
University of Pennsylvania
ScholarlyCommons

Publicly Accessible Penn Dissertations

1-1-2014

A Convex Framework for Epidemic Control in
Networks
Chinwendu Enyioha
University of Pennsylvania, cenyioha@gmail.com

Follow this and additional works at: http://repository.upenn.edu/edissertations

Part of the Electrical and Electronics Commons

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/edissertations/1269
For more information, please contact libraryrepository@pobox.upenn.edu.

Recommended Citation
Enyioha, Chinwendu, "A Convex Framework for Epidemic Control in Networks" (2014). Publicly Accessible Penn Dissertations. 1269.
http://repository.upenn.edu/edissertations/1269



A Convex Framework for Epidemic Control in Networks

Abstract
With networks becoming pervasive, research attention on dynamics of epidemic models in networked
populations has increased. While a number of well understood epidemic spreading models have been
developed, little to no attention has been paid to epidemic control strategies; beyond heuristics usually based
on network centrality measures. Since epidemic control resources are typically limited, the problem of
optimally allocating resources to control an outbreak becomes of interest.

Existing literature considered homogeneous networks, limited the discussion to undirected networks, and
largely proposed network centrality-based resource allocation strategies.

In this thesis, we consider the well-known Susceptible-Infected-Susceptible spreading model and study the
problem of minimum cost resource allocation to control an epidemic outbreak in a networked population.
First, we briefly present a heuristic that outperforms network centrality-based algorithms on a stylized version
of the problem previously studied in the literature. We then solve the epidemic control problem via a convex
optimization framework on weighted, directed networks comprising heterogeneous nodes. Based on our
spreading model, we express the problem of controlling an epidemic outbreak in terms of spectral conditions
involving the Perron-Frobenius eigenvalue. This enables formulation of the epidemic control problem as a
Geometric Program (GP), for which we derive a convex characterization guaranteeing existence of an optimal
solution. We consider two formulations of the epidemic control problem -- the first seeks an optimal vaccine
and antidote allocation strategy given a constraint on the rate at which the epidemic comes under control. The
second formulation seeks to find an optimal allocation strategy given a budget on the resources. The solution
framework for both formulations also allows for control of an epidemic outbreak on networks that are not
necessarily strongly connected. The thesis further proposes a fully distributed solution to the epidemic control
problem via a Distributed Alternating Direction Method of Multipliers (ADMM) algorithm. Our distributed
solution enables each node to locally compute its optimum allocation of vaccines and antidotes needed to
collectively globally contain the spread of an outbreak, via local exchange of information with its neighbors.
Contrasting previous literature, our problem is a constrained optimization problem associated with a directed
network comprising non-identical agents. For the different problem formulations considered, illustrations
that validate our solutions are presented. This thesis, in sum, proposes a paradigm shift from heuristics
towards a convex framework for contagion control in networked populations.
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ABSTRACT

A CONVEX FRAMEWORK FOR EPIDEMIC CONTROL IN NETWORKS

Chinwendu K. Enyioha

George J. Pappas

Ali Jadbabaie

With networks becoming pervasive, research attention on dynamics of epidemic

models in networked populations has increased. While a number of well understood

epidemic spreading models have been developed, little to no attention has been paid

to epidemic control strategies; beyond heuristics usually based on network central-

ity measures. Since epidemic control resources are typically limited, the problem of

optimally allocating resources to control an outbreak becomes of interest. Existing

literature considered homogeneous networks, limited the discussion to undirected

networks, and largely proposed network centrality-based resource allocation strate-

gies.

In this thesis, we consider the well-known Susceptible-Infected-Susceptible spread-

ing model and study the problem of minimum cost resource allocation to control an

epidemic outbreak in a networked population. First, we briefly present a heuristic

that outperforms network centrality-based algorithms on a stylized version of the

problem previously studied in the literature. We then solve the epidemic control

problem via a convex optimization framework on weighted, directed networks com-

prising heterogeneous nodes. Based on our spreading model, we express the problem

of controlling an epidemic outbreak in terms of spectral conditions involving the

Perron-Frobenius eigenvalue. This enables formulation of the epidemic control prob-

lem as a Geometric Program (GP), for which we derive a convex characterization

guaranteeing existence of an optimal solution. We consider two formulations of the

epidemic control problem – the first seeks an optimal vaccine and antidote allocation
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strategy given a constraint on the rate at which the epidemic comes under control.

The second formulation seeks to find an optimal allocation strategy given a budget on

the resources. The solution framework for both formulations also allows for control of

an epidemic outbreak on networks that are not necessarily strongly connected. The

thesis further proposes a fully distributed solution to the epidemic control problem

via a Distributed Alternating Direction Method of Multipliers (ADMM) algorithm.

Our distributed solution enables each node to locally compute its optimum allo-

cation of vaccines and antidotes needed to collectively globally contain the spread

of an outbreak, via local exchange of information with its neighbors. Contrasting

previous literature, our problem is a constrained optimization problem associated

with a directed network comprising non-identical agents. For the different problem

formulations considered, illustrations that validate our solutions are presented. This

thesis, in sum, proposes a paradigm shift from heuristics towards a convex framework

for contagion control in networked populations.
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Chapter 1

Introduction

1.1 Motivation and Background

Epidemic outbreaks occur when there are reported cases of a contagious ailment be-

yond what is traditionally expected within a population. A major epidemic outbreak

recorded in the last century is the 1918 global Spanish flu outbreak, which resulted

in more deaths than was recorded in World War I, [2]. The last 5 decades has also

seen several reported cases of HIV/AIDs, SARS [3] [4] and influenza-like epidemics

[5] [6] including the very recent outbreak of the Middle East Respiratory Syndrome

(MERS) [7] and Ebola outbreak [8], with several fatal cases reported in parts of the

Middle East and West Africa. Reports from the World Health Organization (WHO),

in addition, indicate that an estimated 13 million deaths a year (globally) result from

infectious diseases [9] [10]. The problem of developing realistic epidemic spreading

models and controlling the outbreak and spread of infectious diseases is not only

important, but also topical given the current ebola virus epidemic [8]. That said,

the mathematical framework of this thesis, fortunately, goes beyond just infectious
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diseases as the models and solutions can be applied to other dynamical (epidemic-

type) processes in networked populations. An example is the area of advertising and

marketing, where the behavior and choice of people in one’s immediate neighborhood

or community is likely to affect an individual’s decision.

In the event of an epidemic outbreak in a population, public health officials

are tasked with determining the cost-optimal strategy to allocate usually limited

resources – vaccines and/or antidotes amongst individuals and segments within the

population to rapidly contain the spread of the outbreak.1. Contrasting much of the

literature on epidemics in networks, as will be highlighted in Section 1.2, the key

results of this thesis

• considers an epidemic process on a network comprising non-identical agents,

• assumes a directed contact network with weighted edges,

• presents a convex framework for simultaneously allocating vaccines and anti-

dotes to control an epidemic outbreak, and

• proposes a fully distributed resource allocation strategy to control an epidemic

outbreak.

Further, the solution we propose are applicable to epidemic processes occurring on

networks that are not necessarily strongly connected without resorting to heuristics.

The distinctions highlighted above are critical since many modern real networks are

heterogeneous and directed; for example, the air traffic networks.

Resource allocation problems of this flavor are not unique to public health and

infection propagation. As noted earlier, in marketing, for instance, where product

1Another component of the response plan may be a speed optimal approach, where the objective
is to contain the spread as quickly as possible, without much focus on the associated cost of control.
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advertisement by word-of-mouth and information diffusion is critical, of interest is

how to optimally target markets or customers for advertising in a way that enables

massive adoption of a product in the population in minimal time [11]. Problems of

this sort also arise in telecommunication where optimal placement of base stations

to achieve maximal end-to-end information flow rate is of interest. The question of

how to optimally and efficiently allocate treatment and immunization resources, via a

convex optimization framework, to control the outbreak of an epidemic in networked

populations is the nucleus of this thesis. Contrasting existing literature that have

focused on heuristics, our convex framework comprises a Semidefinite Programming

(SDP) solution for a formulation of the epidemic control in undirected networks; as

well as a Geometric Programming (GP) formulation that allows for simultaneous

allocation of vaccines to control the infection rates and antidotes to control the

recovery rates of individuals in the population.

1.2 Literature Review

Controlling the spread of epidemic outbreaks in populations is an age-old problem

in human existence. The quest to understand how best to contain a contagion in

populations upped research efforts at understanding dynamics of spreading processes

within populations [12] [13] [14]. There have been several studies seeking to develop

models that aid the understanding and analyses of the interplay of network struc-

tures and its effects on individual decisions/responses to information spreading in

connected populations [15] [16] [17]. One of such studies – the earliest known math-

ematical model of epidemic dynamics, dates back to Daniel Bernoulli in the 18th

century when he modelled the spread of small pox and argued for variolation as a

way of increasing the life expectancy of the French [18].
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A significant mathematical contribution to understanding the spread dynamics

of epidemics came from the work of William Hamer and Ronald Ross [19]. In the

early 1900s, Hamer and Ross developed a spatial model for the spread of malaria

through mosquitoes. A key result from their model was that the spread of malaria

could be controlled by reducing the population of mosquitoes per human below a

threshold2. Ross’ result of a population threshold for mosquitoes is the first known

notion of an epidemic threshold in the literature.

Building on Ross’ result from [19], Kermack and McKendrik in [20] developed epi-

demic models involving ordinary differential equations based on a population model.

Also called compartmental models, population models partitioned a population of

N individuals into 3 groups based on their state - Infected I, Susceptible S, and

Recovered R. In Kermack and Kendrick’s model, infected individuals can indepen-

dently infect susceptible individuals with some probability β. They can also recover

with probability δ.

2An epidemic threshold, τc, is a quantity that measures how potent the spread of an infection
is; or the effective spread rate. τc is typically characterized by the infection and recovery rates of
the population. When τc < 1, the spread rate of the infection reduces and the infection dies out.
On the other hand, τc > 1, implies an increase in the spread rate resulting in an epidemic in the
population. In the epidemiology literature, the threshold is more commonly known as the basic
(infection) reproduction number and denoted by R0.
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Figure 1.1: A population partitioned into infected (red), recovered (green) and sus-
ceptible (white) groups. In population-based models, the structure of inter-agent
interactions has no bearing on how the contagion evolves.

If S(t), I(t) and R(t) respectively denote the number of susceptible, infected and

recovered individuals in the population at time t, and s(t) = S(t)/N, i(t) = I(t)/N

and r(t) = R(t)/N respectively represent the fraction of susceptible, infected and

recovered individuals, then s(t) + i(t) + r(t) = 1, and the population of each group

evolves as follows:

ds(t)

dt
= −βs(t)i(t), (1.1)

dr(t)

dt
= δi(t), (1.2)

di(t)

dt
= βs(t)i(t)− δi(t). (1.3)

In Kermack and Kendrick, each individual is assumed to have equal susceptibility

to the infection with rate β, considered to be the the infection rate of the disease.

Assuming each individual can make contact with every other individual in the net-

work, each infected individual is able to transmit the disease with βN others per

unit time, and the fraction of contacts by an infected individual with the susceptible

population at time-step t is s(t) resulting in (1.1). Assuming a uniform recovery rate
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of δ, and an infected population of i(t), the population of the recovered group r(t)

evolves according to (1.2), since all infected individuals may recover at the recovery

rate of δ. Susceptible individuals become infected and infected infected individuals

recover. Concurrent occurrence of these processes results in the evolution of the

infected population as captured in (1.3).

A key result from the epidemic process with dynamics in (1.1)-(1.3) is that a

significantly large fraction of the population is infected by the epidemic if and only if

τc = β/δ > 1. The effective spread rate τc, highlighted earlier, measures the potency

of infection. If τc > 1, it implies the rate of infection of agents in the population

exceeds the recovery rate, in which case, it is expected that an epidemic outbreak

results.

Of interest to public health officials is how to control the potency of the infection

relative to τc, since it determines whether or not an initial infection will result in an

epidemic outbreak and spread through the population. Worth noting is that estab-

lishing the existence of an epidemic threshold τc, (determinable for different epidemic

models), has been identified as one of the most significant contributions of mathemat-

ical analysis to the study of infectious disease and epidemiology. More mathematical

contributions to epidemiology can be attributed to Bailey’s work in [18], where a

number of infection models were presented and characterized. In [21], Bailey also

analyzed a number of related topics including recurrent epidemics, endemics, multi-

state spreading models, immunization programs and public health control, amongst

others. These seminal works formed the underpinnings for modern literature in

computational epidemiology.

While population models enabled description and analyses of epidemic dynamics

and the evolution of partitions represented in Figure 1.1, they lacked the richness

that networked models could provide. Population models are not, for instance, able

6



to capture and account for the effects of the structure of interpersonal contacts and

interactions within the population on the spreading process. In addition, popu-

lation models do not account for how the structural relationship of agents in the

population can guide an epidemic containment strategy. Network-based models, on

the other hand, are capable of these. Network models in epidemiology have been

the focus of very recent work in the area of mathematical epidemiology [12] [13]

[22]. Network models for the Susceptible-Infected-Susceptible (SIS) spreading models

and its variants like the Susceptible-Infected-Recovered (SIR), Susceptible-Exposed-

Infected-Susceptible (SEIS), the Susceptible-Alert-Infected-Susceptible (SAIS) have

also been developed [14, 23, 24, 25, 26, 27, 28, 29, 30].

1 2 3

4

5

6

Figure 1.2: A network comprising susceptible (grey), infected (red), and recovered
(green) nodes. In networked epidemic models, the effect of the network structure on
the evolution of the contagion is accounted for.

One of the earliest network models in epidemiology is credited to Kephart and

White [31], [32]. They adapted earlier epidemiological models of biological viruses

to study the spread of viruses on a computer network, including the likelihood of

an epidemic occurrence, and the dynamics and evolution of the expected number of

infected computers as a function of time. In [31], they assumed homogeneity3 in the

graph structure considered and used only the degree of nodes in the network as the

network characteristic. Kephart and White modeled connection between computers

3Homogeneous graph models assume that each agent in the network has a connection with every
other agent in the network and the rate of infection is primarily based on the density of the infected
group. Homogeneous models in epidemiology are based on Regular graphs.
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as a directed graph with each edge between two connected nodes having an infection

rate β and each node a recovery rate δ. If i(t) = I(t)/N represents the infected

population at time t, then

di(t)

dt
= β[k]i(t)(1− i(t))− δi(t), (1.4)

where the growth rate of the infected population is the product of the infection

rate β per link and the number of infected neighbors, δi(t) is the cure rate for a

fraction of the infected nodes i, and [k] is the average degree of the nodes. Similar to

Ross’ findings earlier in the 20th century, Kephart and White identified the epidemic

threshold – the tipping point beyond which an epidemic ensues as τc = 1/[k], for their

model. Noted earlier, a key assumption that makes the Kephart and White disease

propagation model valid is the assumption that the connection between individuals

or computers is sufficiently homogeneous.

