




(a) (b)

Figure 5.1: Examples of a score map generated by the DOT detector. (a) The input image,

(b) DOT response map for class dust-pan.

computed by,

s(x) =
∑
r∈Ω

(
max

x0∈R(x+r)
S(T (r), I(x′)

)
, (5.1)

where Ω denotes the set of template points, R(x + r) is a local image neighbourhood

centered on image location x+ r of image I which allows for slight image variations and

S(T (r), I(x′)) measures the similarity between corresponding regions in the template and

search images (see [Hinterstoisser et al., 2010] for details). Figure 5.1 contains an example

image, and its associated similarity score for the object category dust-pan.

5.4 Computing the Map

Instead of defining the map of the environment as a collection of landmarks or objects, a

voxel representation is used. By using a voxel representation, the system does not commit

to a fixed number of detections at the onset, as in Bao et al. [2011a]. Nor does it have

to explicitly model all possible configurations and data associations as in Atanasov et al.

[2013]. Instead, data association is postponed until the map recovery step (section 5.4).

The voxels represent a fixed volume in 3D space defined by a box in space and the

125



individual voxels’ dimensions. For simplicity the voxels are uniformly sized. Each voxel

v contains aggregate object detector response values for all object classes C. Then,

v =
(
s1, . . . , s|C|

)
,

is the ordered list of detector scores for all classes C at a given voxel, and

Vc = {v(c) | ∀v ∈ V},

the set of scores from all voxels for a given class c. V is updated incrementally with

each new incoming image. These incremental changes are noted with a frame id k, so Vk

denotes the state of the voxel volume after k frames.

To determine which voxels in space are dependent on a given score map, the dense

DOT result is back projected into the volume. This projection is implemented by pro-

jecting the score-map into the volume on a plane-by-plane basis. The volume is divided

into x-y slices, creating a stack of planes parallel to the ground. Using xy-planes for this

division not only simplifies the derivation, but is also intuitive.

The values from the response map are then interpolated for each voxel contained in

the current plane. This volume represents the contribution of the detector for a given

class in the current image to the 3D space. To integrate new information from additional

frames, new volumes are added to the previous one, resulting in a cumulative sum of object

detector responses. The final result is a Hough volume for each object within the space.

By integrating the entire response volume directly, the system is able to accumulate sub-

optimal detector responses across multiple views in order to better identify and localize

objects in the scene.

Only when the last frame is integrated into the volume is a threshold applied. The final

3D representation is constructed using non-maxima suppression to locate promising can-

didates. Given an approximate bounding volume of the object, search for and record local

maxima. At each maximal location we remove all responses falling within the bounding

volume centered around our current candidate. This process is repeated until the remain-

ing scores within the volume fall below a threshold.

126



5.5 Experiments

A small office environment was captured to serve as the data set for this experiment. The

data is composed of several sequences of images captured from a Kinect camera, and the

recovered 6DOF camera pose. The pose was recovered using RGBD-SLAM [Engelhard

et al., 2011], after which all depth information was discarded. Note that any odometry

system which is able to recover 6DOF camera pose could be used to substitute for RGBD-

SLAM.

The camera is hand-held and help mostly upright (minimal rotation around optical

axis) but otherwise undergoes unconstrained motion. In these experiments, a spatial reso-

lution of 1cm3 per voxel. The base of the volume is 2× 2 meters and 70cm high.

5.5.1 Target Objects

The system is capable of using both textured and untextured objects. Use of the DOT

object detector favours outlined and shape information.

To acquire the DOT training images a 3D model of the object was used. This model

is rendered by placing the virtual camera at various points around a view sphere centered

on the object. A total of 144 views are rendered covering 36 bearing angles θ and four

elevation angles φ. Additionally, the model is rendered at two distances to account for

some scale variation. Each rendered image is then fed to the DOT template trainer.

5.5.2 Camera Pose

Recall that camera pose is recovered using the RGBD-SLAM [Engelhard et al., 2011]

package for ROS. In RGBD-SLAM, 2D features (in this case SURF [Bay et al., 2008])

are extracted and matched across image pairs. The corresponding depth value at each

interest point is used to triangulate them. Once triangulated, the initial relative position

and orientation between the two camera poses is recovered using RANSAC. This pose

is refined using Iterative Closest Point (ICP). Finally a globally consistent pose is found

127



using hierachical pose graph optimizations (HOG-Man [Grisetti et al., 2010]).

Using the depth of features matched across frames the relative positions of the cameras

are calculated using RANSAC. The first frame serves as a reference and as origin for world

coordinate frame. To simplify correspondence between the world xy-plane and the camera

the Kinect was placed on a flat surface to capture this first frame. The output is a list of

timestamped camera poses which are used directly. After acquiring this list of poses the

depth information is discarded.

5.5.3 Results

Processing a sequence begins with processing each frame with all trained DOT templates.

As each input image is processed by the DOT detector, it is back-projected into the volume

of interest using the provided odometry. The resulting score-map is projected onto the

voxel representation at each plane. Back-projected volumes from different frames are

added together to yield a cumulative score.

