

!#" !$" !%" !&"

<:"

#" $" %" &" '"

)" ="

Figure 3.1: Example multicast tree.

computed as a hash over the group descriptor’s attributes in a manner that binds the

(optional) certificate to the group. We assume that the group descriptor is retrieved

anonymously by the group’s participants—i.e., it may be communicated out-of-band

or it is retrieved over a standard unicast Tor circuit.

Every hour, each member of a given group individually runs a local deterministic

algorithm that takes as input the group’s GID and the local Tor client’s cached

copy of the Tor consensus document (the list of available relays), and outputs a Tor

relay that will serve as the root of the group’s multicast tree. We call that root

the multicast root or MR. Importantly, all group members compute the same MR as

long as they have the same up-to-date Tor consensus document from one of the Tor

directory authorities.

A significant advantage of MTor is that multicast allows for aggregation of mes-

sages, which eliminates redundancy and conserves bandwidth. To illustrate, Fig-

ure 3.1 shows an example multicast tree constructed with MTor. Here, five clients

16

(1-5) construct three-hop Tor circuits to the MR. As with unicast Tor circuits, clients

begin their circuits with fixed guard relays (G1-G4). In contrast to normal Tor com-

munication, MTor aggregates identical traffic that flows across a single connection

between relays. For example, consider the case in which client 3 sends a message to

the group. The message is sent via a Tor circuit to the MR, which then forwards

it to its two neighbors (relays “x” and “y”). Only one copy of the message is sent

for each connection. This preserves bandwidth, since x and y are each servicing two

downstream clients. Similarly, bandwidth is again preserved when x forwards along

the message to G1, despite the presence of clients 1 and 2 on the multicast tree.

Notably, MTor does not rely on exit relays—relays that serve as egress points in

the Tor network. In MTor, all traffic is sent within Tor. Exit relays are unnecessary

in MTor since traffic never leaves the Tor network. In a mixed Tor network that car-

ries both unicast and multicast traffic, this is a desirable feature: exit relays (which

are especially valuable since they constitute only approximately 1/3 of all relays in

the live Tor network) can be reserved for unicast traffic.

Summary of results We evaluate MTor using Shadow [27], a high-fidelity discrete-

event simulator that runs actual Tor code on a synthetic network topology. Shadow

has recently been used to evaluate Tor’s circuit scheduling algorithms [27, 26], its

vulnerability to traffic correlation attacks [30], and proposed performance enhance-

ments [29, 18]. By simulating MTor’s path selection algorithm using historical

records of Tor’s consensus documents, we evaluate the bandwidth consumption and

anonymity of MTor. Our results are encouraging: for large sized groups, MTor

achieves 62% savings in network bandwidth as compared to vanilla Tor; even for

smaller-sized group of 20 clients, MTor achieves 29% savings in network bandwidth

17

and provides significantly improved client experience, decreasing the median trans-

mission time of message delivery by as much as 73%.

18

Chapter 4

Threat Model and Assumptions

We adopt Tor’s threat model in which an adversary monitors or controls some frac-

tion of the network [15]. For example, the adversary may operate Tor relays, or

may monitor or control some portion of the underlying Internet. We assume the

adversary cannot monitor all communication, since Tor is not designed to protect

against global adversaries [15]. Finally, we conservatively assume that the adversary

has access to the group descriptor document and can effectively join any multicast

group.

Tor is known to be vulnerable to an adversary who can observe and correlate traf-

fic entering and exiting the anonymity network. This type of traffic correlation attack

is arguably the most serious known de-anonymization attack against Tor [21, 55] and

recent studies have demonstrated that even a moderately provisioned adversary can

de-anonymize most Tor users within a few months [30]. In this paper, we focus

on such traffic correlation attacks since, when successful, they directly identify an

anonymous communication’s endpoints and defeat Tor’s anonymity goals (i.e., to

conceal communicants’ network locations).

19

We do not consider MTor’s resilience to attacks that enumerate the relays in-

volved in anonymous communication, since merely discovering which Tor relays

were involved in an anonymous communication does not reveal the participants of

that communication. We emphasize that such “path discovery” attacks are trivially

achievable in vanilla Tor by an adversary who operates a Tor relay and is chosen

as the middle relay in an anonymous circuit; here, the malicious relay immediately

learns its neighbors (i.e., the guard and the exit) and thus discovers the entire anony-

mous path. Importantly, learning the relays involved in an anonymous path does

not by itself identify the network locations of the Tor client or the destination and

thus does not break anonymity. This is in contrast to traffic correlation attacks—the

focus of our security analysis—which do reveal the communicating parties.