Wang et al. in [33] generalized the Kephart and White model to arbitrary net-

works with more generic network characteristics than just node degrees using a

discrete-time model. The model of Wang et al. assumed agents can either be sus-

ceptible or infected and considered a linearized SIS spreading model. Agents were

assumed to have a common infection rate β and uniform curing rate δ. In their

work, they studied the propagation of an outbreak by considering the probability of

infection of each individual in a network, describing its evolution by the following

dynamical system

p(t+ 1) = (βA+ I − δI)p(t), (1.5)

(where I is the identity matrix, and A is an adjacency matrix representing the

contacts between individuals in the networked population). The dynamics in (1.5) is

8



a mean-field approximation of a nonlinear SIS spreading model4 resulting from the

transitions between susceptible and infected states and the network effects. A major

result of the Wang model was the existence of an epidemic threshold

τc =
1

λmax(A)
, (1.6)

where the matrix A is the adjacency matrix of the network and λmax(A) is its largest

eigenvalue. While the model of Wang et al. assumed homogeneous infection and

recovery rates for agents in the network, the epidemic model studied in this thesis

allows for heterogeneity in the disease parameters amongst agents in the network.

The literature on network epidemics in the last decade has grown. Newman in

[13] presented solutions to a class of standard epidemic spreading models for different

networks even for cases where agents have non-uniform, but correlated transmission

rates and times spent in the infected state. Further, Boguna and Pastor-Satorras [34]

analyzed the spread of a virus in correlated networks. There, they established that

the epidemic threshold on networks with explicit correlations in node connectivities

is the inverse of the largest eigenvalue of the connectivity matrix and not dependent

on the connectivity distribution as is the case for uncorrelated networks. Their result

confirmed a threshold earlier established by Wang et al [33]. The model considered

in this thesis is based on [22], which is a heterogeneous, continuous-time version of

the model discussed in [33]. Details of the model development follow in Chapter 2.

Problems on immunization strategies, aiming to keep the diseases propagation

below epidemic levels, have also received some attention including [35] [36][37], where

heuristics are presented and analyzed. Other efforts on epidemic control include [38]

where the expected time until extinction of a spreading virus is analyzed in terms of

4In Chapter 2, details of the nonlinear spreading model used in in this thesis as well as [33] are
presented
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the curing resources available. The focus in Drakopoulos et al [38] was on undirected

graphs and the proposed methods based on CutWidths of graphs were identified to

have significant computational cost. In [39], the cost of an epidemic outbreak was

studied using tools from random matrix theory. The authors focused on transient

dynamics of the epidemic process and presented an economic viewpoint on the impact

and cost of controlling the outbreak. A converse problem was studied in [40], where

the authors sought to maximize the spread of influence. There, the authors present

provable approximation guarantees for heuristics based on submodular functions.

In this thesis, we take a convex optimization-based approach that outperforms

heuristics. The main focus and results of this thesis center around developing optimal

resource allocation strategies and control schemes to contain the spread of epidemic

outbreaks in connected networks with possibly weighted and directed edges of ar-

bitrary structures. The primary problem addressed is – faced with an epidemic

outbreak, how should limited treatment and protective resources be allocated across

the network to guarantee that the infection spread dies out at a desired rate?

1.3 Contributions of the thesis

In the previous section, we presented an overview of the status of research on the

modeling and control of epidemic processes in networks. A key contribution of this

thesis to the literature is the development of a mathematical framework to control

epidemic outbreaks on connected networks with arbitrary structure using techniques

from convex optimization.

In particular we consider both strongly and not necessarily strongly connected

networks comprising heterogeneous nodes and weighted, directed edges. Our solution

framework is one that allows for concurrent computation of the optimum resource
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allocation strategy to control the infection and recovery rates of agents in the network

in a manner that contains the spread of an epidemic outbreak. Results of this

thesis also show that though network centrality-based epidemic control strategies

are intuitive and widely accepted, their performance is suboptimal. In addition,

the key results in this thesis opens up a new area in the literature on control of

epidemic processes on directed networks, contrasting most of the current research

that focus on undirected networks. We also formulate the epidemic control task as

a decentralized resource allocation problem and propose a fully distributed solution.

The distributed solution shows that in the absence of a social planner, control of an

outbreak in large networks can be effectively achieved without incurring the costs

associated with central processing and computation of the optimum resources needed

at each node or locality in the network.

In the thesis, we have framed the problem of controlling an epidemic outbreak

as one of optimal (treatment and vaccination) resource allocation. As a result,

the phrases epidemic control problem and resource allocation problem may be used

interchangeably. Also, in the context of a network, the terms agent, individual and

node will be assumed synonymous. The second chapter presents the spreading model

studied in the rest of the thesis, assumptions of the model, and a formal statement

of the epidemic control problem.

Chapter 3 briefly introduces measures of network centrality and presents a so-

lution to the resource allocation problem when a binary decision (to either allocate

or not allocate resources), needs to be made. After presenting a network centrality-

based heuristic using a combinatorial formulation of the problem, common in the

literature, we present a greedy algorithm and show that our greedy algorithm out-

performs the network centrality-based method, using solutions to the Lagrange dual

problem as a benchmark. The chapter concludes with a Semidefinite Programming
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(SDP) formulation and solution when agents in the network have a uniform, fixed

curing rate and the only control cost incurred is the investment on preventive re-

sources. The SDP formulation relaxes the binary constraint in the combinatorial

formulation.

In chapter 4, the focus shifts to more general, directed networks. After intro-

ducing Geometric Programs (GPs) and their convex characterizations, which guar-

antee globally optimal solutions, we solve the resource allocation problem on pos-

itively weighted, strongly connected networks via a GP formulation. Formulations

of the epidemic control problem on positively weighted, directed but not necessar-

ily strongly connected networks are presented as well in Chapter 4. For both cases

– strongly connected and not necessarily strongly connected networks, we consider

two formulations – one in which the decay rate of the probability of infection is

constrained (with no constraint on the budget), and a second in which the available

resources (budget) to expend are capped.

Chapter 5 of the thesis presents a fully distributed framework for solving the

optimal resource allocation problem via a distributed implementation of the Al-

ternating Direction Method of Multipliers (ADMM) optimization algorithm. The

problem considered here is – how can agents in the network locally make optimal

investments to adjust their infection and recovery rates by only locally interacting

with their neighbors, in a way that collectively controls the spread of an epidemic

outbreak? Based on a reformulation of the GP presented in Chapter 4, we briefly

discuss convexity of the decentralized formulation allowing us to claim optimality of

our solution via a D-ADMM algorithm.

For each solution method presented, we illustrate our results on some real net-

works including a subgraph of the social networking site Facebook, as well as a sub-

network of the Global Air Traffic network. For the distributed solution, a synthetic
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strongly connected digraph is considered. A summary of the thesis and abridged

discussion of open problems follow in Chapter 6, with referenced Appendices follow-

ing. Though written as a monograph, this thesis is based on some published works

including [1], [41],[42],[43],.
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Chapter 2

Notation, model and problem

2.1 Preliminaries & Notation

In this chapter, we introduce notation and definitions of building blocks used in

the rest of the thesis. In addition we discuss the epidemic spreading model under

consideration, as well as relevant assumptions. We respectively denote by Rn
+ and

Rn
++ the set of n-dimensional vectors with nonnegative and strictly positive entries.

Vectors are denoted using boldface letters and matrices using capital letters. The

letter I denotes the identity matrix and 1 the vector of all ones. R(z) denotes the

real part of z ∈ C.

2.1.1 Graph Theory

We define a weighted graph as G , (V , E ,W), where V , {v1, . . . , vn} is a set

of n nodes, E ⊆ V × V is a set of ordered pairs of nodes called edges, and the

function W : E → R++ associates positive real weights to the edges in E . The

node pair (vj, vi) form an undirected edge in G. If G is a directed network, the pair

(vj, vi) is an oriented edge from node vj to node vi. For an undirected graph G, we
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define the neighborhood of node vi as Ni , {j : (vj, vi) ∈ E}. When the graph G,

is directed, we define the in-neighborhood of node vi (that is, the set of nodes with

edges pointing towards vi), as N in
i , {j : (vj, vi) ∈ E}. We respectively define the

weighted in-degree and out-degree of node vi as degin (vi) ,
∑

j∈N in
i
W ((vj, vi)) and

degout (vi) ,
∑

j∈Nout
i
W ((vj, vi)). A directed path from vi1 to vil in G is an ordered

set of vertices
(
vi1 , vi2 , . . . , vil+1

)
such that

(
vis , vis+1

)
∈ E for s = 1, . . . , l. A directed

graph G is strongly connected if, for every pair of nodes vi, vj ∈ V , there is a directed

path from vi to vj.

We denote the adjacency matrix of a weighted, undirected graph G, by A =

[aij], an n × n matrix defined entry-wise as aij = W(vj, vi) if edge (vj, vi) ∈ E ,

and aij = 0 otherwise. When G is directed, the entry aij = W(vj, vi) if the edge

(vj, vi) ∈ E points from vj to vi, and aij = 0 otherwise. Given an n×n matrix M , we

denote by v1 (M) , . . . ,vn (M) and λ1 (M) , . . . , λn (M) the set of eigenvectors and

corresponding eigenvalues of M , respectively, where we order them in decreasing

order of their real parts, i.e., R(λ1) ≥ R(λ2) ≥ . . . ≥ R(λn). We respectively call

λ1 (M) and v1 (M) the dominant eigenvalue and eigenvector of M . We denote by

ρ (M), the spectral radius of M , which is the maximum modulus across all eigenvalue

of M .

A set S is convex if whenever x, y ∈ S and λ ∈ [0, 1], the convex combination

(1−λ)x+λy ∈ S. Further, a function defined on the convex set S, f : Rn → R is said

to be convex if f((1−λ)x+λy) ≤ (1−λ)x+λy. For a detailed treatment of convex

sets, convex functions and convex optimization problems, readers are referred to

[44]. Because the focus is on networks with positively weighted edges, the adjacency

matrix of all graphs is always nonnegative. Finally, a nonnegative matrix A is

irreducible if and only if its associated graph G is strongly connected.
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2.2 Epidemic spreading model

2.2.1 Spreading Model in Arbitrary Networks

The model studied in this thesis is a heterogeneous networked SIS epidemic spread

model and is based on the continuous-time SIS epidemic model, called the N-

intertwined SIS model, recently proposed by Van Mieghem et al. in [22]. There,

the authors analyzed the effect of the network characteristics on a virus spreading

process via a Markov model. A detailed comparison of an Exact 2N -state Markov

Chain and the N-intertwined model that employs a mean field approximation was

presented. A discrete-time version of the model was first studied in [33].

We consider a network comprising n agents, where each agent can be in one of

two states – susceptible to the infectious disease or infected by the disease. As time

evolves, the state of each agent vi ∈ V changes according to a stochastic process

parameterized by its infection rate βi, and curing rate δi. As part of our model, we

assume the respective infection and curing rates βi and δi at the different agents vi

can be tuned by injecting vaccine and treatment resources.1:

S I

β

δ

Figure 2.1: Node transitions between infected and susceptible states

The state of node vi at time t ≥ 0 is a binary random variable Xi (t) ∈ {0, 1}.

The state Xi (t) = 0 indicates that node vi is in the Susceptible state, which we

denote as S and the state Xi (t) = 1 indicates that node vi is in the Infected state,

denoted I. Let the vector of states be defined as X (t) = (X1 (t) , . . . , Xn (t))T . Next,

1This subsection of the thesis closely follows the development in [1]
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we describe the state evolution of each node –

1. Suppose node vi is susceptible to the infection at time t, it can transition to

infected state during a small time interval (t, t+ ∆t) with a probability that

depends on its infection rate βi > 0, the strength of its incoming connections

from its neighbors {aij, for j ∈ N in
i }, as well as the states of its in-neighbors

{Xj (t) , for j ∈ N in
i }. Figure 2.2 provides an illustration of this transition.

Formally, the probability of vi transiting to the infected state can be expressed

as

Pr (Xi(t+ ∆t) = 1|Xi(t) = 0, X(t)) =
∑
j∈N in

i

aijβiXj (t) ∆t + o(∆t), (2.1)

where ∆t > 0 is an asymptotically small time interval.

X1(t)

X2(β2, δ2, Xj(t))

X4(t)

Figure 2.2: State transition of node v2 due to effects of nodes v1 and v4

2. If node vi is infected, its probability of transitioning to a susceptible state in

the time interval [t, t+ ∆t) depends on its recovery rate δi and is given by

Pr(Xi(t+ ∆t) = 0|Xi(t) = 1, X(t)) = δi∆t+ o(∆t). (2.2)
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At each time instant, the state of the entire network comprising n agents is de-

fined by all possible combinations of states in which the agents can be at that time

instance. Thence, the state space of the Markov chain for the continuous-time infec-

tion process defined above comprises 2n states in the limit ∆t→ 0+. As the network

size increases, the exponentially increasing state space makes this networked SIS

epidemic model difficult to analyze. However, it is standard to make simplifying ap-

proximations that yield a mathematically tractable formulation. In line with that,

our model development will adopt the so-called mean field approximation first used

on SIS epidemic models in [33], and common in the literature [12] [22] [39] [45] [46].

Let the random variable Qi(t) , 1{Xi(t)=1} be such that Qi(t) = 1 when node vi

is infected and 0 otherwise. Hence, Qi(t) changes based on the state Xi(t) of node

vi at each time step. From (2.1) and (2.2), the change of Qi(t) in a sufficiently small

time interval ∆t is [22]:

Qi(t+ ∆t)−Qi(t)

∆t
= (1−Qi(t))βi

∑
j∈N in

i

aij1{Xj(t)=1} − δiQi(t).

Suppose we denote the probability of infection at node vi as pi(t). Then, pi(t) ,

Pr(Xi(t) = 1) = E(Qi(t)) and we have that the probability of infection pi(t) at node

vi evolves according to

pi(t+ ∆t)− pi(t)
∆t

= βi
∑
j∈N in

i

aijpj(t)− δipi(t)− E

1{Xi(t)=1}βi
∑
j∈N in

i

aij1{Xj(t)=1}

 .
(2.3)

Since we have assumed the contact networks under consideration have no self loops;

that is, the diagonal entries [aii], i = 1, . . . , n of the adjacency matrix A are zero,
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we have that

E
(
1{Xi(t)=1}1{Xj(t)=1}

)
= Pr (Xi(t) = 1, Xj(t) = 1)

= Pr (Xj(t) = 1|Xi(t) = 1) Pr (Xi(t) = 1) .

As ∆t→ 0, it follows that [22],

dpi(t)

dt
= βi

∑
j∈N in

i

aijpj(t)− pi(t)

βi ∑
j∈N in

i

aij Pr (Xj(t) = 1|Xi(t) = 1) + δi

 . (2.4)

If we make an implicit assumption that2

Pr (Xj(t) = 1, Xi(t) = 1) = [Pr (Xj(t) = 1)][Pr (Xi(t) = 1)], (2.5)

and taking into account the fact that 1−pi(t) = Pr[Xi(t) = 0], the Markov differential

equation for state Xi(t) = 1 can be approximated by [22]:

dpi(t)

dt
= (1− pi(t))βi

n∑
j=1

aijpj(t)− δipi(t), (2.6)

which we can more compactly write as

dp (t)

dt
= (BA−D)p (t)− P (t)BAp (t) , (2.7)

where p (t) , (p1 (t) , . . . , pn (t))T , B , diag(βi) is a diagonal matrix comprising the

infection rates across the nodes, D , diag (δi) is a diagonal matrix comprising the

curing rates across the nodes, and P (t) , diag(pi (t)). The epidemic control problem

2This assumption of independence is a component at the core of the mean field approximation
for the SIS dynamics, typically done to derive a tractable representation of the complex spreading
dynamics.
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(which we mathematically formulate in the next section), is one of determining

the optimum investment in vaccination and treatment resources at each agent vi

to control the outbreak of an epidemic. The vaccination and treatment resources

applied at the nodes respectively lower and increase the infection and recovery rates

to guarantee stability of (2.7). Of interest to us is to derive a sufficient condition,

based on the dynamics in (2.7), that guarantee the probability of infections converge

to zero exponentially fast across the network. When agents in the network have

uniform infection and recovery rates, the next result presents such condition.

