + 1)

l∑
m=−l

(l −m)!

(l +m)!
[Pml (cos θ)]2

×
∫ 1

0
dt

(
t(1− t)
1 + ϵ− t

)l 1

1 + ϵ− t
cos (mα lnλ) , (6.0.13)

where λ =
(
(1+ϵ)(1−t)
t(1+ϵ−t)

)
.

The addition theorem for the associated Legendre polynomials is used to compute the sum

over m, and formula III.4 from [109] subsequently yields the sum over l. This leads, after

a change of variables to x = 1− t, to the integral expression

− iGH(ϵ, θ) =
κ

8π2 r0

∫ 1

0
dx fϵ(x) ; (6.0.14)

fϵ(x) =

ϵ2+2ϵx+(2−x)x3
(x2+ϵ)3[

1 + 4x(1−x)(x+ϵ)
(x2+ϵ)2

sin2 θ sin2
(
α
2 lnλ

)]3/2 , (6.0.15)

with λ = λ(t(x)). It is easy to see from numerical evaluation that the leading divergences

in the integral as ϵ→ 0 match those provided by the standard counterterms [110],

Gdiv =
1 + 1

12Rµνσ
,µσ,ν

8π2σ
− 1

96π2
R ln(µ2σ) , (6.0.16)

where σ is the halved geodesic distance between the points and µ is an arbitrary mass scale.
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It is more difficult, however, to obtain an explicit expression for the finite result of the

subtraction. To make progress we perform the following sequence of changes of variables:

u =
1

2
ln

(
x(1 + ϵ)

(1− x)(x+ ϵ)

)
, w = sinhu . (6.0.17)

This leads to the more tractable expression for the integral Iϵ ≡
∫ 1
0 dx fϵ(x):

Iϵ =

∫ ∞

0
dw

√
1 + ϵ[

ϵ+ (1 + ϵ)w2 + v2 sin2(α sinh−1w)
]3/2 , (6.0.18)

where v ≡ sin θ. The intermediate u-integral expression is also obtainable directly from

dimensional reduction from the Euclidean Green’s function in AdS3×S2, using the higher-

dimensional embedding of subtracted geometry described in [68]21.

To analyze the small ϵ limit and subtract explicitly the counterterms, we set aside momen-

tarily the
√
1 + ϵ prefactor and split the integral in two subintervals, I<ϵ over (0, ϵ1/6) and

I>ϵ over (ϵ1/6,+∞). In the second subinterval we can set ϵ to zero, at the expense of an

error that vanishes as ϵ → 0. Then we can add and subtract terms compensating for the

leading divergences at the lower limit, take ϵ → 0 safely in the subtraction, and integrate

explicitly the added coutnerterms. This leads to:

I>ϵ ∼
∫ ∞

0
dw

[
1[

w2 + v2 sin2(α sinh−1w)
]3/2

−
(

1

w3(1 + α2v2)3/2
+

v2α2(1 + α2)

2w(1 + w)(1 + α2v2)5/2

)]

+
1

2ϵ1/3(1 + α2v2)3/2
− v2α2(1 + α2) ln ϵ

12(1 + α2v2)5/2
, (6.0.19)

where ∼ stands for equivalence as ϵ → 0. The second subintegral is thus reduced to a

finite integral involving no regulator, that can be evaluated numerically, plus two explicit

divergent terms.

21We thank Finn Larsen for bringing this point to our attention.
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In the first subinterval, we can show that:

I<ϵ =

∫ ϵ1/6

0

dw[
ϵ+ (1 + ϵ)w2 + v2 sin2(α sinh−1w)

