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Figure 5-2. Percent of Wolbachia, Drosophila, and unmapped reads after SWGA 

with swga derived or previously published primer sets. 

The percent of reads that mapped to Wolbachia (black), Drosophila (blue), or neither 

genome (gold), is shown for each primer set. Three replicates SWGA reactions (40 ng 

total DNA per reaction) were performed for each primer set and the results are 

presented separately for each. Additional triplicate SWGA reactions were performed 

using the Tm/Gini set and 20 ng total DNA per reaction. 
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The degree of enrichment of Wolbachia DNA after amplification did not 

necessarily correlate with a decrease sequencing effort needed to achieve broad 

coverage of the Wolbachia genome (Figure 5-3). For the Tm/Gini primer set, sequencing 

effort required to achieve at least 10x coverage of 90% of the genome was reduced 10 

fold relative to the unamplified control. On the other hand, rarefaction analysis indicated 

that the higher melting temperature primer sets would never achieve 10x coverage of 

even 10% of the Wolbachia genome (Figure 5-3). The lack of correlation was primarily 

due to uneven amplification of across Wolbachia genome (Figure 5-4). Coverage 

analysis of the higher melting temperature primer sets identified substantial enrichment 

of a few short regions of the Wolbachia genome with little enrichment of the remaining 

sequence (Figure 5-4). By contrast, amplification with the Tm/Gini primer set yielded 

more even coverage across the genome, which was typically 10-100x better than that 

obtained from the unamplified control (Figure 5-4). 
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Figure 5-3. Relationship between sequencing effort and percent coverage of the 

Wolbachia genome (at 10x read depth) after SWGA. 

The total number of base pairs (in millions) sequenced is shown relative to the percent of 

the Wolbachia genome covered at 10x read depth for the four swga derived primer sets 

and the set previously published by Leichty et al. SWGA reactions were performed in 

triplicate for each primer set using 40 ng of total DNA. An additional three reactions were 

performed for the Tm/Gini set using 20 ng of total DNA. 
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Figure 5-4. Normalized sequencing coverage across the Wolbachia genome after 

SWGA. 

Normalized coverage (1,000,000,000 * Fold Coverage / Total bp Sequenced) of the 

Wolbachia genome is shown for each primer set. Three replicate SWGA amplifications 

are shown in red, blue, and green. The black line in each plot window represents 

coverage for an unamplified sample. 
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The evenness of sequence coverage was weakly associated with primer density 

among primer sets. For example, the primer sets chosen with standard melting 

temperatures had more than twice as many total binding sites in the W. pipientis 

genome than primer sets with high melting temperatures and the average sequencing 

coverage was several orders of magnitude greater (Table 5-1). Within each primer set, 

however, variation in primer density across the genome was not correlated with local 

sequence coverage (Figure 5-5). For example, both primer sets chosen with high 

melting temperatures had many 20,000 bp regions in which there were no primer binding 

sites but these regions did not have lower sequence coverage than the regions that had 

substantially higher densities of primer binding sites (>70, Figure 5-5). 
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Figure 5-5. Relationship between primer binding site density and mean 

sequencing coverage after SWGA. 

Mean normalized coverage within a 20,000 bp sliding window is shown relative to the 

number of binding sites within the same 20,000 bp window after SWGA. SWGA 

reactions were performed in triplicate using either swga primer sets or the primer set 

from Leichty et al. Coverage was calculated separately for each reaction and then 

combined to generate the plot. 
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5.4 Discussion 

Microbial genomics is difficult when the genome of interest cannot be separated 

from contaminating DNA. In these situations, the majority of sequencing reads may be 

derived from contaminating DNA, increasing the sequencing effort required to get 

substantial coverage of the genome of interest. SWGA overcomes this by selectively 

enriching for a target genome from a complex DNA mixture (39), however this method 

requires the computationally difficult identification and validation of selective primer sets. 

Swga can identify and quantitatively evaluate millions of primers and primer sets to 

facilitate SWGA primer design. Swga quickly and efficiently identified sets for the 

amplification of Wolbachia from infected Drosophila. Moreover, at least one of the 

chosen sets performed significantly better than previously published (39), hand picked, 

primers.  