Proposition 2.1. Given the SIS epidemic model with uniform infection and recov-

ery rates across all agents, the probability of infection (from an initial infection),

converges to zero exponentially fast if

β

δ
< τc =

1

λ1(A)
, (2.8)

where β and δ are respectively the infection and curing rates, and λ1(A) is the max-

imum eigenvalue of the network adjacency matrix A.

Since our model assumes a network of non-identical agents, Proposition 2.1

though intuitive, does not capture the heterogeneity of agents assumed in our model.

We will derive an epidemic threshold based on the spread model in (2.7); that is, con-

ditions under which the probability of an initial infection in the network converges

to zero.

First observe that (2.7) has both a Disease-Free Equilibrium (DFE), as well as

an Endemic Equilibrium (EE) [47] [48]. The DFE is the equilibrium at which the

probability of infection is zero; that is, the expected number of agents in infected state

is zero and all agents in the network are only susceptible to the infection. While the

EE is the equilibrium at which the infection or disease in question is always present
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without any re-introduction being necessary. In [42], the authors showed that we

can upper bound the nonlinear system (2.7) via a linearization around its DFE.

Hence, to stabilize, (2.7), it is sufficient to stabilize its linearized dynamics, which is

a sufficient upper bound as we show in the the following result:

Proposition 2.2. ([42]) The dynamics (BA − D − P (t)BA)p(t) is upper bounded

by (BA−D)p(t).

Proof. Recall that (2.7) is the matrix-vector representation of (2.6). Hence,

dpi(t)

dt
= βi

n∑
j=1

aijpj(t)− δipi(t)− βipi(t)
n∑
j=1

aijpj(t) (2.9)

≤ βi

n∑
j=1

aijpj(t)− δipi(t)

since as part of the model we had assumed that βi, δi, pi(t) and aij ≥ 0; which implies

that

dpi(t)

dt
= βi

n∑
j=1

aijpj(t)− δipi(t) (2.10)

upper bounds (2.9) assuming they have identical initial conditions.

Having established (2.10) as an upperbound to the original nonlinear dynamics,

its matrix-vector form

ṗ(t) = (BA−D)p(t) (2.11)

will be the focus of this thesis. Since p(t) are probabilities of infection of agents

across the network, we are interested in conditions on the dynamics in (2.11) that

guarantee its stability. We formally state this condition next.

Proposition 2.3. Consider the heterogeneous networked SIS model in (2.11), with
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A ≥ 0, B, D � 0. Then, if the eigenvalue with largest real part of BA−D satisfies

R [λ1 (BA−D)] ≤ −ε, (2.12)

for some ε > 0, the disease-free equilibrium (p∗ = 0) is globally exponentially stable,

i.e., ‖p (t)‖ ≤ ‖p (0)‖K exp (−εt), for some K > 0.

Remark 2.4. When agents in the network have heterogeneous infection and recovery

rates, (2.12) is the epidemic threshold of the linearized model. If the inequality fails

to hold for some ε > 0, an epidemic is guaranteed to ensue.

The discrete-time analog of (2.10) is given as [33]:

p(t+ 1) = (BA+ I −D) p(t). (2.13)

Details of its derivation can be found in Appendix A. The necessary condition for

control of an epidemic outbreak considering the spreading dynamics (2.13) is the

spectral condition ρ(BA+ I −D) < 1.

2.3 Epidemic Control Problem

An assumption in our model and problem set up is that the infection rate βi and

recovery rate δi for node vi can be adjusted at a cost. We assume preventive resources

(vaccines) at node vi reduces its infection rate βi within feasible intervals 0 < β
i
≤

βi ≤ β̄i, with associated cost fi(βi); and that treatment resources (antidotes) at

node vi ups its recovery rate δi within feasible intervals 0 < δi ≤ δi ≤ δ̄i and accrues

a cost gi(δi). Our choices for the associated cost functions is such that fi (βi) is

monotonically decreasing w.r.t. βi and gi (δi) is monotonically increasing w.r.t. δi.
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The epidemic control problem considered is the following:

Problem 2.5. Given a vaccination cost function fi(βi), for βi within a feasible in-

terval 0 < β
i
≤ βi ≤ β̄i, and treatment cost function gi(δi), for δi within a feasible

interval 0 < δi ≤ δi ≤ δ̄i, determine the optimal allocation of vaccines and treatment

resources to control the spread of an epidemic outbreak with an asymptotic expo-

nential decaying rate ε for a minimum cost. Mathematically, this problem can be

formulated as follows:

minimize
{βi,δi}ni=1

n∑
i=1

fi (βi) + gi (δi) (2.14)

subject to R [λ1 (diag (βi)A− diag (δi))] ≤ −ε, (2.15)

β
i
≤ βi ≤ βi, (2.16)

δi ≤ δi ≤ δi, i = 1, . . . , n, (2.17)

where fi(βi) is the vaccination cost incurred at node vi, gi(δi) is the treatment cost

at node vi, A is the adjacency matrix associated with the network.

In the problem above, (2.14) represents the cost of allocating vaccine and treat-

ment resources across nodes in a network; and the spectral constraint (2.15) rep-

resents the critical point or epidemic threshold. Feasible bounds of the attained

infection and recovery rates are represented by (2.16) and (2.17).

In Chapter 3 we will consider a variant of (2.14) - (2.17), and briefly highlight

existing approaches based on network centrality measures. Following that, a greedy

algorithm that outperforms centrality-based heuristics will be presented. The opti-

mal solution to the dual problem, will be used as a benchmark in comparing the per-

formance of the heuristics. Chapter 3 will then conclude by presenting a Semidefinite

Programming approach to solving (2.14) - (2.17). Later, in Chapter 4, we will solve
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(2.14) - (2.17) in its most general form, where the infection and recovery rates are

simultaneously optimized and the network in question comprises positively weighted,

directed edges.
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Chapter 3

Optimal Resource Allocation

Strategy: From Heuristics to a

Convex Framework

The epidemic control problem formulated in the preceding chapter is the following:

Problem 3.1. Given a vaccination cost function fi(βi), for βi within a feasible in-

terval 0 < β
i
≤ βi ≤ β̄i, and treatment cost function gi(δi), for δi within a feasible

interval 0 < δi ≤ δi ≤ δ̄i, determine the optimal allocation of vaccines and treat-

ment resources to control the spread of an epidemic outbreak with an asymptotic

exponential decaying rate ε for a minimum cost. Concisely –

minimize
{βi,δi}ni=1

n∑
i=1

fi (βi) + gi (δi)

subject to R [λ1 (diag (βi)A− diag (δi))] ≤ −ε, (3.1)

β
i
≤ βi ≤ βi,

δi ≤ δi ≤ δi, i = 1, . . . , n.
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In this chapter, we will consider a combinatorial formulation of (3.1) on an undi-

rected network, to which we apply heuristics.

3.1 Combinatorial Resource Allocation Problem

In considering a combinatorial variant of (3.1), the binary constraint βi ∈ {βi, βi}

is imposed on βi. Further, we assume that the network is undirected, in which case

its associated network adjacency matrix is symmetric; that is, A = AT and that

all agents in the network have a uniform curing rate δi = δ. The combinatorial

formulation essentially seeks to determine the optimum minimum-cost allocation of

vaccination resources to a subset of agents in the network to guarantee an expo-

nentially stable, disease-free equilibrium. A formal statement of the problem is the

following:

Problem 3.2. Given curing rates {δi : vi ∈ V} and a vaccination cost function

fi(βi), for βi ∈ {βi, βi}, determine the optimal allocation of vaccination resources to

control the propagation of an epidemic outbreak with exponential decay rate ε with

the least cost.

Mathematically, this can be stated as:

minimize
{βi}ni=1

n∑
i=1

fi (βi)

subject to R [λ1 (diag(βi)A−D)] ≤ −ε,

βi ∈ {βi, βi}.

(3.2)

Optimization problems with binary constraints as in (3.2) are known to be NP-

hard; for instance, see [49] [50] [51]. We will solve (3.2) via heuristics based on
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network centrality measures. Following that, we will employ a greedy algorithm

and finally construct an upper bound that approximates the optimal solution. We

obtain our bound via the dual problem using Lagrange duality theory. This method

of approximating combinatorial problems has been employed in other works including

[52] [53].

The constraint βi ∈ {βi, βi} in (3.2) indicates that each agent is either going

to be vaccinated at a cost or not vaccinated at all. The set of agents {vi} chosen

to be vaccinated will have their infection rates βi set to β
i
, since a lower infection

rate results in lower probability of infection. And the infection rates of agents not

allocated any vaccines will be set to βi. Let us assume that the cost incurred at node

vi at the peak infection rate is zero; that is, fi(βi) = 0, and that the maximum cost

of vaccinating node vi is attained when its infection rate is β
i
; that is, fi(βi) , ci,

resulting from the affine function

fi(βi) , ci
βi − βi
β
i
− βi

. (3.3)

We assume that the vaccination cost function fi(βi) is monotonically decreasing

in the interval βi ∈ [β
i
, βi], and that the vaccination cost function fi(βi) is twice

differentiable and satisfies

f ′′i (βi) ≥ −
2

βi
f ′i(βi), (3.4)

for βi ∈ [β
i
, βi]. Hence, based on (3.3), the resource distribution strategy that

minimizes
∑n

i=1 fi(βi) is equivalent to that which maximizes
∑n

i=1 ciβi. Suppose we
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let c , (c1, . . . , cn)T and b = (β1, . . . , βn)T , we can reformulate (3.2) as

maximize
b

cTb

subject to R[λ1(BA−D)] ≤ −ε, (3.5)

βi ∈ {βi, βi}, i = 1, . . . , n,

where B = diag(b). Presented with the resource allocation problem in (3.5), the

most intuitive and common approach is to employ heuristics based on network cen-

trality measures. In summary, nodes are chosen to be immunized or vaccinated based

on how ‘important’ they are in the network. We briefly introduce this concept next.

3.2 Network Centrality Measures

Centrality measures are commonly used in the literature to describe influence of

nodes in a network [54]. They are useful in, for instance, determining how fast infor-

mation can spread in a network by exploiting the influence – how central – certain

individuals are within the network. While there are several well-studied measures of

centrality in the literature, we briefly introduce three measures of importance that

will be used in the rest of the thesis.

3.2.1 Degree centrality

Degree centrality is the most intuitive of the common centrality measures in net-

works. It measures relative importance of nodes based on their degrees; that is, the

number of neighbors each node has in the network (when the network is undirected).

In directed graphs, two degree centrality measures can be defined – in-degree cen-

trality and out-degree centrality. In-degree centrality of a node is the number of
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incoming neighbors (edges) it has; while the out-degree of a node is the number of

outgoing neighbors (edges) it has. Formally, suppose a directed network is repre-

sented by a nonnegative, possibly weighted adjacency matrix A, then

degin(vi) =
n∑
j=1

Aji (3.6)

degout(vi) =
n∑
j=1

Aij. (3.7)

For instance, in the undirected network in Figure 3.1, node v3 has the highest degree

and node v1 has the least degree centrality.

1 2 3

4

5

6

Figure 3.1: A 6−node graph with node v3 having the highest degree centrality

3.2.2 Eigenvector centrality

Introduced by Bonacich in [54], eigenvector centrality is based on the idea that the

centrality of a node in a network is determined by the centrality of its neighbors. It

is a centrality measure that reflects the fact that not all connections in a network are

equal. The eigenvector centrality measure is derived from the values of the leading

eigenvector (associated with the largest eigenvalue) of the network adjacency matrix.

Suppose, λ is the leading eigenvalue of the square, stochastic adjacency matrix A,
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and x is its associated eigenvector, the following relation holds λx = Ax, and the

eigenvector centralities of the nodes vi ∈ V for i = 1, . . . , n can be expressed as:

x(vi) =
∑
vj∈V

Aijx(vj), (3.8)

and the normalized entries of x give the centrality weights of the agents in the

network. It is easy to verify that node v3 in Figure 3.1 also has the highest eigenvector

centrality in the network.

3.2.3 PageRank centrality

A variant of the eigenvector centrality, the pagerank centrality is a more common

measure in directed networks and determines the importance of a node based on

how central its incoming neighbors are. The computation of the PageRank central-

ity measure adds a damping factor α to the adjacency matrix1. The added damping

factor helps avoid the potential for an infinite series of pageranks; that is, it lightens

the effect of incoming pageranks of neighboring nodes to any given node. Mathe-

matically, the PageRank centrality pr(vi) of a node vi in a network is defined as:

pr(vi) = α
∑
j

Aji
pr(vj)

L(j)
+

1− α
N

, (3.9)

where 0 ≤ α ≤ 1, L(j) =
∑

j Aij is the number of neighbors of node j (or number of

outbound links in a directed graph). Relative to the eigenvector centrality measure,

a major difference is the presence of a scaling factor L(j), as well as the PageRank

vector being a left eigenvector via the reversed indices Aji.

Because centrality measures, indicate how certain nodes influence the network,

1α falls in the range [0, 1], and is typically set to 0.85; see [55] for details.
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including speed of information propagation, they have been widely proposed as a

strategy in resource allocation and network immunization problems; see for instance,

[36], [37], [56], [57], [58] [59].

3.2.4 Resource Allocation via Network Centrality

Given the binary constraint in (3.5), network centrality approach to vaccination is

to immunize nodes in decreasing order of their centrality score.2 In other words,

nodes in the immunized group; that is, nodes with βi = β will be those with high

centrality scores, while nodes with βi = β will be those with low centrality scores.

Let the centrality measures of the nodes be C = {ξ1, . . . , ξn}, where ξi is the

centrality score of node vi and let Sk be the set of nodes that have been allocated

vaccination resources at time-step k. At each epoch, the node with the highest

centrality score is added to the set Sk until the spectral constraint in R(λ1(BSkA−

D)) ≤ −ε is satisfied, where BSk is the diagonal matrix of infection rates comprising

the subset Sk ⊆ V of nodes in the network that have been vaccinated. For instance,

in a 5-node network where nodes v2 and v4 have been immunized by time-step k,

BSk =



β1 0 . . . 0

0 β
2

...

... β3

β
4

0 . . . β5


(3.10)

A network centrality-based algorithm is presented in Algorithm 1.