]3/2
∼
∫ ϵ1/6

0

dw[
ϵ+ (1 + ϵ)w2 + v2

(
α2w2 − α2(α2+1)w4

3

)]3/2 , (6.0.20)

which is expressible (formula 3.163.3 of [108]) in terms of the incomplete elliptic integrals

of first and second kind, F (γ, k) and E(γ, k). Here

γ = arcsin

(
ϵ1/6
√
c+

√
c− + c+

c− + ϵ1/3

)
, k =

√
c+

c− + c+
, (6.0.21)

and c± are the coefficients appearing in the denominator of the integrand when it is factored

in a form proportional to [(c2+ − w2)(c2− + w2)]3/2. We need the expansions of the elliptic

functions near (γ, k) = (π2 , 1), which have been derived in [111]. In order to obtain all the

divergent and finite contributions to I<ϵ , we need F accurately to order 1 and E accurately

to order ϵ. This in turns require obtaining the argument k accurately to order ϵ and γ to

order ϵ4/3. The result of this expansion is the following expression for the divergent and

finite pieces of I<ϵ :

I<ϵ ∼ −
1

2ϵ1/3(1 + α2v2)3/2
+

1

ϵ
√
1 + α2v2

+
1

6(1 + α2v2)5/2
×
(
− 3− α2(7 + 4α2)v2

+ α2(1 + α2)v2(ln(8(1 + α2v2)3/2)− ln ϵ)
)
. (6.0.22)

There is an additional finite contribution coming from the prefactor
√
1 + ϵ to the integral,

which yields when expanded a 1/2 multiplied by the coefficient of the linear divergence of

the integral. The complete result is thus expressed as:

Iϵ = I<ϵ + I>ϵ +
1

2
√
1 + α2v2

, (6.0.23)
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with the first to terms given by (7.1.16) and (6.0.19) respectively. We see that the ϵ−1/3

divergences cancel out, leaving only linear and logarithmic divergences that will match those

of counterterms (6.0.16), leaving a finite renormalized result.

This concludes the computation of the explicit divergent and finite portions of the Green’s

function’s coincidence limit. The counterterms (6.0.16) need now to be evaluated as a

function of ϵ to the order O(1). The form of σ can be computed from the formulas expressing

σ in terms of coordinate separation:

σ =
1

2
gab∆x

a∆xb +Aabc∆x
a∆xb∆xc

+Babcd∆x
a∆xb∆xc∆xd + · · · (6.0.24)

where A,B are obtained from symmetrized derivatives of the metric tensor, as described in

[112].

These expressions are valid in a coordinate system in which the metric is regular. We use

the Kruskal coordinates for the subtracted geometry that have been derived in [104], which

take the form (U, V, θ, φ) with (−UV ) ∝ (r − r+) near the horizon. Our radial coordinate

separation is therefore written as ∆xa = (−δ, δ, 0, 0) (with δ ∝
√
ϵ). After computing σ

by this procedure (leading to an expression of the form σ = β1ϵ + β2ϵ
2 + O(ϵ3)) it is easy

to obtain the Ricci counterterm in (6.0.16) because to the relevant order O(ϵ) we have

Rµνσ
,µσ,ν = Rrrσ

,rσ,r.

Once all the counterterms are computed by this procedure, when expressed in terms of the

α parameter they take the relatively simple form:

Gdiv =
1 + α2

64π2M2

[
1

ϵ
√
1 + α2v2

− α2v2(1 + α2) ln ϵ

4(1 + α2v2)5/2

+
(−1 + α2(−4 + α2 + (7 + α2 + α4)v2 + 3α2v4))

12(1 + α2v2)5/2

]
, (6.0.25)

(plus a term of the form R(r+, θ) lnµ
2). Then, absorbing some R-proportional terms into
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the arbitrary constant µ, the final result for the vacuum polarization is:

⟨ϕ2⟩r+ = R(r+, θ) lnµ
2 +

1 + α2

64π2M2

{
1

12(1 + α2v2)5/2

×
[
(1− α2(−4 + α2(9 + 9α2 + α4)v2 − 3α2v4))

− 3α2(1 + α2)2 ln(1 + α2v2)
]

+

∫ ∞

0
dw

[
1[

w2 + v2 sin2(α sinh−1w)
]3/2

−
(

1

w3(1 + α2v2)3/2
+

v2α2(1 + α2)