Figures 5.2 and 5.3 show examples of a projected volume with detections for class

spray-bottle and bottle respectively. In figure 5.2 the top row includes the first and sixth

images of a sequence, while the bottom row is the final volumetric map for class spray-

bottle, with the maximal detections represented by solid boxes. Figure 5.3 similarly in-

cludes the first and 11th images from the sequence, with the bottom row showing the

volumetric map for the class bottle. The position and orientation of the camera frames are

included for reference.

5.6 Summary

This chapter presented a system which uses a dense response map of object detections in

images to localize objects. Although it employs a naive model, it is still able to recover

objects in the scene. Additionally using a 3D voxel representation eliminates the need for

a list of candidate hypotheses. By not committing to a fixed set of object candidates the
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(a) (b) (c)

Figure 5.2: 3D Plot of spray-bottle detections super-imposed over reconstructed Hough

volume. The input camera frames are shown connected through time from start (blue) to

finish (red). Show are the first frame (a), an intermediate frame showing two spray-bottles

originally hidden (b) and the resulting volume with detections (c).

(a) (b) (c)

Figure 5.3: 3D Plot of bottle detections super-imposed over reconstructed Hough volume.

The input camera frames are shown connected through time from start (blue) to finish

(red). Show are the first frame (a), an intermediate frame showing a closeup of the the

bottle (b) and the resulting volume with detections (c).
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system is free to integrate all the data across multiple frames. This allows it to recover

objects that may otherwise undetected in each individual image.

The approach relies on odometry input, the next logical step is eliminating this prereq-

uisite by extending the system to recover the odometry. Ideally, the camera pose should

be recovered using objects so as to take advantage of the semantic information already re-

covered during the mapping step. Object based localization such as presented in chapter 4

could be employed iteratively with this work to improve both localization and mapping.

This could then be further enhanced using other traditional odometry algorithms for ro-

bustness.
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Chapter 6

Conclusions

This dissertation presented three advancements in vision based semantic mapping and

localization. The emphasis was placed on devising approaches that distinguish themselves

by not falling into the categories listed in chapter 1:

• Not pure vision.

• 3D metric approaches.

• Scene classification instead of true localization.

• Limited, or no semantics.

Pure vision approaches have an advantage over systems that incorporate other sen-

sors since they can work in most environments. While GPS cannot function indoors, and

infra-red sensors cannot function outdoors, a regular camera functions both indoors and

outdoors. This combined with the explosion in mobile digital cameras, make pure vision

approaches easy to deploy and functional in any situation.

3D metric solutions require and provide high-precision which, depending on the ap-

plication, may entail unnecessary complexity. Approximate solutions like those presented

here often suffice, and are not only cheaper but can also be more accessible to human inter-

action. However, sacrificing spatial accuracy does not mean ignoring spatial information
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altogether. The proposed approaches do incorporate spatial information and thus provide

usable localization and mapping. Finally, the inclusion of semantic reasoning, input, and

output promotes human interaction with the proposed systems.

Chapter 3 described a novel method for creating topological maps from video streams.

The primary contribution of the work was a novel image similarity score, which when

coupled with an MRF representation allowed for accurate recovery of loop-closures. The

resulting loop-closures were then fed into algorithm 3.1 to produce the final topological

map. The approach combined purely visual information to create a non-metric map of an

environment while maintaining connectivity between adjacent location At the same time

is also clustered images into individual semantically meaningful location.

The localization approach of chapter 4 used an existing map with labeled objects to

approximately localize the robot. Images from the robot are processed by an object detec-

tor to yield soft object heatmaps. These soft detections are then directly used as input into

a particle filter localization scheme (section 4.5) or as part of a probabilistic observational

model in section 4.8. As the robot moves, more information is integrated into its location

hypothesis yielding a final localization. The results showed that by using a visual sensor

it was possible to integrate semantic information in the form of object detections to yield

the location of the camera. Although the resulting location is absolute with respect to

the input map, it is not metric in that it relies solely on the relative bearing of objects as

measured from the local camera frame.

Finally the novel 3D object recognition and localization framework presented in chap-

ter 5. Images from a moving camera are processed with an object detector to gener-

ate object heatmaps. Heatmaps are back-projected into 3D space to generate volumetric

heatmaps. Qualitative results showed that the system is able to identify objects in cluttered

environments. The maps generated by this system can also be employed to boot-strap the

localization approach from chapter 4.

Together the proposed approaches each address a separate yet complimentary aspect of

semantic understanding of environments. Topological maps can be used to navigate large
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scale environments. They overlay a discrete network graph on the mapped space resulting

in a discretization of the environment allowing for approximate localization. Finer grained

positioning can then be recovered with object-based localization. Using the surrounding

objects to approximate the robot’s position in medium to small scale environments. This

level of localization requires a semantic map of the immediate surroundings. Such a map

can be constructed using the proposed 3D object recognition system. Indeed, all three

approaches together can be combined into a hybrid localization framework in the vein of

Bosse et al. [2003]; Tomatis et al. [2003] and Drouilly et al. [2014].