The swga program identifies primers that are common in the target species and 

rare in the background and rapidly evaluates primer sets on their potential to amplify the 

target genome. Computational evaluation of thousands of primer sets provides a major 

advance over the previous implementation of SWGA in which the user hand-assembled 

a small number of primer sets (39). In the current version of swga, primer sets are 

evaluated on multiple criteria that are logically associated with phi29 amplification. The 

swga program can also be altered by the end user to add new evaluative criteria as 

correlations between amplification and primer set characteristics become available. 

All of the primer sets chosen by the swga program and by human users (39) 

selectively amplified W. pipientis DNA from infected fruit flies, such that the proportion of 

sequencing reads that mapped to Wolbachia was at least 3 times greater than reads 

from the unamplified sample. The criteria used to choose the Tm/Score primer set were 

chosen to maximize the number of binding sites in the target genome and minimize the 
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number of binding sites in the background, while the evenness of primers across the 

target genome was not emphasized, which were based on the same principles used by 

Leichty and Brisson (2014). As may be expected, sequencing coverage after 

amplification with either of these primer sets was uneven (Figure 5-4). However, the 

decrease in sequencing effort required to yield broad coverage of the Wolbachia 

genome was substantially lower after amplification with the primers chosen by the swga 

program (Figure 5-1). 

The swga program efficiently chooses primer sets to selectively amplify target 

microbial genomes without prior culture or molecular separation. However, it is unlikely 

that the currently implemented criteria are ideal for identifying the best primer sets to 

evenly amplify a target genome. The criteria used to choose primer sets could be 

improved by a better understanding of the biochemistry of the phi29 enzyme and by a 

careful evaluation of primer set characteristics against amplification and coverage 

evenness across many different primer sets. Sequence coverage and primer 

characteristics from both successful and unsuccessful SWGA amplifications could allow 

an empirical investigation of primer set characteristics that result in strong and even 

amplification. These criteria could be then incorporated into the swga program during 

future updates. 
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CHAPTER 6 – Summary and Future Directions 

 

6.1 Summary 

African great apes are infected with a plethora of Plasmodium species including the 

closest relatives and direct ancestors of P. falciparum (26, 110). Studying these 

parasites can provide insights into the evolutionary history of this important pathogen 

and the genetic changes required to colonize humans. Chapter two of this dissertation 

shows that ape Laverania parasites do not recurrently infect humans, suggesting that 

there exists one or more blocks to cross-species transmission among these parasites. 

Chapters three and four describe the first comparative genomic analyses of both close 

and distant ape relatives of P. falciparum. These analyses identify features that are 

shared across the Laverania subgenus as well as some that are unique to the ancestry 

of P. falciparum. Chapter five provides a computational framework for efficient SWGA 

primer design that makes this genome enrichment strategy more accessible and easier 

to implement for any set of target and non-target genomes. Together, this dissertation 

offers the first genome wide insights into the Laverania subgenus and provides a 

foundation for future work. Here I propose future studies that may further elucidate the 

basis of Laverania host-specificity and the evolutionary steps that gave rise to P. 

falciparum. 
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6.2 Future Directions 

Identifying barriers to cross species transmission 

Chapter two of this dissertation describes the first large-scale screen for ape Laverania 

infections in humans in West Central Africa. While this study focused on populations 

within Cameroon, an additional study found no evidence of Laverania infections in 

forest-dwelling humans from Gabon (181). These data support the hypothesis that 

human infections with ape Laverania parasites are incredibly rare (26). Importantly, 

these studies focused solely on blood samples. It is possible that humans are exposed 

to ape Laverania parasites, but that these parasites cannot establish a blood stage 

infection and are therefore missed in blood based screens. Additional screening studies 

may allow us to determine if humans are exposed to ape Laverania parasites and if 

these parasites can establish pre-erythrocytic stage infections. Future studies should 

include of mosquito based screens, to determine whether ape Laverania infected 

mosquitoes feed on humans, and non-invasive pre-erythrocytic stage screens, to identify 

liver stage infections that fail to progress to the blood. 