2w(1 + w)(1 + α2v2)5/2

)]}
, (6.0.26)

where

R(r+, θ) =
3α2(1 + α2)2v2

8M2(1 + α2v2)5/2
. (6.0.27)

Notice that in the absence of rotation spherical symmetry is recovered, with its value

⟨ϕ2⟩Schsubr+ = (768π2M2)−1 matching the result obtained in [102] for the subtracted

Schwarzschild black hole. In addition, the result at the pole takes the form ⟨ϕ2⟩r+,θ=0 =

(768π2M2)−1(1+α2)(1+4α2−α4), agreeing with result found in [102] using a non-corotating

vacuum state (at the pole, the distinction is irrelevant). The dot-dashed plot corresponds

to the extremal case a =M .

It would be interesting to compare our results with numerical computations of the vacuum

polarization in the standard Kerr metric (with a mirror in place to define the vacuum).

Our calculation holds for the minimally coupled field, and the numerical results in [94]

are for the conformal case, so a direct comparison is not yet available. We expect our

calculations to be easily generalized to the case of fields with higher spins as well as to

rotating charged black holes, including multi-charged solutions. We also expect our methods

to be applicable to the computation of the stress-energy tensor, which would open the

possibility of using the subtracted approximation to study analytically the backreaction for

rotating four-dimensional black holes.
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Chapter 7

Thermodynamics: Mass, Charge and An-

gular momentum

Black holes behave as thermodynamic objects. The thermodynamic properties of black

holes are determined by the behavior of their geometry at the asymptotics due to the

nature of spacetime curvature. The case of black holes in asymptotically flat spacetimes is

very well understood [114] and is straightforward. On the other hand, the case of black holes

in asymptotically non-zero negative cosmological constant (anti-deSitter (AdS) spacetime)

possess new thermodynamic features, crucial in studies of gravity/field theory duality. In

general, in fundamental theories where physical constants such as Yukawa couplings, gauge

coupling constants or Newton constant as well as the cosmological constant arise as vacuum

expectation values of scalar fields and hence can vary, the thermodynamic laws are changed

to include these variations (see, e.g., [115]). These ”constants” are thought of as the vacuum

expectation values of fields at asymptotic infinity, and their variation can lead to new

insights into thermodynamic behavior of gravitational systems, which can play an important

role in the study of gravity/field theory duality.

In this chapter we focus on the study of thermodynamic properties of geometries which are

asymptotically conical (AC). The fields supporting such geometries, instead of becoming

constant at spatial infinity, vary as a function of radial distance at infinity. These geometries

have very different asymptotic structure compared to the asymptotically flat and asymptot-

ically AdS case. Their thermodynamics has not been explored in detail, and new insights

there would provide a starting point for the study of gravity/field theory duality for AC
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spacetimes. The spacetime metrics have the asymptotic form:

ds2 = −Y 2pdt2 +B2dY 2 + Y 2
(
dθ2 + sin2 θdϕ2

)
, (7.0.1)

where p and B are constants.These AC metrics have the special properties that their radial

distance BY is a non-trivial multiple of the area distance Y and their spatial metric re-

stricted to the equatorial plane is that of a flat two-dimensional cone. The energy density of

such metrics typically falls off as inverse squared of the radial distance and thus the geom-

etry cannot have a finite total energy. Bisnovatyi-Kogan-Zeldovich’s gas sphere [116, 117],

Barriola-Vilenkin Global Monopole [118], the near horizon geometry of an extreme black

hole in Einstein-Dilaton-Maxwell gravity, a black hole containing a global monopole and the

cosmic string metric outside the string are all examples of asymptotically conical metrics.

In this letter we study the thermodynamics of a special class of metrics of the asymptotic

form (7.0.1), known as the ”subtracted geometries” with p = 3, B = 4, and Y = (8m3r)
1
4 .