2The choice of centrality measure is not relevant in the strategy, since the nodes in the network
can be ordered in decreasing order of any centrality measure used.
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Algorithm 1 Centrality-based Algorithm for solving (3.2)
1: Given ε
2: Start with S1 = { }
3: repeat
4: Sk+1 = Sk + vi, where vi = maxi{ξ1, . . . , ξn} . Node with next highest centrality

score is immunized
5: Set k = k + 1
6: until R(λ1(BSkA−D)) ≤ −ε . Epidemic control condition satisfied

Observe that at each epoch k, the choice of the node to be added to Sk is in-

dependent of the state dynamics BA − D, and dependent solely on the network

adjacency matrix A, from which the centrality scores ξ1, . . . , ξn were derived. This

observation will, in part, explain why Algorithm 1 has a lower performance relative

to Algorithms 2 and 3.

3.2.5 Resource Allocation via a Greedy Algorithm

Again, let Sk be the set of nodes that have been vaccinated at iteration k; and let

the matrix BSk be the diagonal matrix of infection rates where the subset Sk ⊆ V

of nodes in the network have been vaccinated. The greedy algorithm presented here

to solve (3.5), depends not only on the network adjacency matrix A, but also on

changes to the spectrum of BSkA−D when the set of vaccinated nodes in Sk change.

Since the nodes are assumed to have identical costs ci, the goal of the algorithm is

to vaccinate the fewest nodes that result in satisfaction of the spectral constraint

R(λ1(BSkA−D)) ≤ −ε. Hence, at each step of the algorithm, to the set Sk, we add

the node ik that provides the most significant benefit per unit cost; that is,

ik = arg max
i

∆(i,Sk), (3.11)
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where

∆(i,Sk) ,
R(λ1(BSkA−D))− R(λ1(BSk+{i}A−D))

ci
, (3.12)

until the spectral constraint R(λ1(BSkA − D)) ≤ −ε is satisfied. The greedy algo-

rithm is formally presented in Algorithm 2.

Algorithm 2 A Greedy Algorithm for solving (3.2)
1: Given ε
2: Start with S1 = { }
3: repeat
4: ik , arg maxi ∆(i,Sk)
5: Sk+1 = Sk + {ik} . Node with maximum benefit per unit cost is immunized
6: Set k = k + 1
7: until R(λ1(BSkA−D)) ≤ −ε . Epidemic control condition satisfied

3.2.6 Reverse Greedy Algorithm

We present a variant of Algorithm 2, called the Reverse Greedy algorithm. The

Reverse Greedy algorithm begins with all nodes assumed to be vaccinated; that is,

the set S1 = V and βi = β, ∀ vi ∈ V . It then iteratively removes nodes from the set Sk

at each step of the algorithm until the spectral radius constraint R(λ1(BSkA−D)) >

−ε is satisfied. The set of vaccinated nodes is then Sk−1. Implementation of the

reverse greedy algorithm as presented in Algorithm 3 on (3.5) results in a higher

objective, compared to Algorithm 2. The reverse greedy algorithm is summarized in

Algorithm 3.

Algorithm 3 Reverse Greedy Algorithm for solving (3.2)
1: Given ε
2: Start with S1 = V
3: repeat
4: ik , arg mini ∆(i,Sk \ {i})
5: Sk+1 = Sk − {ik}
6: Set k = k + 1
7: until R(λ1(BSkA−D)) > −ε . Epidemic control condition is satisfied
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3.3 Bounds on performance of the Greedy algo-

rithm

Via Lagrange duality theory we present quality guarantees (a benchmark) for the

performance of the Algorithms 1, 2 and 3.

Theorem 3.3. ([42]) Given the following optimization problem

T ∗C = maximize
b

cTb

subject to (D − εI)B−1 − A � 0, (3.13)

βi ∈ {βi, βi}, i = 1, . . . , n,

the primal optimal solution T ∗C is upper bounded by D∗C, which is the solution to the

following dual problem

D∗C = minimize
Z,u

1Tu− trace(AZ)

subject to ui ≥ ciβi +
δi

βi
Zii ∀ i, (3.14)

ui ≥ ciβi +
δi
β
i

Zii ∀ i

Z � 0.

Proof. To prove this, we first write the matrix (D−εI)B−1−A as
∑

i eie
′
i(δi−ε)/βi−

A, where ei is the unit vector in the standard basis. Using this new expression, the
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Lagrangian of 3.13 can be expressed as

L(b, Z) = cTb + trace

(
Z

(∑
i

eie
′
i

δi
βi
− A

))
,

subject to βi ∈ {βi, βi}, (3.15)

Z � 0.

The Lagrangian above can be simplifies to

L(b, Z) =
∑
i

(
ciβi +

δi
βi
Zii − trace(ZA)

)
, (3.16)

with the binary constraint βi ∈ {βi, βi} and Z � 0 kept implicit as domain con-

straints. To drive the dual objective function, the Lagrangian is maximized with

respect to the primal variable βi as follows:

q(Z) =
∑
i

(
max ciβi +

δi
βi
Zii − trace(ZA)

)
. (3.17)

By exploiting the properties of trace, which enabled separation of the Lagrangian

per node, and given the binary constraint on βi at each node, the maximization of

the Lagrangian can be locally carried out at each node. First, let

ui = max

{
ciβi +

δi

βi
Zii, ciβi +

δi
β
i

Zii

}
. (3.18)
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To construct the dual, we use an epigraph formulation of (3.17), expressing it as

q(Z,u) =
n∑
i=1

ui − trace(ZA), (3.19)

subject to ui ≥ ciβi +
δi

βi
Zii ∀ i, (3.20)

ui ≥ ciβi +
δi
β
i

Zii ∀ i. (3.21)

The dual is a minimization problem and q(Z,u) in (3.17) is strictly increasing in u,

then either (3.20) or (3.21) is binding to guarantee that (3.18) holds at optimality.

The dual in (3.14) is obtained by minimizing (3.19), subject to the epigraph con-

straints (3.20), (3.21), as well as domain constraints Z � 0. And by weak duality

theory, the solution to the dual problem satisfies D∗C ≥ T ∗C [44]. Hence, for a problem

of the form (3.13), we can upper bound our solution by

T ∗C − cTb ≤ D∗C − cTb (3.22)

by solving the dual problem. And since strong duality does not hold, equality of the

terms cTb and D∗C will not hold.

Later in the chapter, we will illustrate performance of the algorithms above in

relation to the Lagrange dual bound just presented.

3.4 Resource Allocation via Semidefinite Program-

ming

In this section, we take a Semidefinite programming approach to solve the epidemic

control problem first presented in (3.2), after relaxing the binary constraint, allowing
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βi to take values in the interval [β, β]. Again, the goal here is to compute the cost

optimal vaccine allocation to each node in the network that a DFE at an exponential

rate. The specific problem considered is the following:

minimize
{βi}ni=1

n∑
i=1

fi (βi)

subject to R [λ1 (BA−D)] ≤ −ε,

β
i
≤ βi ≤ βi,

(3.23)

where fi(βi) is the immunization cost incurred at node vi, A is a symmetric adjacency

matrix, B = diag(βi) is a diagonal matrix of the infection rates and D = diag(δ) is

a diagonal matrix of the recovery rates.

Definition 3.4. Semidefinite Programs (SDPs) are optimization problems that min-

imize a linear cost function subject to linear matrix inequality constraints, and are

of the form:

minimize
x

cTx

subject to F (x) ≥ 0.

(3.24)

Where F (x) , F0 +
∑n

i=1 xiFi. The problem data are the vector c ∈ Rn and the

symmetric matrices F0, . . . , Fn ∈ Rn×n. The inequality F (x) ≥ 0 means that F (x) is

positive semidefinite; that is yTF (x)y ≥ 0, for all y ∈ Rn. The inequality F (x) ≥ 0

is called Linear Matrix Inequality (LMI) and the problem (3.24), an SDP. SDPs are

convex optimization problems since their cost functions as well as constraints are

convex.

To derive an SDP formulation for (3.23), we first present a result that enables

expression of the spectral constraint in (3.23) as an LMI.
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Lemma 3.5. ([42]) Given a symmetric A, B = diag(βi), and D = diag(δ), then

R(λ1(BA−D)) ≤ −ε, if (D − εI)B−1 − A � 0.

Proof. By a similarity transformation, we can express the matrixBA−D asB1/2AB1/2−

D by pre and post-multiplying BA−D by B−1/2 and B1/2 respectively. The eigen-

values of B1/2AB1/2 −D are real, since it is symmetric. Hence, λ1(BA −D) ≤ −ε

if

λi((D − εI)−BA)) = λi
(
(D − εI)−B1/2AB1/2

)
≥ 0,

which is equivalent to ((D − εI) − B1/2AB1/2) � 0. If we apply a congruence

transformation to (D − εI) − B1/2AB1/2 by pre and post multiplying it by B−1/2,

we obtain λ1(BA−D) ≤ −ε if (D − εI)B−1 − A � 0, which proves the result.

Based on Lemma 3.5, (3.23) can be reformulated as the following (still nonconvex)

optimization problem

minimize
{βi}ni=1

n∑
i=1

fi (βi) (3.25)

subject to (D − εI)B−1 − A � 0,

β
i
≤ βi ≤ βi.

Observe that though the cost function fi in 3.25 had been restricted to be convex,

the LMI constraint is not convex because of the negative exponent on the matrix B.

To address this challenge and obtain a convex problem, we carry out the following

change of variables; let γi = β−1i , and Γ , diag(γi). By the earlier stated strong

convexity assumption on the cost function fi, the change of variable from βi to γi still

leaves us with a convex objective function. This can be verified via a second-order
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convexity conditions as follows:

d2

dγ2i
fi(γ

−1
i ) = f ′′i (γ−1i )

1

γ4i
+ 2f ′i(γ

−1
i )

1

γ3i
≥ 0,

for each node vi ∈ V . Since the sum of convex functions is trivially convex, we

have that (3.26) is convex. With the change of variable from βi to γi, the spectral

constraint in (3.26) becomes convex in the following optimization problem:

minimize
{γi}ni=1

n∑
i=1

fi (γi)

subject to (D − εI)Γ− A � 0, (3.26)

1

βi
≤ γi ≤

1

β
i

,

which can be solved efficiently.

Thus far, in this chapter, we have formulated the problem of resource alloca-

tion to control an epidemic outbreak, based on a spread model in which the curing

rates of agents are uniform, and the contact network is undirected. We briefly pre-

sented widely proposed network centrality-based approach, two greedy algorithms

and an SDP-based convex framework (with a relaxed binary constraint on the infec-

tion rates) to solve the problem. As will be illustrated in the simulations in section

3.5, the somewhat positive correlation observed between the resources allocated to

nodes across the network and their centrality measures indicate that the convex pro-

gramming formulations and solutions take into account more general (algebraic and

structural) network characteristics without resorting to heuristics, thus, encompass-

ing centrality-heuristics.

39



3.5 Numerical Results

Illustrated in this section are results from the solution methods presented above. We

compare the solutions obtained from the network centrality and greedy algorithms, as

well as results of the SDP framework. We use a subgraph from the social networking

website, Facebook comprising n = 247 nodes. We assume a cost function defined

in (3.3). We further assume that all agents in the network have a uniform recovery

rate of δ = 0.1. The epidemic threshold here is τc = δ/λ1(A). If the infection rates

of the nodes satisfy β > τc, an epidemic ensues. If however, the infection rates at

the node β < τc, then the outbreak is contained.

3.5.1 Illustration of the SDP Approach

The largest eigenvalue of the network considered is λ1(A) = 13.52. By Proposition

2.3, assuming a uniform curing rate δ, the choice of the maximum β = 2.4τc and

minimum β = 0.2β infection rates are such that when nodes are node vaccinated;

that is, βi = β ∀i, the DFE is unstable; and when nodes are vaccinated; that is,

βi = β, ∀i, the DFE is stable. Problem (3.26) is solved using CVX, a package for

specifying and solving convex programs [60] [61].

Results of our simulations using the parameters above are presented in Figure

3.2. The plot relates the immunization cost per node relative to its degree centrality

measure. Each point (blue circle) in the plot represents an individual in the undi-

rected 247-node network considered. The immunization cost function fi(βi) used was

normalized to take values in the interval [0, 1] (indicated on the horizontal axis). And

the plot illustrates the relationship between the degree of each individual (vertical

axis), and the cost of immunizing each individual (horizontal axis). We observe that

nodes with degree less than approximately 8 accrue no immunization cost. Nodes
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Figure 3.2: The plot above illustrates the relationship between the node degree
centralities (on the vertical axis), and the immunization cost per node (on the hor-
izontal axis) using a subgraph of the social networking site Facebook. Each blue
circle represents an individual in the 247-node subgraph.
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with degree greater than 8 are immunized at a cost.

3.5.2 Solutions to Combinatorial Formulations

In this section, we illustrate results of the network centrality and greedy algorithms

1, 2 and 3 on the same social network comprising n = 247 nodes, and compare the

outcomes of their solutions. The dual problem is solved using CVX, a package for

specifying and solving convex programs [60] [61]. The recovery rate was, again, fixed

at δ = 0.1, and upper and lower bounds on the infection rate chosen such that when

no nodes are immunized, the DFE of the spread dynamics is unstable; and when

nodes are immunized, the DFE of the spread dynamics is stable. In particular, we

choose β = 3τc and β = 0.25β. Recall, the objective is maxb cTb. After solving the

problem using the different algorithms discussed earlier, we find that the dual prob-

lem yields the optimal solution, and the vaccination based on eigenvector centrality

resulted in the least optimal solution. The dual solution obtained was 4.19126; the so-

lution from the reverse greedy algorithm was 3.7977; the greedy algorithm resulted in

a solution of 3.7811, and the degree and eigenvector centrality heuristics respectively

yielded 3.3486 and 1.6022. As expected, the dual solution serves as a benchmark

and outperforms the other algorithms. We see that the greedy and reverse greedy

algorithm performs better than the network centrality-based algorithms.

Figure 3.3 illustrates the relationship between the fraction of nodes with a given

eigenvector centrality measure and the node eigenvector centrality scores. It shows

that all the algorithms favor the vaccination of nodes with higher eigenvector cen-

tralities. The horizontal axis of Figure 3.4 represents the node degrees plotted in

log scale; and the vertical axis are the fraction of nodes with a certain degree that

are immunized. Though a slight correlation between the immunized nodes and cen-
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Figure 3.3: For each algorithm considered, this graph illustrates the relationship
between the eigenvector centrality of each node and the fraction of nodes exceeding
a certain centrality that are immunized.
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trality measures is observed (in both the degree and eigenvector centrality), we find

that the curves are not strictly monotone increasing in the fraction of nodes vacci-

nated, which indicate that vaccinating nodes with higher centrality scores does not

always yield an optimal vaccination strategy. Centrality measures depend solely on

the graph structure and not on the entirety of the ’state matrix’ BA − D. As a

result, the centrality measures of the network does not change when the set of vacci-

nated nodes in the matrix BA−D changes. This is the primary reason why network

centrality-based heuristics perform poorly relative to the Greedy and Reverse Greedy

algorithms presented.