 Mosquitoes are essential to the transmission of all Plasmodium parasites and 

may therefore play an important role in facilitating or preventing cross species 

transmission (182, 183). While the major vectors of human malaria in West Africa are 

well characterized (184-186), little is known about the mosquitoes that transmit malaria 

between wild African apes. Mosquito studies can answer two important questions. First, 

blood meal screenings of mosquitoes caught near great apes populations will help 

pinpoint mosquito species that regularly feed on these species. Second, screens for 

Plasmodium infections in these mosquito populations will identify which species act as 

competent vectors for ape Laverania parasites. Once potential ape Laverania vectors 

have been identified, mosquito catches in human settlements, especially those that are 
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located within the home range of wild ape populations, will allow us to determine if 

certain mosquito species may act as vectors for cross species between apes and 

humans. 

 While the proposed mosquito studies will be useful in determining whether 

mosquitoes serve as a block to Laverania cross species transmission, it is important to 

recognize the technical challenges associated with mosquito collection. Traps typically 

rely on CO2 or light to attract mosquitoes (187). CO2 traps, while more effective (187), 

require a source of CO2, which may be difficult to come by in more remote settings. The 

latter traps attract a wide variety of insects, and their contents must be sorted to remove 

unwanted species (DE Loy, unpublished). As it is likely that the proportion of both 

Laverania infected mosquitoes and ape blood fed mosquitoes is very small, these 

studies may require large numbers of mosquitoes to identify species that regularly feed 

on apes and those that serve as vectors for ape malaria. Some of these obstacles may 

be overcome by performing studies at chimpanzee sanctuaries. Sanctuaries provide a 

more controlled environment with fixed and accessible nesting sites that should allow the 

placement of more permanent traps. However, these sanctuaries may not be completely 

representative of natural ape habitats, and field studies will be necessary to ensure that 

these sanctuary based studies do not introduce unforeseen bias. 

 If humans are exposed to ape Laverania infected mosquitoes, it is possible that 

these parasites establish a liver stage infection but are unable to progress to the blood 

stage. Recent studies of the rodent parasite P. yoelli have shown that parasite DNA from 

pre-erythrocytic stage infections can be detected in fecal samples (188). If this holds true 

for the Laverania parasites, fecal PCR could be used as a non-invasive screening tool 

for liver stage infections in humans. If ape Laverania parasite DNA can be identified in 
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human populations, it would indicate that humans are exposed to ape Laverania and 

potentially develop liver stage infections.  

 Screening for antibodies to ape Laverania antigens could provide another means 

of detecting liver or aborted blood stage infections. Protein microarrays are now 

commonly used in studies of P. falciparum to compare the antibody profiles of exposed 

and naïve individuals (189). A similar approach could be used to screen for Laverania 

exposure, using protein sequences from the P. gaboni and P. reichenowi genomes. If 

such a study were to be undertaken, it would be important to differentiate true Laverania 

exposure from cross-reactivity to the antigens of endemic human Plasmodium species. 

This could be achieved by comparing the antibody profiles of individuals living near 

infected ape habitats with those from other human malaria endemic regions. The fecal 

DNA and antibody-based studies described here would complement mosquito studies. 

They would provide evidence for human exposure to ape Laverania, indicating that at 

least some ape Laverania vectors feed on both humans and apes. 

 While the studies I have proposed here may identify specific stages at which 

cross species transmission is prevented, it is reasonable to expect that the lack of 

zoonotic Laverania infections is multifactorial. This appears to be the case for P. 

falciparum infections of chimpanzees. While these infections have never been detected 

in wild living apes, our lab and others have identified multiple instances of reverse 

zoonosis in sanctuary chimpanzees (unpublished observation). This is not unexpected. 

Sanctuary chimpanzees are likely exposed to P. falciparum much more frequently than 

wild populations. Even in sanctuaries, however P. falciparum infections represent a very 

small proportion of the total malaria burden. These data would therefore suggest that, 

while a lack of exposure to infected mosquitoes limits cross species transmission, 

species-specific interactions at later stages of parasite development are also important. 
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Population genetics of ape Laverania parasites 

While this dissertation provides the first genomic level analysis of close and distant 

chimpanzee relatives of P. falciparum, additional ape Laverania population genomic 

studies will provide further insight into the evolutionary history of P. falciparum. Current 

ape Laverania genomic studies have focused solely on chimpanzee parasites (69). 