The thermodynamics of these geometries is not known and we show that the subtleties lie

in deriving the mass, asymptotic charges and gauge fields there. The conclusions here are

generalizable to other cases of AC geometries and thus are of broader interest.

The Lagrangian density of this N=2 supergravity coupled to the three vector multiplets,

also known as the STU-model is given by [123]:

L4 = R ∗1− 1

2
∗dφi ∧ dφi −

1

2
e2φi ∗dχi ∧ dχi

− 1

2
e−φ1 (eφ2−φ3 ∗F1 ∧ F1 + eφ2+φ3 ∗F2 ∧ F2

+ e−φ2+φ3 ∗F1 ∧ F1 + e−φ2−φ3 ∗F2 ∧ F2)

− χ1 (F1 ∧ F1 + F2 ∧ F2) , (7.0.2)

where the index i ranges over 1 ≤ i ≤ 3. The four field strengths in terms of potentials are
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given by:

F1 = dA1 − χ2 dA2 , F1 = dA1 + χ3 dA2 , F2 = dA2 ,

F2 = dA2 + χ2 dA1 − χ3 dA1 + χ2 χ3 dA2 . (7.0.3)

The four-charge rotating black hole metric is22 :

ds2 = −∆− 1
2

0 G(dt+A)2 +∆
1
2
0 (
dr2

X
+ dθ2 +

X

G
sin2 θdϕ2), (7.0.4)

where 23:

X = r2 − 2mr + a2 ,

G = r2 − 2mr + a2c2θ ,

A =
2mas2θ
G

[(Πc −Πs)r + 2mΠs] dϕ , (7.0.5)

and

∆0 =
4∏
I=1

(r + 2ms2I) + 2a2c2θ[r
2 +mr

4∑
I=1

s2I (7.0.6)

+4m2(Πc −Πs)Πs − 2m2
∑

I<J<K

s2Is
2
Js

2
K ] + a4c4θ .

The physical parameters (mass M , angular momentum J and charges QI) of the general

four-charge black hole are parametrized in terms of auxiliary constants m, a, δI as:

M =
1

4
m

3∑
I=0

c2I , QI =
1

4
ms2I , J = ma (Πc −Πs) , (7.0.7)

22The four gauge potentials and three axio-dilaton fields are given in [123]. For the subtracted geometry
analysis we can take the gauge potentials A1 = A2 = A3 ≡ A for gauge field strengths ∗F1 = F2 = ∗F1 ≡ F
and A4 ≡ A for F2 ≡ F . The gauge potential definitions of this letter differ from the ones used in [15, 123]
by a factor of 1/2 to comply with standard literature convention.

23sθ ≡ sin θ, cθ ≡ cos θ, sI ≡ sinh δI , cI ≡ cosh δI , s2I ≡ sinh 2δI , c2I ≡ cosh 2δI , Πc ≡
∏4
I=1 cI and

Πs ≡
∏4
I=1 sI .
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The subtraction procedure corresponds to replacing the “warp factor” ∆0 with ∆, where:

∆ = (2m)3r(Π2
c −Π2

s) + (2m)4Π2
s − (2ma)2(Πc −Πs)

2c2θ , (7.0.8)

while keeping everything else unchanged. Importantly, this leaves the global structure

unchanged, with two horizons at r± = m ±
√
m2 − a2, with the same area and surface

gravity there. (For the most general rotating black holes of the STU model with one more

independent charge parameter [124], the subtracted geometry was obtained and analyzed

in [125].)Therefore the entropy S, temperature T and angular potential Ω of the subtracted

geometry remain the same as in the full geometry and are given by:

S = 2πm
[
(Πc +Πs)m+ (Πc −Πs)

√
m2 − a2

]
,

T =
κ+
2π

, Ω = κ+
a√

m2 − a2
, (7.0.9)

where

1

κ+
= 2m

[
m√

m2 − a2
(Πc +Πs) + (Πc −Πs)

]
. (7.0.10)