In this chapter, we have considered a design problem where the objective was to

optimally allocate vaccines to control an epidemic outbreak. We considered a com-

binatorial formulation where agents in the network are either vaccinated or not; we

also considered a non-binary scenario where the vaccination investment per node is

allowed to vary based on the desired infection rate at that node. We have established

that though intuitive, network centrality-based heuristics are suboptimal.
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Chapter 4

Resource Allocation for Epidemic

Control via Geometric

Programming

In the previous chapter, we considered the following optimization problem

minimize
{βi}ni=1

n∑
i=1

fi (βi) (4.1)

subject to (D − εI)B−1 − A � 0,

β
i
≤ βi ≤ βi.

where the goal was to optimally allocate vaccines to reduce the infection rate βi

across all nodes in the network, to contain the spread of an outbreak. In (4.1), the

matrix A was assumed to be symmetric and the decision variable was B = diag(βi).

In this chapter we consider the resource allocation problem in which both op-

timum preventive (vaccines) and corrective resources (antidotes) are concurrently
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allocated to the nodes to reduce the infection rates βi and recovery rates δi within

feasible intervals 0 < β
i
≤ βi ≤ β̄i, and 0 < δi ≤ δi ≤ δ̄i for each node vi at re-

spective costs fi(βi) and gi(δi). While the resource allocation problems in chapter 3

considered undirected networks, the problems discussed in this chapter are for gen-

eral, possibly weighted, directed, strongly connected networks1. Two problems are

presented – one in which the exponential decay rate of the probability of infection

is constrained, which we term the rate-constrained problem; and a second in which

the total investment (on preventive and corrective resources) cost across all nodes

is constrained – termed the budget-constrained problem. These problems are formu-

lated as Geometric Programs, which we introduce after formally stating the resource

allocation problems in their natural form.

4.1 Rate-constrained resource allocation problem

In the rate-constrained problem, the objective is to determine the cost-optimal allo-

cation of vaccines and treatment resources that attain a desired exponential decay

rate in the probability of infection for all nodes in the network.

Problem 4.1. Given a positively weighted directed network with associated adjacency

matrix A, sets of node cost functions {fi(βi), gi(δi)}ni=1 and bounds on the infection

and curing rates 0 < β
i
≤ βi ≤ β̄i, and 0 < δi ≤ δi ≤ δ̄i respectively, an exponential

decay rate ε > 0, determine the cost-optimal distribution of vaccines and antidotes

to attain the desired decay rate in the probability of infection.

1Later in this chapter, we adapt our solution framework to contact networks that are not nec-
essarily strongly connected.
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We state this as the following optimization problem:

minimize
{βi,δi}ni=1

n∑
i=1

fi (βi) + gi (δi) (4.2)

subject to R(λ1 (diag (βi)A− diag (δi))) ≤ −ε, (4.3)

β
i
≤ βi ≤ βi, (4.4)

δi ≤ δi ≤ δi, i = 1, . . . , n, (4.5)

where (4.2) is the total investment, (4.3) constrains the decay rate to ε, and (4.4)-

(4.5) maintain the infection and recovery rates in their feasible limits.

4.2 Budget-constrained resource allocation prob-

lem

The objective in the budget-constrained problem is to maximize the exponential

decay rate ε̂, given a budget (limit)M on the investment in protective and corrective

resources. The budget-constrained allocation problem is formulated as follows:

Problem 4.2. Given a positively weighted, directed network G with adjacency matrix

A, a set of cost functions {fi (βi) , gi (δi)}ni=1, bounds on the infection and recovery

rates 0 < β
i
≤ βi ≤ βi and 0 < δi ≤ δi ≤ δi, i = 1, . . . , n, and an investment

budget M; find the cost-optimal distribution of vaccines and antidotes to maximize

the exponential decay rate ε̂.
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Concisely, we have the following optimization program:

maximize
ε̂,{βi,δi}ni=1

ε̂ (4.6)

subject to R [λ1 (diag (βi)A− diag (δi))] ≤ −ε̂, (4.7)

n∑
i=1

fi (βi) + gi (δi) ≤M, (4.8)

β
i
≤ βi ≤ βi, (4.9)

δi ≤ δi ≤ δi, i = 1, . . . , n, (4.10)

where (4.8) is the budget constraint. Note that if B = diag(βi) and D = diag(δi) are

decision variables, the spectral constraint (D − εI)B−1 − A � 0 derived in Lemma

3.5 of Chapter 3 is not an LMI in the decision variables, given the product term

DB−1. In addition, since A is assumed to be asymmetric in Problems 4.1 and 4.2,

the SDP formulation employed in the previous chapter is no longer possible, since

SDPs are defined for symmetric matrices and LMI constraints. We will formulate

Problems 4.1 and 4.2 as GPs, from which optimal solutions will be derived.

4.3 Geometric Programs

Geometric Programs are a class of nonlinear, nonconvex optimization problems that

minimize posynomial functions, subject to posynomial inequality and monomial

equality constraints. Though GPs are nonconvex in their natural form, they can

be transformed to convex optimization problems, which can be efficiently solved for

globally optimal solutions [62]. GP solvers are numerically efficient, with interior

point methods having polynomial time complexity [63]. The convexity and duality

properties of GPs are well studied and understood [44] [64]. GPs have been applied
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to different problems in the past some of which include power optimization problems

in communication [65] and electrical circuit design problems [66].

GPs in standard form are constrained optimization of a class of functions called

posynomials; while GPs in convex form are obtained from a logarithmic change of

variables, and logarithmic transformation of the objective and constraint functions.

Definition 4.3. Monomial Functions: We define a monomial (of the variables

x1, . . . , xn) as a function f : Rn
++ → R:

f(x) = c xa11 xa22 . . . xann ,

where c > 0 is the coefficient of the monomial and ai ∈ R are exponents of the

monomial.

Definition 4.4. Posynomial Functions: A sum of monomials; that is, a function of

the form

f(x) =
K∑
k=1

ck x
a1k
1 xa2k2 . . . xankn ,

where ck > 0, for k = 1, 2, . . . , K and ajk ∈ R for j = 1, . . . , n and k = 1, . . . , K is

called a posynomial.

For example, while x1 +x42 and x1x
0.3
2 π are posynomials, x1−x22 is not a posynomial

because of the negative coefficient of the second term.2 A standard form GP is one

in which a posynomial function is minimized subject to posynomial upper bound

2More general functions with negative coefficient are called signomials.
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inequality constraints and monomial equality constraints, represented as

minimize f0(x)

subject to fi(x) ≤ 1, i = 1, . . . ,m,

gi(x) = 1, i = 1, . . . , p.

(4.11)

In (4.11), fi are posynomial functions, gi are monomials and xi are the optimization

variables, with an implicit domain constraint that xi > 0. GPs in standard form

are not convex optimization problems, since posynomials are not convex functions.

However, with a logarithmic change of variables and multiplicative constants: yi =

log xi, bl = log cl, bik = log cik and a logarithmic change of the functions’ values,

(4.11) can be transformed to the following equivalent problem in the variable y:

minimize h0(y) = log

K0∑
k=1

exp(aT0ky + b0k)

subject to hi(y) = log

Ki∑
k=1

exp(aTiky + bik) ≤ 0, ∀ i

qi(y) = aTl y + bl = 0, l = 1, . . . ,M.

(4.12)

Problem (4.12) is called a GP in convex form and is a convex optimization prob-

lem since the Log-sum-exp (LSE) function is convex [62]. The convex characteri-

zations presented here will be important in deriving solutions for the decentralized

resource allocation problem considered in Chapter 5.
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4.4 Geometric Programming formulation for Re-

source Allocation

In this section, we formulate the epidemic control problem as a GP in standard

form. We start by expressing the spectral radius constraint (4.3) in an equivalent

form using the Perron-Frobenius lemma, from the theory of nonnegative matrices.

This equivalent form will enable the expression of the spectral constraint as a set of

posynomial functions in the decision variables.

Lemma 4.5. (Perron-Frobenius) Let M be a nonnegative, irreducible matrix. Then,

the following statements about its spectral radius, ρ (M), hold:

1. ρ (M) > 0 is a simple eigenvalue of M ,

2. Mu = ρ (M) u, for some u ∈ Rn
++, and

3. ρ (M) = inf
{
λ ∈ R : Mu ≤ λu for u ∈ Rn

++

}
.

Recall that a working assumption made so far is that the directed network on

which the contagion is occurring is strongly connected. Further, since irreducibility

of a matrix is equivalent to its associated digraph being strongly connected, lemma

4.5 holds for the spectral radius of the adjacency matrix of any positively weighted,

strongly connected digraph. A corollary of Lemma 4.5 is the following:

Corollary 4.6. Let M be a nonnegative, irreducible matrix. Then, its eigenvalue

with the largest real part, λ1 (M), is real, simple, and equal to the spectral radius

ρ (M) > 0.

This next result helps us understand the effect of the variables {βi}ni=1 and {δi}ni=1

on the real part of the lead eigenvalue of diag(βi)A+ diag(δi)I.
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Lemma 4.7. ([1]) Consider the adjacency matrix A of a (positively) weighted, di-

rected, strongly connected graph G, and two sets of positive numbers {βi}ni=1 and

{δi}ni=1. Further, let B = diag(βi) and D = diag(δi). Then, R(λ1 (BA−D)) is an

increasing function w.r.t. βi, and a monotonically decreasing function w.r.t. δi for

i = 1, . . . , n.

Proof. See Appendix C.

From Lemma 4.7, it is clear that the infection rates {βi}ni=1 and recovery rates

{δi}ni=1 both have an effect on the leading eigenvalue of BA − D, and will need to

be jointly controlled to satisfy the epidemic control condition.

Proposition 4.8. ([1]) Consider the n × n nonnegative, irreducible matrix M (x)

with entries being either 0 or posynomials with domain x ∈ S ⊆ Rk
++, where S is

defined as S =
⋂m
i=1

{
x ∈ Rk

++ : fi (x) ≤ 1
}

, fi being posynomials. Then, we can

minimize λ1 (M (x)) for x ∈ S by solving the following GP:

minimize
λ,{ui}ni=1,x

λ (4.13)

subject to

∑n
j=1Mij (x)uj

λui
≤ 1, i = 1, . . . , n, (4.14)

fi (x) ≤ 1, i = 1, . . . ,m. (4.15)

The problem above is a valid GP in standard form, derived from Corollary 4.6,

since it comprises a monomial objective function and posynomial constraint func-

tions. The constraint in (4.14) comes from expanding the constraint Mu ≤ λu in

the third equivalent definition of Lemma 4.5 and expressing it as a set of posyno-

mial functions in the variables x, ui and λ. Further, note that 4.14 is a posynomial

since it is the ratio of posynomial to a monomial function resulting in a posynomial
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inequality. Also, note that if u = (u1, . . . , un)T is a solution of 4.14, so is αu for

any α > 0. Based on Proposition 4.8, solutions to the rate and budget-constrained

resource allocation problems are proposed in the next subsection.

4.4.1 Solution to the Budget-Constrained Allocation Prob-

lem for Strongly Connected Digraphs

Before stating the solution within the GP framework, note that the constraint (4.7)

cannot be directly expressed as a set of posynomial functions as was done in Propo-

sition 4.8 because of the negative coefficient of the term diag(δi). To overcome this

challenge for Problem 4.2, an equivalent reformulation is derived.

Suppose the objective functions fi and gi are posynomial functions and the con-

tact graph G is strongly connected, the budget-constrained resource allocation prob-

lem in 4.2 can be solved as follows:

Theorem 4.9. ([1]) Given a strongly connected graph G with adjacency matrix A,

posynomial cost functions {fi (βi) , gi (δi)}ni=1, bounds on the infection and recovery

rates 0 < β
i
≤ βi ≤ βi and 0 < δi ≤ δi ≤ δi, i = 1, . . . , n, and a maximum

investment budget M on protection and correction resources. Then, the optimal

investment on vaccines and antidotes for node vi to solve Problem 4.2 are fi (β
∗
i )

and gi

(
∆ + 1− δ̂∗i

)
, where ∆ , max

{
δi
}n
i=1

and β∗i ,δ̂∗i are the optimal solution for
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βi and δ̂i in the following GP:

minimize
λ,{ui,βi,δ̂i,ti}n

i=1

λ (4.16)

subject to
βi
∑n

j=1Aijuj + δ̂iui

λui
≤ 1, (4.17)

n∑
k=1

fk (βk) + gk (tk) ≤M, (4.18)

(
ti + δ̂i

)/(
∆ + 1

)
≤ 1, (4.19)

∆ + 1− δi ≤ δ̂i ≤ ∆ + 1− δi, (4.20)

β
i
≤ βi ≤ βi, i = 1, . . . , n. (4.21)

Proof. The proof is culled from [1]. First, from Proposition 4.8, we have that max-

imizing ε in (4.6) subject to (4.7)-(4.9) is equivalent to minimizing λ1 (BA−D)

subject to (4.8) and (4.9), where B , diag (βi) and D , diag (δi). Let us define

D̂ , diag
(
δ̂i

)
, where δ̂i , ∆ + 1− δi and ∆ , max

{
δi
}n
i=1

. Then, λ1

(
BA+ D̂

)
=

λ1 (BAG −D) + ∆ + 1. Hence, minimizing λ1 (BA−D) is equivalent to minimiz-

ing λ1

(
BA+ D̂

)
. The matrix BA + D̂ is nonnegative and irreducible if A is the

adjacency matrix of a strongly connected digraph. Therefore, applying Proposition

4.8, we can minimize λ1

(
BA+ D̂

)
by minimizing the cost function in (4.16) under

the constraints (4.17)-(4.21). Constraints (4.20) and (4.21) represent bounds on the

achievable infection and curing rates. Notice that we also have a constraint asso-

ciated with the budget available, i.e.,
∑n

k=1 fk (βk) + gk

(
∆ + 1− δ̂i

)
≤ M. Even

though gk(δk) is a posynomial function in δk, gk

(
∆ + 1− δ̂k

)
is a signomial func-

tion in δ̂i. To express it as a posynomial, we can replace the argument of gk by a

new variable tk, along with the constraint tk ≤ ∆ + 1− δ̂k, which can be expressed

as the posynomial inequality,
(
tk + δ̂k

)
/
(
∆ + 1

)
≤ 1. As we proved in Lemma
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4.7, the largest eigenvalue λ1 (BA−D) is a decreasing value of δk and the antidote

cost function gk is monotonically increasing w.r.t. δk. Thus, adding the inequality

tk ≤ ∆ + 1 − δ̂k does not change the result of the optimization problem, since at

optimality tk will saturate to its largest possible value tk = ∆ + 1− δ̂k.