These studies cannot differentiate between evolutionary events that occurred during the 

emergence of P. falciparum and those that were present in P. praefalciparum. The 

identification of adaptive changes that allowed P. falciparum to colonize humans 

requires a direct comparison of P. falciparum to its gorilla ancestor. Blood samples from 

gorillas are extremely difficult to obtain due to the endangered status of these apes and 

the low numbers of gorillas in sanctuaries in West Africa. Thus, obtaining complete 

genomes of P. praefalciparum and other gorilla parasites will require the development of 

new selective enrichment strategies from non-invasively collected samples. One 

unexplored source of Laverania infected gorilla blood are sanguinivorus insects. While 

many such insects would not be susceptible to Laverania infection, those caught soon 

after feeding may still contain intact Laverania parasites in the blood meal. Experiments 

to determine if these blood meals can serve as sources of full length Laverania genomes 

are ongoing (100). 

 Genome-wide comparisons of P. falciparum, P. reichenowi and P. gaboni 

identified the first evidence of horizontal gene transfer between two Plasmodium 

species. Strikingly, the horizontally transferred segment contains two essential invasion 

genes, RH5 and CyRPA, which define the 3’ and 5’ ends of the segment. The 

maintenance and complete fixation of P. adleri derived alleles of both of these genes in 

P. praefalciparum suggests that this horizontally transferred segment was selected for. It 

is also possible, however, that this region was fixed in P. praefalciparum due to random 
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drift. These two phenomenon may be differentiated through genomewide comparisons of 

multiple P. praefalciparum isolates. Fixation due to recent selection should produce 

signatures of a recent selective sweep, a reduction in nucleotide diversity in the genes 

surrounding the region under selection. Fixation due to random drift, on the other hand, 

would not be expected to yield this phenomenon. Evidence of selection for the 

transferred alleles would support our hypothesis that the P. adleri derived RH5 and 

CyRPA provided a fitness advantage for P. praefalciparum, and that this HGT event may 

have predisposed P. praefalciparum to infect humans. 

The identification of a horizontal gene transfer event between two distinct 

Plasmodium species suggests a potential novel mechanism for genetic innovation in 

these parasites. This gene transfer event may have occurred by one of two 

mechanisms: sexual recombination followed by successive backcrossing, or asexual 

DNA transfer between two parasites. DNA transfer between Plasmodium infected 

erythrocytes is known to occur in cultures of P. falciparum. Recent work by Regev-

Rudzki et al has shown that exosome-like vesicles can transport genomic or plasmid 

DNA between infected erythrocytes and that transferred DNA can be expressed by the 

recipient parasite (97). It is therefore possible DNA could be exchanged between distinct 

Plasmodium species during co-infection. It seems less likely that this region was 

exchanged via sexual recombination and subsequent backcrossing. Horizontal gene 

transfer by this mechanism would require an F1 generation parasite that was viable 

despite having inherited genes from two divergent, non-recombining, species. Moreover, 

it would require that all the offspring of subsequent backcrosses remained viable. 

Nevertheless, neither mechanism can be ruled out, as we cannot estimate the 

probability or frequency of HGT from a single ancestral event. Future population 

genomic studies of Plasmodium species may elucidate this by searching for inter-



129	
	

species horizontal gene transfer events, especially in populations where mixed infections 

are common. 

In their comparison of P. falciparum to P. reichenowi CDC1, Otto et al emphasize 

the results of screens for adaptive selection such as the McDonald-Kreitman (MK) test 

(69). The MK test compares the ratio of non-synonymous to synonymous fixed 

differences (between species, Dn/Ds) to the ratio of non-synonymous to synonymous 

polymorphisms (within species, Pn/Ps) (190). An excess in non-synonymous fixed 

differences between species (Dn/Ds > Pn/Ps) is suggestive of adaptive evolution, while 

equal ratios of Dn/Ds and Pn/Ps are suggestive of neutral evolution (190). Surprisingly, 

when we applied genome-wide MK tests to the a set of global P. falciparum isolates and 

P. reichenowi SY57, few genes were found to be significant after controlling for multiple 

hypothesis testing, and no genes showed significant evidence of adaptive selection. 