The values of the fields sourcing the subtracted geometry are however changed. The gauge

fields at θ = 0 at the outer horizon r+ are given by:

A(r+) =
2m2[(2m)2ΠcΠs + a2(Πc −Πs)

2]

R4
dt , (7.0.11)

A(r+) =
m− r+

4m(Π2
c −Π2

s)
1
3

dt

− ma2 (Πc −Πs)[ r+ (Πc −Πs) + 2mΠs ]

(Π2
c −Π2

s)
1
3R4

dt ,

where at the outer horizon r+ = m+
√
m2 − a2, R4 = (2m)2[m(Πc+Πs)+

√
m2 − a2(Πc−

Πs)]
2. The gauge of these gauge fields is uniquely fixed by the scaling limit discussed below.

(The gauge potentials at θ ̸= 0 can be found in [15].) The three dilatons and axions are

given by,

eφ ≡ eφ1,2,3 =
(2m)2(Π2

c −Π2
s)

2
3

R2
, (7.0.12)
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and

χ ≡ χ1 = −χ2 = χ3 = −
a(Πc −Πs)

1/3cθ
2m

, (7.0.13)

respectively. These three axio-dilaton fields are also fixed by the scaling limit. The asymp-

totic charges can then be easily obtained from the Gauss law,

Q =
mΠcΠs
Π2
c −Π2

s

, Q = m(Π2
c −Π2

s)
1
3 . (7.0.14)

An important point to notice here is that the dilatons have a spatial dependence. This

forces the gauge coupling constants to run logarithmically in the radial direction not even

stabilizing at infinity. This is an important feature that the subtracted geometries share

with Dilaton-Maxwell theory when a limit of vanishing Newtons constant is taken.

7.1 Thermodynamics

The definitions of mass and angular momentum are heavily dependent on the asymptotics

of the curved geometry. Let us start by studying the mass of our subtracted geometry first.

We can afford here to deal with the static case a = 0 since mass is defined independent of

rotation. We can parameterize our static geometry by:

ds2 = −N2dt2 +N−2dr2 +R2(dθ2 + sin2 θdϕ2) , (7.1.1)

where N = X
1
2∆− 1

4 and R = ∆
1
4 . In the Hawking-Horowitz prescription [126] the mass is

given by:

MHH = − 1

8π

∫
St→∞

N(K −K0) dΩ , (7.1.2)

where dΩ = R2 sin θdθdϕ, K is the extrinsic curvature of the boundary two sphere and K0

in our case, will be the extrinsic curvature of the two-sphere embedded in asymptotically

conical geometry. Up to O(r−1) corrections we can show that N ∼ rR−1
0 , St ∼ 4πR2

0,

R ∼ R0(1+mΠ2
s([2r(Π

2
c−Π2

s)]
−1) and R0 ≡ (2m)

3
4 r

1
4 (Π2

c−Π2
s)

1
4 . Calculating the Hawking-
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Horowitz mass, we get:

MHH =
m

4

Π2
c +Π2

s

Π2
c −Π2

s

. (7.1.3)

Next we would like to check that the Komar mass formula gives us the same results as the

Hawking-Horowitz formalism. The Komar mass is defined as:

MK = − 1

8π

∫
St→∞

⋆dζ(t) , (7.1.4)

where ζ(t) is the time-like Killing vector. In the static subtracted geometry ζ(t) is given by

−X∆− 1
2dt. One can show that:

MK =
3

4
r − 1

2

m
(
Π2
c − 2Π2

s

)
Π2
c −Π2

s

+O(
1

r2
) , (7.1.5)

which diverges linearly with r. The appearance of this divergence is one of the most im-

portant features that separates the asymptotically conical case with the asymptotically flat

case. We can however show that this divergence gets regulated once we take the asymptotic

gauge fields and charges into account. Defining, Hµν = ∇µζν(t) − ∇
νζµ(t) allows us to show

that:

∇µHµν = −16π(T νµ − 1
2Tδ

ν
µ)ζ

µ
(t) . (7.1.6)