4.4.2 Solution to Rate-Constrained Allocation Problem for

Strongly Connected Digraphs

Similar to the budget-constrained problem in 4.2, the spectral constraint in the rate-

constrained Problem 4.1 poses a hurdle when formulating it as a GP in standard

form. As was done for the budget-constrained problem, an equivalent reformulation

is derived for Problem 4.1 and preseneted in the following result:

Theorem 4.10. ([1]) Given a strongly connected graph G with adjacency matrix

A, posynomial cost functions {fi (βi) , gi (δi)}ni=1 , bounds on the infection and re-

covery rates 0 < β
i
≤ βi ≤ βi and 0 < δi ≤ δi ≤ δi, i = 1, . . . , n, and a

desired exponential decay rate ε. Then, the optimal investment on vaccines and

antidotes for node vi to solve Problem 4.1 are fi (β
∗
i ) and gi

(
∆̃ + 1− δ̃∗i

)
, where

∆̃ , max
{
ε, δi for i = 1, . . . , n

}
and β∗i ,δ̃∗i are the optimal solution for βi and δ̃i in
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the following GP:

minimize
{ui,βi,δ̃i,ti}n

i=1

n∑
k=1

fk (βk) + gk (tk) (4.22)

subject to
βi
∑n

j=1Aijuj + δ̃iui(
∆̃ + 1− ε

)
ui

≤ 1, (4.23)

(
ti + δ̃i

)/(
∆̃ + 1

)
≤ 1, (4.24)

∆̃ + 1− δi ≤ δ̂i ≤ ∆̃ + 1− δi, (4.25)

β
i
≤ βi ≤ βi, i = 1, . . . , n. (4.26)

Proof. The proof of this theorem is similar to the proof of Theorem 4.9. The primary

objective is to derive an equivalent expression enabling us to write the spectral

constraint as a set of posynomial functions. The key differences are highlighted in

Appendix B

The rate and budget-constrained resource allocation problems for epidemic con-

trol presented as standard form GPs above assumed strong connectivity of the con-

tact graph G; where from Perron-Frobenius result in Lemma 4.5, the entries of the

eigenvector u are stricly positive. In the next section, we present formulations of

the resource allocation problems for general – in particular, not necessarily strongly

connected directed graphs.

4.5 Epidemic Control for General, not necessarily

strongly connected directed graphs

The Perron-Frobenius lemma presented in Lemma 4.5 holds for nonnegative, irre-

ducible matrixM ; stating that its spectral radius ρ(M) is simple and strictly positive,
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and the associated dominant eigenvector has strictly positive components. However,

the Perron-Frobenius as presented in Lemma 4.5 does not hold for directed graphs

that are not strongly connected, since their associated adjacency matrix is not irre-

ducible. To apply the lemma to weighted digraphs that are not necessarily strongly

connected, it is weakened as follows [67]:

Lemma 4.11. Let M be a nonnegative matrix. Then, the following statements hold:

1. ρ (M) ≥ 0 is an eigenvalue of M (not necessarily simple).

2. Mu = ρ (M) u, for some u ∈ Rn
+.

3. ρ (M) = inf
{
λ ∈ R : Mu ≤ λu for u ∈ Rn

+

}
.

Relative to Lemma 4.5, in the third statement of Lemma 4.11, the components

of u are nonnegative as opposed to being strictly positive. This poses a challenge

in the use of Proposition 4.8, since the components of u must be strictly positive to

express the spectral constraint as a set of posynomial functions. In particular, the

constraint (4.14) may be undefined for certain ui that take value zero. The next two

results present a way to identify where the zeros of u are, and how to work around

them in the GP formulation.

Let us define the function Z (u) , {i : ui = 0}, i.e., a function that returns the

set of indices indicating the location of the zero entries of a vector u = [ui].

Lemma 4.12. ([1]) Consider a square matrix M . The following transformations

preserve the location of zeros in the dominant eigenvector:

(a) Tα : M →M + αI, for any α ∈ R, and

(b) TR : M → RM , for M ≥ 0 and R = diag (ri), ri > 0.

Proof. In Appendix D.
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Corollary 4.13. Consider a nonnegative matrix A and two diagonal matrices B =

diag (bi) and D = diag (di) with bi, di > 0. Then, the location of the zero entries of the

dominant eigenvector of BA−D are the same as those of A, i.e., Z (v1 (BA−D)) =

Z (v1 (A)).

Proof. This directly follows by applying the transformations in Lemma 4.12; see

details in Appendix E.

Corollary 4.13 presents a scheme to determine the location of the zeros of u1 (BA−D)

for any given graph with adjacency matrix A ≥ 0, without the need to have knowl-

edge of the infection and curing rates of the nodes in matrices B and D. The set

Z (u1 (A)) , ZG determines the location of the zeros of u1(BA−D) based on Lemma

4.12, which coincide with the set of nodes of the graph G with zero eigenvector cen-

trality [54]. Having determined the location of the zeros, the variables ui for i ∈ ZG

can be excluded from the GPs in Theorems 4.9 and 4.10. Given the exclusion of the

variables in the set {ui : i ∈ ZG} from the spectral constraints (4.17) and (4.23), in

the GP, the resource allocation problem can be divided up into two sets of decision

variables – {ui : i ∈ ZG} and {ui : i 6∈ ZG} , with the first group having a trivial

allocation policy as illustrated in the next section.

4.5.1 Rate-Constrained Allocation Problem for General Di-

graphs

Suppose the set of decision variables in (4.16) are divided into two sets: Vz ,

{ui, βi, δ̃i}i∈ZG and Vnz , {ui, βi, δ̃i, ti}i/∈ZG . For the set Vz of decision variables,
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the following optimization problem is formulated:

minimize
{βi,δ̂i}

i∈ZG

n∑
k=1

fk (βk) + gk

(
∆̃ + 1− δ̃∗i

)
subject to ∆̃ + 1− δi ≤ δ̂i ≤ ∆̃ + 1− δi,

β
i
≤ βi ≤ βi, for i ∈ ZG,

where a trivial policy for resource allocation is obvious if the cost functions fi is

decreasing in βi, and gi is increasing in δi. The optimal infection and recovery rates

are β∗i = βi and δ∗i = δi for all i ∈ ZG and correspond to the minimum possible

value of investment on those nodes. Essentially, nodes i ∈ Z with zero eigenvector

centrality [54] incur the least possible cost in preventive and corrective resources.

The decision variables in the set Vnz, however, are amenable to a GP formulation

in Theorem 4.10, as indicated in the following Theorem.

Theorem 4.14. ([1]) Given a positively weighted digraph with adjacency matrix A,

posynomial cost functions {fi (βi) , gi (δi)}ni=1, bounds on the infection and recovery

rates 0 < β
i
≤ βi ≤ βi and 0 < δi ≤ δi ≤ δi, i = 1, . . . , n, and a desired exponential

decay rate ε. Then, the optimal spreading and recovery rate in Problem 4.1 are

β∗i = βi and δ∗i = δi for i ∈ ZG. For i/∈ ZG, the optimal rates can be computed from
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the optimal solution of the following GP:

minimize
{ui,βi,δ̃i,ti}

i/∈ZG

n∑
k=1

fk (βk) + gk (tk) (4.27)

subject to
βi
∑

j /∈ZG
Aijuj + δ̃iui(

∆̃ + 1− ε
)
ui

≤ 1, (4.28)

(
ti + δ̃i

)/(
∆̃ + 1

)
≤ 1, (4.29)

∆̃ + 1− δi ≤ δ̂i ≤ ∆̃ + 1− δi, (4.30)

β
i
≤ βi ≤ βi, for i/∈ ZG. (4.31)

The optimal spreading rate β∗i is directly obtained from the solution, and the recovery

rate is δ∗i = ∆̃ + 1− δ̃∗i , where ∆̃ , max
{
ε, δi for i = 1, . . . , n

}
.

4.5.2 Budget-Constrained Allocation Problem for General

Digraphs

For the budget-constrained problem, the same splitting of the variable demonstrated

in section 4.5.1 can also be employed. In particular, for nodes with zero eigenvector

centrality; that is, nodes {vi ∈ V : i ∈ ZG}, as was the case for the rate-constrained

problem, the optimal spreading and recovery rates are β∗i = βi and δ∗i = δi, which

means the protective and corrective cost incurred per node is fi(βi) + gi(δi). Since

the original fixed budget for all nodes in the network is M, nodes {vi ∈ V : i 6∈ ZG}

with a non-zero eigenvector centrality measure are collectively allocated up to

M =M−
∑
i∈ZG

fi
(
βi
)

+ gi (δi) (4.32)
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in protective and corrective resources. Hence, for general, not necessarily strongly

connected digraphs, the budget-constrained resource allocation problem in 4.2 can

be formulated as:

Theorem 4.15. ([1]) Given a positively weighted digraph with adjacency matrix A,

posynomial cost functions {fi (βi) , gi (δi)}ni=1, bounds on the infection and recovery

rates 0 < β
i
≤ βi ≤ βi and 0 < δi ≤ δi ≤ δi, i = 1, . . . , n, and a maximum budget

M to invest in protection resources. Then, the optimal spreading and recovery rate

in Problem 4.2 are β∗i = βi and δ∗i = δi for i ∈ ZG. For i/∈ ZG, the optimal rates can

be computed from the optimal solution of the following GP:

minimize
λ,{ui,βi,δ̂i,ti}

i/∈ZG

λ (4.33)

subject to
βi
∑

j /∈ZG Aijuj + δ̂iui

λui
≤ 1, (4.34)∑

k/∈ZG

fk (βk) + gk (tk) ≤M, (4.35)

(
ti + δ̂i

)/(
∆ + 1

)
≤ 1, (4.36)

∆ + 1− δi ≤ δ̂i ≤ ∆ + 1− δi, (4.37)

β
i
≤ βi ≤ βi, i/∈ ZG, (4.38)

where M is defined in (4.32), the optimal spreading rate β∗i is directly obtained from

the solution, and the recovery rate is δ∗i = ∆ + 1− δ̂∗i , where ∆ , max
{
δi
}n
i=1

.

4.6 Numerical Results

Illustrated in this section are optimal resource allocation derived from the GP for-

mulations above for strongly connected networks. We consider an epidemic outbreak
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propagating on a subset of a global air transportation network [68]. Based on travel

data from the network, we determine the cost-optimal distribution of protective and

corrective resources to contain the spread of an epidemic outbreak. We solve this for

both the rate-constrained and budget-constrained problems formulated earlier. The

simulations presented are limited to airports with inbound passenger traffic greater

than 8 million passengers per year (MPPY). From this network data set, there are 74

such airports globally, and there are 2, 694 direct flights linking the airports. Each

directed edge in the network is assigned a weight that accounts for the number of

passengers that fly that route year round.

The weighted, directed network formed by these airports has a spectral radius

ρ(A) = 10.048. The epidemic threshold is τc = δ/ρ(A). The choice of lower and

upper bounds on the infection and recovery rates across the network are such that

when nodes are allocated protective and corrective resources (that is, when βi = β

and δi = δ), the DFE of the spreading dynamics is stable. Further, when nodes

are not allocated any protective or corrective resources; that is, when βi = β and

δi = δ, the DFE is unstable. In particular, we let δ = 0.5 and δ = 0.9 and β =

1.99 × 10−2 and β = 0.3β, both determined from the epidemic threshold , and

chosen so that when there are no investments in protection and correction we have

that R[λ1(βA+ δI)] = 0.7 > 0.

The cost functions considered here are such that fi(βi) is monotonically decreas-

ing in βi, and gi(δi) is monotonically non-decreasing in δi. In particular, the cost

functions are quasiconvex and capture the fact that only marginal benefit is gained

by allocating a high amount of resources to any particular node. The following cost
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functions are used:

fi (βi) =
β−1i − β̄−1i
β−1
i
− β̄−1i

, gi (δi) =
(1− δi)−1 − (1− δi)

−1(
1− δi

)−1 − (1− δi)
−1
. (4.39)

The normalization of the cost functions above is to ensure that whenever β
i
≤ βi ≤

Figure 4.1: Infection rate (in red, and multiplied by 20, to improve visualization)
and recovery rate (in blue) achieved at node vi after an investment on protection (in
abscissas) is made on that node [1].

β̄i and δi ≤ δi ≤ δ̄i, the range of the functions lie in the interval [0, 1]. As shown in

Figure 4.1, horizontal and vertical axes respectively represent the amount invested in

protective and corrective resources; and the infection and recovery rates attained by

the investment. As the investment on vaccines increase from 0 to 1, the infection rate

at the node falls from β̄i to β
i

(red line). Similarly, as the investment in correction

resources increases at a node vi, the recovery rate grows from δi to δ̄i (blue line). The

budget-constrained and rate-constrained resource allocation problems presented in

Theorems 4.9 and 4.10 are solved based on the parameters above, using the global

air traffic network defined earlier.

64



4.6.1 Rate-constrained problem

A desired rate of ε = 10−3 was specified for the rate-constrained problem. Figure 4.2

captures the interplay between the cost associated with the two decision variables

– the infection and recovery rates. The abscissa of figure represents the cost of

corrective resources allocated to each airport gi (δ
∗
i ), and the ordinate represents the

cost of protective resources allocated to each airport fi (β
∗
i ). Since there are two

decision variables, we can observe that while some airports are not allocated any

corrective or protective resources, others are allocated only corrective resources and

some others a combination of both corrective and protective resources.
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Figure 4.2: A scatter plot of investment in protection against investment in corrective
resources per node for a 74-node weighted, directed network.

In comparing the resources allocated to each airport with its centrality measure,
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Figure 4.3: A plot of the total investment against the weighted in-degree of each
node for a 74-node weighted, directed network.

we find a nontrivial pattern for the different centrality measures considered – in-

degree, eigenvector, and pagerank centralities. For the in-degree centrality, in Figure

4.3, we observe the existence of a threshold-like behavior. In particular, we observe

that almost all airports with less than 1 MPPY are allocated no correction and

protection resources, airports with incoming passengers between 1 and 11 MPPY

are allocated only correction resources; and airports with incoming traffic exceeding

11 MPPY are allocated both corrective and protective resources.

A similar behavior is observed when the investments per node is compared with

the PageRank centrality of each node; see Figure 4.4.
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Figure 4.4: A plot of the total investment against the PageRank centralities of each
node for a 74-node weighted, directed network.
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4.6.2 Budget-constrained problem

Solutions to the budget-constrained problem are summarized in Figures 4.5 and 4.6.

The budget here is 45% beyond the optimal investment (or cost) computed in the

rate-constrained problem. This slight increase gives the network operator some more

resources to achieve a faster decay rate of 0.9469. As expected, achieving a faster

decay rate comes at a cost. As can be observed from Figures 4.5 and 4.6, all airports

receive the maximum possible investment in correction. When the investment at each

node is compared with the incoming passenger traffic, we find that while airports

with incoming passenger traffic less than 4 MPPY do not receive any investment

in prevention; airports with incoming passenger traffic exceeding 4 MPPY receive

investment in prevention.

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Weighted In−Degree of Node

In
v
e

s
tm

e
n
t 

o
n
 N

o
d

e

 

 

Total Investment

Investement on Correction

Investment on Prevention

Figure 4.5: A plot of the total investment against the weighted in-degree of each
node for a 74-node weighted, directed network.
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Figure 4.6: A plot of the total investment against the PageRank centralities of each
node for a 74-node weighted, directed network.

4.7 Summary

From the numerical results of the preceding section, a concluding fact is that al-

though there is a strong correlation between centrality and investments, there is no

trivial protocol to achieve the optimum resource allocation solely based on network

centrality measures. With two decision variables – βi and δi per node, where both

variables have an effect on epidemic threshold; computing the optimum investment

fi(βi) + gi(δi) per node via heuristics will be suboptimal since both decision vari-

ables need to be simultaneously optimized. Because the solutions presented above

are derived from GPs, for which convex representations exist, they are optimal.
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Chapter 5

Distributed Resource Allocation

via ADMM

The absence of a social planner and computation cost associated with centrally com-

puting and communicating optimal allocation of resources per agent in large scale

networks motivate the need for distributed optimization methods for epidemic con-

trol. Furthermore, while convex optimization problems can be solved in polynomial

time, the size of real problems are too large to be solved in a centralized way, so even

if a centralized planner were to solve the large convex optimization, it would need to

solve the problem on multiple processors. In this chapter, we present a framework

illustrating how the resource allocation problem for epidemic control can be fully

distributed and solved amongst agents in a network.