Instead, we observed an excess of non-synonymous polymorphism within the global 

population of P. falciparum. It has previously been proposed that this excess in non-

synonymous polymorphism is derived from the extreme A-T richness of the P. 

falciparum genome (191), although this has been disputed (192). Another possibility is 

that the excess in nonsynonmyous polymorphism is the result of a recent P. falciparum 

population bottleneck (190, 193). Sequencing additional P. gaboni or P. reichenowi 

genomes will help elucidate the cause of the observed excess of non-synonymous 

polymorphism in P. falciparum. If the excess of non-synonymous polymorphism were 

due to high A-T content, we would expect to observe a similar excess in Pn in all 

Laverania species. If, on the other hand, this excess were related to the recent 

population bottleneck in P. falciparum we would not expect to see an excess in non-

synonymous polymorphism in other Laverania species. Identifying the cause of this 
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excess may enable us to control for it in future analyses, increasing the power of 

evolutionary tests to detect adaptive selective in P. falciparum. 

The comparisons of P. falciparum var genes with var-like genes from other 

Laverania species demonstrate the ancient origins of this gene family. Our current 

analyses are, however, limited in their reliance on P. falciparum var sequences to query 

the Laverania genomes and to guide the design of var-specific primers. It is therefore 

possible that additional var-like genes or var-gene domains, such as CIDR domains, 

were missed because they are divergent from those found in P. falciparum. Additional 

whole genome sequencing and assembly may help to elucidate by yielding more 

complete var-like gene sequences. 

 

In vitro studies 

Comparative analyses of P. falciparum and ape Laverania parasites have identified 

specific genes that may be important for adaptation to humans. While var gene analyses 

across the Laverania subgenus indicate that the precursors of the var family existed in 

the Laverania ancestor, key differences exist between P. falciparum var genes and var-

like genes in the more distantly related Laverania parasite, P. gaboni. One important 

distinction is the lack of CIDR domains in P. gaboni. These domains have been shown to 

be important for binding to host receptors (194, 195), and their absence in P. gaboni 

may indicate that the binding and sequestration properties of Laverania parasites have 

continued to evolve since the radiation of the subgenus. While the current P. gaboni 

assembly lacks full length var genes, this can be remedied by additional sequencing 

using long read high throughput technologies (196, 197). Binding studies, using P. 

falciparum parasites that express full length ape Laverania var genes, will help 

determine if var gene function is conserved across the subgenus and, if so, whether the 
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var genes of divergent ape Laverania bind the similar targets as their P. falciparum 

orthologues. 

As the extant P. falciparum RH5 allele was derived via horizontal gene transfer, 

binding studies to determine the species specificity of the RH5-basigin interaction are of 

particular interest. While previous studies have shown that the interaction between RH5 

and basigin limits the host tropism of P. falciparum (102), it is unclear if this is the case 

for other Laverania parasites. Unfortunately, the fixation of the P. adleri derived RH5 

allele in P. praefalciparum precludes a direct comparison of the binding properties of 

pre- and post-HGT RH5. Comparisons can, however, be made to other RH5 alleles. 

While in vitro binding assays can identify differences in the binding interactions of 

various RH5-basigin combinations (102), a more direct method of determining the effect 

of this interaction on invasion would be erythrocyte invasion assays using transgenic 

parasites expressing Laverania RH5. A lack of invasion by some or all Laverania RH5 

transgenic strains would be strongly support the role of the RH5-basigin interaction in 

determining Laverania host specificity. 

In summary, this dissertation provides a foundation for future studies of the ape 

Laverania subgenus. While these parasites are endemic and present at high levels in 

wild African apes (26), they are not a source of recurrent human infections. Comparative 

genomics of close and distant relatives of P. falciparum has identified features that are 

shared across the subgenus, as well as those that are unique to the ancestry of P. 

falciparum. Additional studies are required to further our understanding of the barriers to 

cross species transmission and to perform direct comparisons of P. falciparum to its 

closest ancestor, P. praefalciparum. These studies will not only expand our 

understanding of the evolutionary origins of P. falciparum, but may also identify 
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previously unknown host-parasite interactions that can serve as a basis for future 

therapeutic interventions. 
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