Using the above relation for the case of static electrically charged subtracted geometry, we

obtain:

∇r
(
Hrt + 8π[3eφF rtAt(r) + e−3φFrtAt(r)]

)
= 0 , (7.1.7)

As St → ∞, At(r) → 0 and thus only the term with At(r) contributes. Furthermore we

can identify that R2eφF rt = Q, and thus obtain:

MKreg =MK + 3QAt(r) =MK(r) + 3
4(m− r) , (7.1.8)
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where MK is the unregulated Komar mass. Therefore the terms linear in r cancel and the

regulated Komar mass is:

MKreg =MHH , (7.1.9)

i.e. the Komar formula gives the same result as the one obtained through the Hawking-

Horowitz formalism.

We can also write the explicit expression of MHH in terms of the reducible mass M2
irr ≡ S

4π ,

Q and Q:

MHH =
1

4

(
M4

irr

Q3
+
Q2Q3

M4
irr

)
. (7.1.10)

This formula can be used to give an analogue of the Christodoulou-Ruffini inequality (7.3.1)

for our case, telling us the bound on how much mass of the black hole can be converted

into energy.

Now we can move to define the angular momentum and study the a ̸= 0 case. In the

Hawking-Horowitz formalism the angular momentum is given by:

JHH = − 1

8π

∫
St→∞

(Kab −Khab)NarbdΩ . (7.1.11)

where a, b run over r, θ, ϕ. hab is the induced metric on the constant time hypersurface, Na

is the shift vector and ra is the unit normal to the boundary two sphere. In the axially

symmetric case of subtracted geometry the second term does not contribute because hab

does not have a ϕr-component. On the other hand the Komar integral for the angular

momentum is given by:

JK =
1

16π

∫
St→∞

∇µζν(ϕ)dSµν , (7.1.12)

where ζµ(ϕ) is the rotational Killing vector and the area element dSµν = −2n[µrν]dΩ with

nµ = eµana and rµ = eµara being the time-like and space-like normals to the surface St. We
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can show the equality of (7.1.11) and (7.1.12) by employing:

∇µζν(ϕ)nµrν = KabN
anb . (7.1.13)

It is a simple exercise to show:

JHH = JK = J ≡ am(Πc −Πs) . (7.1.14)

Once we have defined mass and angular momentum we can easliy show that the Smarr law:

MHH = 2TS +At(r+)Q+ 3At(r+)Q+ 2JΩ , (7.1.15)

and the first law of thermodynamics:

dMHH = T dS +At(r+) dQ+ 3At(r+) dQ+Ω dJ , (7.1.16)

continue to hold for our geometry. This gives us further confidence in our definitions of the

mass and angular momentum. Another important point to notice is that in order for these

laws to be obeyed, the gauge fixing of the fields was crucial and was uniquely fixed by the

scaling limit.

7.2 Scaling Limit

There are two ways to obtain the subtracted geometries starting from the original ones.

Firstly they can be obtained by applying the Harrison transformations [15] and secondly it

can also be obtained via the scaling limit [15]. In this section we apply the scaling limit to

the mass and angular momentum formulae obtained in the original black hole calculations

and see how they agree with the subtracted geometry answers that we obtained above by
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direct calculations. The limit is implemented by means of the following scalings:

m→ mϵ, r → r ϵ, t→ t ϵ−1, a→ a ϵ , (7.2.1)

sinh2 δ1,2,3 →
(Π2

c −Π2
s)

1
3

ϵ
4
3

, sinh2 δ4 →
Π2
s

(Π2
c −Π2

s)
.