In the distributed resource allocation problem, agents across the network locally

optimize their preventive and corrective resource investments based on local inter-

actions, to collectively control the spread of the epidemic outbreak. A decentralized

approach to solving the epidemic control problem enables reduction in communi-

cation overhead across the network, since each agent’s decision is solely based on
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information local to it and its neighbors.

We present a fully distributed solution to the cost optimal, rate-constrained re-

source allocation problem for epidemic control first presented in Chapter 4 via a Dis-

tributed Alternating Direction Method of Multipliers (D-ADMM) algorithm. The

distributed resource allocation problem studied here is analogous to a number of

problems in machine learning, statistical inference, social networks as well as prob-

lems in wireless sensor networks. Such problems are usually characterized by a

system of networked agents, with each agent having a local (and possibly private)

cost function, which on aggregate contributes to achieving a system-wide behavior

or objective; for instance, see [69] [70] [71], [72] [73] [74]. Problems of this sort stim-

ulated research in the development of distributed methods for solving optimization

problems [75] [76] [77] [78] [79] [80]. The conventional approach to distributed op-

timization is dual decomposition via (sub)gradient methods. This method suffers

a number of setbacks. In addition to the fragile adjustment of the step-size, which

results in slow convergence particularly for large-scale problems, dual decomposi-

tion methods typically require strict technical assumptions on the cost functions and

problem structure.

Distributed stability tests for positive systems based on Lyapunov stability the-

ory is studied in [81] [70], which is related to our approach except that we take a fully

distributed approach. Other works include [82], [35], [83]. The distributed solution

presented in this chapter is similar in spirit to [81] where tests for distributed con-

trol of positive systems were presented. A major challenge between the particular

problems addressed in [81], [84] and this thesis is that our problem in its natural

form is a nonconvex optimization problem. The distributed optimization problem

discussed in this chapter will be confined to strongly connected networks, and focus

on the rate constrained problem below:
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Problem 5.1. Given a positively weighted directed network with associated adja-

cency matrix A, node cost functions {fi(βi), gi(δi)}ni=1 and bounds on the infection

and curing rates 0 < β
i
≤ βi ≤ β̄i, and 0 < δi ≤ δi ≤ δ̄i respectively, and an expo-

nential decay rate ε̄ > 0. Locally determine the cost-optimal distribution of vaccines

and treatment resources to attain the desired decay rate via local interaction between

nodes.

We state this as the following optimization problem.

minimize
{βi,δi}ni=1

n∑
i=1

fi (βi) + gi (δi) (5.1)

subject to R(λ1 (diag (βi)A− diag (δi))) ≤ −ε̄, (5.2)

β
i
≤ βi ≤ βi, (5.3)

δi ≤ δi ≤ δi, i = 1, . . . , n, (5.4)

where (5.1) is the total investment, (5.2) constrains the decay rate to ε̄, and (5.3)-

(5.4) maintain the infection and recovery rates in their feasible limits. In Chapter 4,

we showed that (5.1) is equivalent to

minimize
ui,βi,δi,

n∑
i=1

fi(βi) + gi(δi) (5.5)

subject to
βi
∑n

j=1Aijuj + δiui

ui
≤ 1, (5.6)

δ ≤ δi ≤ δ (5.7)

β ≤ βi ≤ β, i = 1, . . . , n; (5.8)
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where for simplicity of notation, the auxiliary variables ∆̃, ti, δ̃i introduced in Theo-

rem 4.14 to express the spectral constraint as a set of posynomial functions have been

factored into the upper and lower bounds on δi in (5.7). To implement a distributed

solution, first note that the cost function and constraint functions of the GP in (5.5)

is separable per agent vi. Each agent is able to locally solve the following problem:

minimize
ui,βi,δi,

fi(βi) + gi(δi) (5.9)

subject to
βi
∑n

j=1Aijuj + δiui

ui
≤ 1, (5.10)

δ ≤ δi ≤ δ (5.11)

β ≤ βi ≤ β. (5.12)

Though separable with most of the variables being local, for agent vi to minimize

its cost function it needs the value uj from nodes in its neighboring nodes. The

need for uj in computing the optimum cost of node vi comes from the equivalent

representation of the spectral constraint described earlier – (diag(βi)A+diag(δi))u ≤

λu. In this constraint, each node vi needs neighboring entries uj from the global

variable u , (u1, . . . , un)T in (5.9)-(5.12) to compute its optimum cost and satisfy

the spectral (global) constraint. To address this problem, we employ the Alternating

Direction Method of Multipliers algorithm, which is well suited for such distributed

optimization problems.

While (sub)gradient and conjugate ascent or descent algorithms are commonly

used for differentiable and unconstrained optimization problems, ADMM can be used

for any convex problem. A significant merit of the ADMM algorithm is that it al-

lows for solving large-scale distributed optimization problems, where the composite

problems can be easily broken down into subproblems, which can be solved locally.
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The ADMM algorithm is also more general than comparable optimization methods

since it allows for a loss function that is not necessarily differentiable. The ADMM

algorithm works by decomposing the original optimization problem into smaller sub-

problems that can be sequentially solved in parallel by each agent, allowing for full

distributed solutions to large-scale optimization problems.

5.1 Alternating Direction Method of Multipliers

The ADMM falls into the class of dual based methods for solving constrained op-

timization problems in which an augmented Lagrangian function is minimized with

respect to the primal variables, and the dual variables are updated accordingly. Re-

cent surveys on augmented Lagrangian methods, as well as the ADMM algorithm

can be found in the monograph by Bertsekas [85] and a survey by Boyd et al. [86],

where illustrations and solutions to different optimization problems via the ADMM

algorithm are presented. The ADMM algorithm works by decomposing the original

optimization problem into subproblems that can be sequentially solved in parallel by

each agent, allowing for distributed solutions to large-scale optimization problems.

Though results on convergence of the algorithm are still in the early phase of being

established, it has been shown to have a convergence rate of O( 1
k
) [87] [88], [89].

The standard ADMM solves the following problem

minimize
x,z

f(x) + g(z)

subject to Ax+Dz = c,

(5.13)

where the variables x ∈ Rn, z ∈ Rm, matrices A ∈ Rp×n, D ∈ Rp×m, and c ∈ Rp.

74



The Augmented Lagrangian function for (5.13) is given by

Lρ(x, z, λ) = f(x) + g(z)− λT (Ax+Dz − c) +
ρ

2
‖Ax+Dz − c‖2, (5.14)

where λ is the Lagrange multiplier associated with the constraint Ax+Dz = c and

ρ is a positive scalar. The update rules for the variables x, z and λ in the ADMM

implementation is given by

x(k + 1) = arg min
x

Lρ(x, z(k), λ(k)) (5.15)

z(k + 1) = arg min
z

Lρ(x(k + 1), z, λ(k)) (5.16)

λ(k + 1) = λ(k)− ρ ((Ax(k + 1) +Dz(k + 1)− c) (5.17)

The updates in (5.15)-(5.17) is similar to those of dual descent algorithms (see [79]

for instance), except that augmented Lagrangian is used and penalty parameter ρ is

used as the step size in the dual updates.

5.2 Distributed Resource Allocation via ADMM

Our goal is to present a distributed solution to the GP in (5.9)-(5.12). To make (5.9)-

(5.12) amenable to a distributed solution via the ADMM algorithm, we introduce

n-dimensional variables ui ∈ Rn representing a local copy of the global variable

u = (u1, . . . , un)T at each node vi. In addition, we introduce an auxiliary variable

zij ∈ Rn, to enable communication and enforce consensus in the values of ui and uj

for all neighboring nodes (vi, vj) ∈ E . The auxiliary variables zij can be interpreted

as being associated with the edge (vi, vj) with the goal of enforcing consensus of the

variables ui and uj of its adjacent nodes vi and vj. With these new variables, and
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consensus constraint, we can reformulate (5.9)-(5.12) as

minimize
ui,βi,δi,

fi(βi) + gi(δi)

subject to
βi
∑n

j=1Aiju
j
i + δiu

i
i

uii
≤ 1, (5.18)

n∏
j=1

uji = 1,

δ ≤ δi ≤ δ

β ≤ βi ≤ β.

ui = zij and uj = zij, (vi, vj) ∈ E ,

where uji is the jth entry of the local estimate ui at node vi. The constraints ui = zij

and uj = zij imply that for all pairs of agents (vi, vj) that form an edge, the feasible

set of (5.18) is such that ui = uj. Assuming a strongly connected contact network,

these local consensus constraints imply that feasible solutions must satisfy ui = uj for

all, not necessarily neighboring, pairs of agents vi and vj. The formulation presented

above differs from existing literature on Distributed ADMM algorithm [87] [90] [91],

whose original problem prior to applying D-ADMM have been unconstrained, and

only consensus of local estimates is required. The distributed resource allocation

problem considered here, evident in (5.18), is a constrained optimization problem

(in its original form), in addition to the consensus constraints of local estimates ui.

Recall that ui is an estimate of the eigenvector u from the inequality (BA+D)u ≤

u in (5.6), local to node vi. To compute the augmented Lagrangian of (5.18), we

let the dual variables αij ∈ Rn and γij ∈ Rn be associated with equality constraints

ui = zij, and uj = zij, ∀ (vi, vj) ∈ E in (5.18) respectively. Suppose we define

Γi(k + 1) , βi(k + 1), δi(k + 1),ui(k + 1). The augmented Lagrangian at each node
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vi is then:

Γi(k + 1) = arg min
ui,βi,δi,

fi(βi) + gi(δi) +
∑
j∈N(i)

αTij(ui − zij(k)) + γTij(uj(k)− zij(k))

+
ρ

2

∑
j∈N(i)

‖ui − zij(k)‖22 + ‖uj(k)− zij(k)‖22

subject to
βi
∑n

j=1Aiju
j
i + δiu

i
i

uii
≤ 1, (5.19)

n∏
j=1

uji = 1,

δ ≤ δi ≤ δ

β ≤ βi ≤ β.

And the dual variable updates in the iterations of the D-ADMM algorithm are:

αij(k + 1) = αij(k) +
ρ

2
(ui(k)− uj(k)) ∀ j ∈ N(i) (5.20)

γij(k + 1) = γij(k) +
ρ

2
(uj(k)− ui(k)) ∀ j ∈ N(i). (5.21)

The key primal variables of (5.19) local to node vi are βi, δi,ui. Further, suppose

we introduce a local dual variable φi ∈ Rn, such that φi(k) ,
∑

j∈N(i)(αij(k) +

γji(k)) ∀ vi ∈ V . Given initial variables ui(0) ∈ Rn and φi(0) = 0, the iterative

computations and updates of the D-ADMM algorithm are summarized in Algorithm

4: Given the inability to derive closed-form expressions for the primal update, a

numerical solver1 is used for this portion of the algorithm.

1We use CV X, a package for specifying and solving convex programs [60] [61].
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Algorithm 4 Distributed ADMM for solving (5.18)

1: Given initial variables βi(0), δi(0) ∈ R, ui(0), φi(0) ∈ Rn for each agent vi ∈ V.
2: Set k = 1
3: repeat
4: For all vi ∈ V

φi(k + 1) = φi(k) + ρ
∑
j∈N(i)

(ui(k)− uj(k)) (5.22)

Γi(k + 1) = arg min
βi,δi,ui

fi(βi) + gi(δi) + φTi (k + 1)ui

+ ρ
∑
j∈N(i)

‖ui −
ui(k) + uj(k)

2
‖22

subject to
βi
∑n

j=1Aiju
i
i + δiu

j
i

uii
≤ 1,

n∏
j=1

uji = 1,

δ ≤ δi ≤ δ
β ≤ βi ≤ β.

5: Set k = k + 1
6: until

∑n
i=1

∑
j∈N(i) ‖ui(k)− uj(k)‖ ≤ η, for η arbitrarily small.
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5.3 Numerical Simulations

In this section, we illustrate performance of the D-ADMM Algorithm 4 on a strongly

connected 8-node directed network, and briefly discuss its convergence. To explicate

functional correctness of Algorithm 4, we will show that the investment in vaccines

and antidotes for all agents in the network from the distributed solution does, indeed,

converge to the solution obtained in the centralized case. We will, in addition, show

that the agents do reach consensus in their local estimate of the global variable,

Further, we will show convergence of the of the dual variables φi for all agents vi.

The D-ADMM algorithm was used to solve (5.9)-(5.12), which is an equivalent

formulation of Problem 5.1, on a 8-node network with the following parameters: The

epidemic threshold τc = (1−δ)/ρ(A) was computed based on the spectral radius and

lower bound on the recovery rate. The upper and lower bounds on the infection and

recovery rates β = 2τc, β = 0.2β, δ = 0.9, δ = 0.5 were chosen in such a way as

to ensure the DFE is unstable in the absence of any investment in vaccines and/or

antidotes, and stable otherwise. The following quasi-convex functions

fi (βi) =
β−1i − β̄−1i
β−1
i
− β̄−1i

, gi (δi) =
(1− δi)−1 − (1− δi)

−1(
1− δi

)−1 − (1− δi)
−1
, (5.23)

were used to normalize the investment in vaccines and antidotes. The functions are

such that for βi = βi, fi(βi) = 0 and for βi = β
i
, fi(βi) = 1. Similarly, for δi = δi,

gi(δi) = 1 and for δi = δi, gi(δi) = 0. The penalty parameter ρ in the primal and

dual updates of Algorithm 4 was chosen to be ρ = 4.

For the 8-node example considered, the bounds on the infection and recovery rates

were δ = 0.025 and δ = 0.750 and β = 0.1142 and β = 0.4393. Since a feasibility

constraint is ρ(BA−D) < 1, the upper and lower bounds of βi and δi are such that2

2Specifically, the upper and lower bounds of βi and δi were chosen as follows and based on the
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when βi = β and δi = δ, across all agents in the network, ρ(BA − D) = 0.4600.

Further, when βi = β and δi = δ, ρ(BA −D) = 1.6. And when βi = β and δi = δ,

ρ(BA − D) = 1.04. Finally, when βi = β and δi = δ, ρ(BA − D) = 1.02. These

bounds ensure that all agents in the network are not easily allocated resources to

yield the minimum possible infection rate or the maximum possible recovery rates

in the network, since the epidemic control criterion will be violated.
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Figure 5.1: Illustrates convergence of the optimal solution. The value approaches
1.9731, which was the solution when solved in a centralized framework for an 8-node
network.