Another key aspect of this dissertation is the primacy of objects as mid-level features.

Recall that chapter 3 relies on low-level features for computing image similarity. On the

other hand, chapter 4 uses object detections instead. While it’s possible to perform lo-

calization with low-level features, mid-level features bring with them several advantages.

Foremost, using object detections as features greatly simplifies the underlying represen-

tation. An annotated semantic map can be easily generated from a hand-drawn sketch,

whereas using low-level features for localization requires costly SLAM algorithms. Se-

mantic maps are also simpler for knowledge transfer; instead of thousands of highly lo-

calized features, a simple handful of roughly placed semantic labels suffice. This allows

separation of mapping from localization.

Traditional localization with low-level features essentially maps an environment and

then aligns the recovered map to a reference map. Using objects as features permits lo-

calization without mapping. Maps can be generated apriori using sensors or data not

available during localization. By abstracting the contents of the map to semantic annota-

tions, localization can be performed with different sensors. Maps produced with expen-

sive platforms can be used by commodity cameras, semantic maps produced today are

still relevant tomorrow when better object detectors become available. Finally, separating

semantic mapping from semantic localization enables human interaction. Semantic maps

can be generated by hand and still be used for automatic localization. On the other hand,

automatically generated semantic maps can be used for manual localization. These use
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cases are not possible with just low-level features.

6.1 Future Directions

The continued development of semantic solutions to problems in robotics is producing hu-

man meaningful representations of data, and incorporating human logic and reasoning into

automated systems. Further research in mapping, localization, and detection needs to in-

corporate more human concepts and constructs. In addition to increasing semantics these

will also need to peel away constraints and assumptions in order to narrow the “semantic

gap”.

In mapping, significant results exist both for indoor and outdoor settings, but few ap-

proaches exist for creating maps combining both, a distinction that is essential for every-

day human activity. A similar lack exists for localization approaches, with indoor systems

focusing on architecture and objects while outdoor systems rely on GPS, odometry and

appearance. Although some work exists for automatically incorporating text in indoor

settings [Case et al., 2011] and manually incorporating text for outdoor localization (e.g.

using ReCaptcha on StreetView images), an automated approach does not exist for out-

door localization using signage. For robots to be of use in more scenarios, it is necessary

to continue expanding semantics to more complex levels. The proliferation in recent years

of convolutional neural network (CNN) based approaches have resulted in significant per-

formance gains in object detection and localization. As object detectors these can prove a

valuable source for soft-object based approaches. These can also be tailored and trained

to soft-object based solutions directly, providing accurate and dense object heatmaps. In

addition to improved detector performance, semantics in the form of object functional-

ity is also crucial for future applications. Grabner et al. [2011] are already detecting and

learning functionality using simulation with a virtual actor (as opposed to explicit train-

ing videos). However, in this approach and others, the robot is still a passive participant,

exploring and mapping but not interacting. Thus we should seek to expand semantics to
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incorporate functionality for the purpose of actual interaction as in Beetz et al. [2011].

For computers and robots to function as autonomous agents in a human world, human

semantics are essential. By both easing communication and incorporating more complex

human type reasoning, the class of environments and tasks these machines can cope with

grows. These advancements will bring with them autonomous cars, robotic cooks, and

computerized assistants which will be better able to interact with human users without

requiring us to drastically modify our environments to permit their functionality.
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J. González. Multi-hierarchical semantic maps for mobile robotics. In IEEE Interna-

tional Conference on Intelligent Robots and Systems (IROS), pages 2278–2283. IEEE,

2005. ISBN 0780389123. doi:10.1109/IROS.2005.1545511. 1, 52

X. Gao, X. Hou, J. Tang, and H. Cheng. Complete solution classification for the

perspective-three-point problem. IEEE Transactions on Pattern Analysis and Machine

Intelligence (T-PAMI), 25(8):930–943, 2003. doi:10.1109/TPAMI.2003.1217599. 58

E. Garcia-Fidalgo and A. Ortiz. Vision-based topological mapping and localization

by means of local invariant features and map refinement. Robotica, 33:1446–1470,

143

http://cs.brown.edu/~pff/latent-release4/
http://cs.brown.edu/~pff/latent-release4/
http://dx.doi.org/10.1109/TPAMI.2009.167
http://dx.doi.org/10.1109/IROS.2007.4399123
http://dx.doi.org/10.1109/34.93808
http://dx.doi.org/10.1109/IROS.2005.1545511
http://dx.doi.org/10.1109/TPAMI.2003.1217599


Aug. 2015a. ISSN 1469-8668. doi:10.1017/S0263574714000782. URL http:

//journals.cambridge.org/article_S0263574714000782. 10

E. Garcia-Fidalgo and A. Ortiz. Vision-based topological mapping and localization meth-

ods: A survey. Robotics and Autonomous Systems (RAS), 64:1 – 20, 2015b. ISSN 0921-

8890. doi:10.1016/j.robot.2014.11.009. URL http://www.sciencedirect.

com/science/article/pii/S0921889014002619. 8
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