The scaling limit ensures that the entropy, the surface gravity, the angular velocity and

the angular momentum are the same as those of the asymptotically flat black hole, with

the result for the angular momentum confirmed by the independent calculation above. The

matching of the mass formula is however more involved. The mass of the original four-charge

STU black hole is given by: M = 1
4m
∑

I cosh 2δI . Its scaling limit is:

M
=

3m

2

(Π2
c −Π2

s)
1
3

4
3

+
m

4

Π2
c +Π2

s

Π2
c −Π2

s

+
3m

4
. (7.2.2)

In the scaling limit the gauge potentials A1,2,3 acquire an infinite constant term, not included

in (7.0.12), which along with the large charges Q1,2,3 ensure that in the Smarr relation, the

product of original charges Qi = m sinh 2δi with Ai (i = 1, 2, 3) contain divergent parts

which cancel the divergent part in (7.2.2). Furthermore the constant term 3m
4 in (7.2.2) is

cancelled by a product of the sub-leading contribution in Q1,2,3 and the divergent part of

A1,2,3. The remaining contributions are due to the precisely quoted charges (7.0.14) and

gauge potentials (7.0.12), thus verifying that the mass of the subtracted geometry is indeed

MHH .

7.3 Conclusion and Discussion

It should be noted that our successful extension of a coherent black hole thermodynamic

theory involving appropriately defined asymptotic charges to the case of subtracted geome-

tries depends crucially on taking seriously their asymptotically conical nature. This differs

both qualitatively and quantitatively from the the standard asymptotically flat and asymp-

totically AdS cases. Nevertheless the end result shares the universal features of those cases

and gives further support to the idea that there are microscopic states or degrees of freedom
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(possibly stringy) counted by the entropy of black holes and the number of such states is

insensitive to which environment they find themselves in.

Our analysis also resulted in the explicit expression (7.1.10) for MHH in terms of Mirr,

Q and Q. This expression lends itself to propose an analog of the Christodulou-Ruffini

inequality [127]:

MHH ≥
1

4

(
M4

irr

Q3
+
Q2Q3

M4
irr

)
. (7.3.1)

Such an inequality can be tested, at least in time symmetric data context [128] by taking

the scaling limit of the initial data results for the STU model.

Furthermore for these initial data, the Einstein-Rosen Bridge structure is manifest from

eq.(2.24) and eq.(2.25) of [104] where the reflection map of Kruskal-Szekeres coordinates

(U, V ) → (−U,−V ) is an isometry that leaves the radial coordinate r invariant but fixes

the U = const.V surfaces, which in regions I and IV are constant time surfaces. Thus the

initial data of the asymptotically conical 3-metrics has to be joined by an Einstein-Rosen

throat. Further study of these properties of the subtracted geometry is of great interest.
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Chapter 8

Conclusion

Subtracted geometries are an extremely interesting area of research in black hole physics

because these geometries provide a new way of looking at the relationship of black holes

geometries with the ”Hidden Conformal Symmetry”. The asymptotic conicality of these

geometries is also a feature that has not been studied much in the past and may provide

some interesting insights into asymptotic structure studies of black hole physics that are

quite different from the quite well studied asymptotically flat and asymptotically AdS cases.

Furthermore since the wave equation separability property of these geometries allow us to

obtain an analytical solution for the minimally coupled scalar field, these geometries provide

a very unique opportunity to understand many features of black holes, qualitatively that

were previous only studied numerically.

An interesting application of our work interesting application of our work would be to

find the detailed microscopic interpretation using string theory of general non-extremal

black holes. Using the duality interpretation of the Harrison and S,T transformations that

we gave, both the four- and five-dimensional problems can be reduced to understanding

the effect of the time like Melvin twists, followed by several T-dualities, on the D0-D4

system. Another interesting direction would be to understand the contributions of other

spin fields to the logarithmic corrections of the entanglement entropy of the subtracted

geometry black holes. In the last few years a lot of work has been done on calculating and

understanding the logarithmic corrections to black hole entropy using the euclidean gravity

(or heat ker- nel) method. Subtracted geometries can be a helpful example to perform such

calculations to further improve our understanding of these logarithmic corrections. The

vacuum polarization calculation for other higher spin fields is another such avenue where

subtracted geometry has the potential to provide new insights.
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