Using the cost functions specified in (5.23), the optimal solution (that is, total

investment) obtained in the centralized solution was 1.9731. As illustrated in Fig-

ure 5.1, where the optimal solution from the distributed problem is presented, we

spectrum of A. We have δ = 0.8, δ = 3.9 × 2
10 , τc = (2/10)/λ1(A), β = 4τc, β = 30%β, all

chosen in a way that ensures infeasibility of a solution when all agents are assigned the maximum
or minimum possible infection or recovery rates.
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Figure 5.2: The plot above shows convergence to zero, of the errors or deviations in
local estimates ui at each node. The values on the vertical axis are the aggregate
deviations across all agents

∑
i

∑
j∈N(i) ‖ui − uj‖2, for an 8-node network.

observe that the optimal solutions of the distributed problem converges to within

an ε-neighborhood of the centralized problem. The plot in Figure 5.2 shows the

convergence of errors in the consensus constraint across all agents. The ordinate in

the plot represents the aggregate deviation from consensus across all agents; that is,∑
i

∑
j∈N(i) ‖ui − uj‖2. While the abscissa represents iterations of the algorithm. It

shows that the local estimates ui of the global variable at node each node vi con-

verges to those of their neighbors and the agents reach consensus in their estimates.

As illustrated in Figure 5.3, the dual variables φi associated with the D-ADMM

consensus constraint for all nodes also converge. We illustrate the solution on a

larger strongly connected network comprising 20 nodes. As was done in the case of

the 8-node network, the values δ = 0.025, δ = 0.750, β = 0.0641 and β = 0.2464

were chosen such that when βi = β and δi = δ, across all agents in the network,
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Figure 5.3: This plot shows convergence of dual variable φi at each iteration of the
algorithm for an 8-node network.

ρ(BA −D) = 0.3500. Further, when βi = β and δi = δ, ρ(BA −D) = 2.000. And

when βi = β and δi = δ, ρ(BA − D) = 1.0750. Finally, when βi = β and δi = δ,

ρ(BA−D) = 1.2750.

After solving the program in (5.18) by Algorithm 4, the optimal solution (total

investment after normalizing using the quasi-convex functions in (5.23) obtained

from the centralized solution for the 20-node network was 4.8868. In Figure 5.4, we

find that the total investment obtained from the distributed solution also converges

to within an ε-neighborhood of the centralized optimal solution. Further, the local

estimates ui of the nodes reach consensus as illustrated in Figure 5.5. The dual

variables associated with the equality constraint in the ADMM formulation also

converge as illustrated in Figure 5.6.
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Figure 5.4: Illustrates convergence of the optimal solution. The value approaches
4.8868, which was the solution when solved in a centralized framework for a 20-node
network.
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Figure 5.5: The plot above shows convergence to zero, of the errors or deviations in
local estimates ui at each node. The values on the vertical axis are the aggregate
deviations across all agents

∑
i

∑
j∈N(i) ‖ui − uj‖2, for a 20-node network.
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Figure 5.6: This plot shows convergence of dual variable φi at each iteration of the
algorithm for an 20-node network.

5.3.1 On convergence of the D-ADMM Algorithm 4

The ADMM algorithm is known to converge when applied to convex problems [78, 86,

87]. The convex characterization of our resource allocation problem using Geometric

Programming presented in Chapter 4 guarantees that the D-ADMM solution in

Algorithm 4 converges.

In most existing literature on distributed ADMM, the algorithm is typically ap-

plied to unconstrained optimization problems where the only constraint is consensus

in the local estimates of the agents; for example [70, 86, 87]. Given such optimization

problems comprising a local consensus constraint and smoooth, differentiable convex

cost functions, an explicit computation of the local decision variables is possible at

each iteration. This then allows for analytical expression of the optimal iterates,

which enables convergence rate analysis of the algorithm.
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Our original problem, however, is a constrained optimization problem. In addi-

tion to the consensus constraint, each agent also has three local constraints to satisfy

to attain a feasible solution at each iteration of the algorithm. The use of numerical

solvers in computing the local optimal solution at each node (in line 4 of Algorithm

4) poses a challenge on the question of presenting a convergence rate analysis.

5.4 Summary

In this chapter of the thesis, we proposed a fully distributed solution to the problem of

optimally allocating vaccine and antidote investment to control an epidemic outbreak

in a networked population at a desired rate. Our proposed solution implemented

a Distributed-ADMM algorithm, which enables each node to locally compute its

optimum investment in vaccine and antidotes needed to globally contain the spread

of an outbreak, via local exchange of information with its neighbors. Our problem,

unlike most existing literature on Distributed ADMM, is a constrained optimization

problem associated with a directed network comprising non-identical agents. Since

numerical solvers are used to solve convex subproblems at each node, a convergence

rate analysis of the D-ADMM algorithm is not presented. However, illustrations

of our fully distributed solution were presented above, and show that the optimal

solutions are, indeed, attained; and that the local estimates do converge. Further, it

is known that the ADMM algorithm converges when applied to convex problems [86],

and since our problem has a convex characterization, we are guaranteed convergence

as illustrated numerically in the preceding section. Our proposed fully distributed

resource allocation strategy for epidemic control presents a framework to contain an

outbreak in the absence of a central social planner.

86



Chapter 6

Summary and Open Problems

In this thesis, we presented a contagion model and formulated the problem of con-

trolling an outbreak with minimum cost. We formulated the epidemic control objec-

tive as a budget-constrained and decay rate-constrained resource allocation problem

on a general, positively weighted, directed, strongly connected and not necessarily

strongly connected contact network. The problems, formulated as GPs, were effi-

ciently solved, by simultaneously optimizing over the infection and recover rates of

each agent, within feasible limits. In addition, we presented a fully distributed solu-

tion to the resource allocation problem via a D-ADMM algorithm. An overarching,

key contribution of this thesis to the literature on contagion control in networks

is the proposed paradigm shift from heuristics to a convex optimization framework

on the problem of controlling epidemic outbreaks in networked populations. As we

illustrated, the convex framework not only subsumes heuristics, but also takes into

account structural and algebraic properties and their effects of the network on the

control strategy.

In addition to the proposed paradigm shift from heuristics towards a convex

optimization framework, a novelty of this thesis lies in the simultaneous allocation
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of vaccines and antidotes to agents in an heterogeneous network comprising weighted

and directed edges.

Studying and solving the problems presented above generated other interesting

research problems, which we briefly highlight next. Despite the theoretical advances

in this problem space, some other related problems remain unsolved. For example,

while the solutions presented are exact for the model considered, the Mean-Field

approximation (MFA) on the spreading dynamics may need further characterization

and remains an open problem. While mean-field techniques have long been applied

to epidemic models, especially since they allow for mathematically tractable formu-

lations, more analyses and exposition is needed on, possibly key, lost information

resulting from the MFA. Further analyses is needed in understanding how certain

classes of cost functions affect the resource allocation strategy; for instance, what

would the optimal solution look like if the agents had different cost functions?

In addition, interactions between networked agents are typically not fixed, since

agents are mobile and links between agents are established and broken over time.

Hence, though challenging, the study of epidemic processes and control strategies on

networks with dynamic topologies needs attention. Somewhat related to dynamic

networks are multiplex networks – where agents are participants in several layers of

networks of interactions simultaneously [92] [93] [94]. Analyzing the interplay of the

network layers and its effect on an epidemic process and control strategies spread

across multiple network layers is an open problem.

The epidemic problem set up studied in this thesis assumed a fixed, one-time

investment in vaccines and antidotes. Formulating the epidemic control objective

as an optimal control problem over time, in which the control is a trajectory, as

opposed to a fixed input is also a problem that needs attention [95]. Furthermore,

the spreading model considered in this thesis lacks spatial dependency. This is crucial
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in real networks where administering vaccines and/or antidotes to ‘far away’ nodes

can be costly. How can models that account for temporal and spatial dependencies

be developed [96] [97]?

The epidemic control problem considered so far assumes that agents in the net-

work have no specified task and the cost of control does not account for other (possi-

bly conflicting) objectives that the network is performing. In real networks, links in

the network serve multiple purposes; for instance, air traffic between airports serving

as disease carriers as well as an airlines bottom line. In this scenario, how can an epi-

demic outbreak be contained or controlled (by reducing activity levels at airports),

without excessively hurting passenger flow? This is part of an ongoing work by the

author.
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Appendix A

Delineating the discrete-time SIS

epidemic model

Though the The derivation of (2.13) closely follows the development in [39]. Consider

a sample path s, and let psi (t) be the probability of infection at node vi at time-step

t. Based on (2.1), the evolution of psi (t + 1) is conditioned on the state of of node

vi at time t in s; that is, Xs
i (t). Assuming node vi is not infected at time t, let the

random variable Ssi (t) denote the number of infected neighbors of node vi at time t.

If node vi is infected, Si(t) = 0.

Hence the probability of infection at time node vi at time t+ 1, given that it was

not infected at time t is (1− βi)Si(t). For small βi, (1− βi)Si(t) can be approximated

by 1− βiSi(t). Hence, the evolution of pi(t) can be described as

psi (t+ 1) = βiSsi (t)(1− psi (t)) + (1− δi)psi (t) (A.1)

Taking expectation of (A.1) over all sample paths s, and assuming pi(t) = Es (psi (t)),
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we have that [39]:

pi(t+ 1) = βi Es [(1− psi (t)) · Ssi (t)] + (1− δi)pi(t). (A.2)

Suppose the neighborhood set of each node to be large, then we can assume that

Ssi (t) concentrates around its mean by the law of large numbers. This enables us

consider the terms (1− psi (t)) and Ssi (t) as independent; so that we can approximate

pi(t+ 1) by

pi(t+ 1) ≈ βi (1− pi(t)) · Es[Ssi (t)] + (1− δi)pi(t). (A.3)

The term Es[Ssi (t)] is defined as the sum of the probabilities of infection of the

neighbors of node vi, given that node vi is susceptible at time t in the sample path

s. The term Es[Ssi (t)] can be approximated by leaving off the conditioning on the

susceptibility of node vi at time t. As noted in [39], this approximation is reasonable,

if the behavior of the sample path s closely mimics the behavior of the mean of all

sample paths. Thence, Es[Ssi (t)] ≈
∑

j∈N i
in
pj(t). This yields the nonlinear system

[39]:

pi(t+ 1) = βi(1− pi(t))
∑
j∈N i

in

pj(t) + (1− δi)pi(t). (A.4)

Noting that 1− pi(t) ≤ 1, we have that

pi(t+ 1) ≤ βi
∑
j∈N i

in

pj(t) + (1− δi)pi(t), (A.5)

whose matrix-vector is (2.13), where A in (2.13) is the network adjacency matrix.

Readers are referred to [39] for a more detailed exposition of the linear approximation,

where simulations illustrating its validity are also presented.
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Appendix B

Proof of Theorem 4.10

The proof closely follows the proof for Theorem 4.9 and only the key differences

are highlighted here. Define D̃ , diag
(
δ̃i

)
where δ̃i , ∆̃ + 1 − δi and ∆̃ ,

max
{
ε, δi for i = 1, . . . , n

}
. Since λ1

(
BA+ D̃

)
= λ1 (BAG −D) + ∆̃ + 1, the spec-

tral condition λ1 (BA−D) ≤ −ε is equivalent to λ1

(
BA+ D̃

)
≤ ∆̃ + 1− ε. From

the definition of ∆̃ we have that ∆̃ + 1− ε > 0. Also, BA+ D̃ is a nonnegative and

irreducible matrix if G is a strongly connected digraph. From (4.14), we can write

the spectral constraint λ1

(
BA+ D̃

)
≤ ∆̃ + 1− ε as

βi
∑n

j=1Aijuj + δ̃iui(
∆̃ + 1− ε

)
ui

≤ 1,

for ui ∈ R++, λ ∈ R, which results in constraint (??). The rest of constraints can

be derived following similar derivations as in the Proof of Theorem 4.9.

�
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Appendix C

Proof of Lemma 4.7

We define the auxiliary matrix M , diag (βi)A−diag (δi)+∆I, where ∆ , max {δi}.

Thus, λ1 (M) = λ1 (diag (βi)A− diag (δi)) + ∆. Notice that both M and MT are

nonnegative and irreducible if G is strongly connected. Hence, from Lemma 4.5,

there are two positive vectors v and w such that

Mv = ρv,

wTM = ρwT ,

where ρ = ρ (M) = λ1 (M), and v, w are the right and left dominant eigenvectors of

M . From eigenvalue perturbation theory, we have that the increment in the spectral

radius of M induced by a matrix increment ∆M is [67]

ρ (M + ∆M)− ρ (M) = wT∆Mv + o (‖∆M‖) . (C.1)

To study the effect of a positive increment in βk in the spectral radius, we define
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∆B = ∆βkeke
T
k , for ∆βk > 0, and apply C.1 with ∆M = ∆BA. Hence,

ρ (M + ∆M)− ρ (M) = ∆βkw
Teke

T
kAv + o (‖∆βk‖)

= ∆βkwka
T
k v + o (‖∆βk‖) > 0,

where aTk = eTkA and the last inequality if a consequence of ∆βk, wk, and aTk v being

all positive. Hence, a positive increment in βk induces a positive increment in the

spectral radius.

Similarly, to study the effect of a positive increment in δk in the spectral radius, we

define ∆D = ∆δkeke
T
k , for ∆δk > 0. Applying C.1 with ∆M = −∆D, we obtain

ρ (M + ∆D)− ρ (M) = −∆δkw
Teke

T
k v + o (‖∆δk‖)

= −∆δkwkvk + o (‖∆δk‖) < 0.

�
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Appendix D

Proof of Lemma 4.12

The proof of (a) is trivial and valid for any square matrix M . To prove (b), we

consider the eigenvalue equations for M and RM , i.e., Mu = λ1 (M) u and RMw =

λw, where u = v1 (M) = [ui] and w = v1 (RM) = [wi]. We expand the eigenvalue

equations component-wise as,

n∑
j=1

mijuj = λui, (D.1)

n∑
j=1

rimijwj = λwi, (D.2)

for all i = 1, . . . , n. We now prove statement (b) by proving that vi = 0 if and only

if wi = 0.

If ui = 0, then (D.1) gives
∑

jmijvj = 0. Since mij, vi ≥ 0, the summation∑
jmijvj = 0 if and only if the following two statements hold: (a1 ) mij > 0 =⇒

vj = 0 and (a2 ) vj > 0 =⇒ mij = 0. Since ti > 0, these two statements are

equivalent to: (b1 ) timij > 0 =⇒ vj = 0 and (b2 ) vj > 0 =⇒ timij = 0.

Statements (b1 ) and (b2 ) are true if and only if
∑

j (timij)wj = 0 = wi, where the
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last equality comes from (D.2). Hence, we have that vi = 0 ⇐⇒ wi = 0; hence,

Z (u) = Z (w).

�
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Appendix E

Proof of Corollary 4.13

Our proof is based on the transformations defined in Lemma 4.12. Starting from a

matrix BA−D, we then apply the following chain of transformations:

(i) Tα (BA−D) = BA + ∆, for α = max {di}. Hence, ∆ = max {di} I − D and

BA+ ∆ ≥ 0.

(ii) TR (BA+ ∆) = ∆−1BA+ I, for R = ∆−1.

(iii) Tα (∆−1BA+ I) = ∆−1BA, for α = −1.

(iv) TR (∆−1BA) = A, for R = B−1∆.

From Lemma 4.12, these transformations preserve the of the zeros in the dominant

eigenvector. Thus, the input to the first transformation, BA−D, and the output to

the last transformation, A, satisfy Z (v1 (BA−D)) = Z (v1 (A)).

�
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