Since, in MTor, messages may have multiple recipients, we consider two vari-

ants of a traffic correlation attack: We consider an adversary’s ability to determine

whether a given client is participating in a multicast group. If the adversary can

monitor that client’s (encrypted) communication with its guard, then we assume

that the adversary can apply simple traffic analysis techniques to determine that

the client is a subscriber of the group. Second, we consider attacks in which the

adversary is able to identify both the receiver and sender of a multicast message;

here, the adversary must monitor both clients’ communications to correlate traffic.

We evaluate how MTor affects an adversary’s ability to perform traffic correlation

attacks in Section 6.2.

Finally, we assume a computationally-bounded adversary who cannot find col-

lisions or preimages of cryptographic hashes, decrypt messages without knowledge

of the decryption key, or forge digital signatures. Since MTor uses Tor as its back-

bone, we additionally assume that Tor’s existing transport protocol is secure (e.g.,

that keys are randomly generated, that ciphers are strong and used correctly, that

20

the implementation is correct, etc.). MTor does not impose any restrictions on the

“last mile” connection between the client and the first relay (i.e., a guard or bridge)

and is compatible with Tor’s pluggable transports and obfuscated bridges (see, for

example, [58]). We therefore consider local eavesdropping attacks such as website fin-

gerprinting [22, 37, 4] orthogonal to this work, since solutions [4] and mitigations [54]

intended for vanilla Tor are also applicable to MTor.

21

Chapter 5

Design

To support group communication, MTor constructs a multicast tree at the application-

layer using Tor relays as the internal nodes of the tree. The leaves of the tree are

clients, who connect through their guard relays (i.e., the clients’ guards are the par-

ents of the clients in the tree). We emphasize that MTor does not use IP multicast,

and instead uses Tor’s existing SSL/TLS transport mechanism between relays to pro-

vide link-level authentication and confidentiality. The multicast tree is constructed

in a dynamic and decentralized fashion, and does not require global coordination.

In this chapter, we describe in detail how MTor constructs and maintains multi-

cast trees to ensure correct functionality and provide efficient group communication.

5.1 Group Descriptors

Before a client can participate in a group communication, it needs to obtain a group

descriptor for that group. We envision that the group descriptor could be communi-

cated through some out-of-band mechanism—for example, via emails or a distributed

key-value store—and can be retrieved anonymously (e.g., by using Tor).

22

The group descriptor contains the following attributes:

• Group name. The group name is a human-readable string (e.g., “Freedom

Radio”) that is intended to describe the group’s purpose. We do not require

that the group name be unique since the group identifier (described below) is

calculated based on the entire descriptor; however, unique group names provide

easier distinguishability between advertised groups.

• Bandwidth. The bandwidth attribute specifies a minimum bandwidth that

relays must support to be a member of the multicast tree. A conservative band-

width estimate prevents message loss, which is possible in MTor when there are

bottlenecks in the multicast tree. Message loss is discussed in greater detail in

Section 5.6.

• Certificate. When present, the optional certificate attribute contains an X.509-

encoded certificate containing a public key and validity date. The public key could

be self-signed—in which case group messages are authenticated according to a

trust-on-first-use policy—or the key could be signed by an external party, allow-

ing the use of a PKI. If a certificate is present in the group descriptor, relays that

receive group messages will verify that those messages have been properly signed

before they are forwarded. We describe the authentication mechanism, as well as

its overheads, in more detail in Sections 5.4 and 6.1.8.

• Cipher identifiers, confidentiality key, and MAC key. In contrast to

unicast Tor, MTor does not by default offer any end-to-end confidentiality guar-

antees. This is necessary to allow bandwidth savings via link aggregation and

message de-duplication. However, it also implies that any relay who is part of the

23

group’s multicast tree can eavesdrop on the communication. These optional ci-

pher attributes provide a simple mechanism for secure end-to-end communication.

However, confidentiality relies on the secure dissemination of the group descriptor

file. Users who have access to the descriptor can protect the confidentiality of

their messages by encrypting them with the symmetric confidentiality key and ap-

pending a MAC. Eavesdroppers who do not have access to the descriptor cannot

learn the plaintext of the group messages. These confidentiality extensions are

used only at the endpoints (to encrypt and decrypt messages) and therefore do

not incur any additional computational cost at Tor relays.

The group descriptor file is hashed to produce a group identifier (GID) that

uniquely and concisely identifies the group. Specifically, the GID is calculated as

GID = h(group name|bandwidth|certificate|

h(cipher identifier and keys))

where h is a cryptographic hash function and | denotes concatenation. For each

Tor cell being sent via multicast to a group, we include the group identifier that

uniquely identifies its corresponding group. The group identifier is also used to

select a multicast root (MR) for the group, which is described next.

GID binding proofs The construction of the GID allows for a GID binding proof,

where a prover provides the GID, the group name, the bandwidth, the certificate (if

present), and a hash over the cipher identifier and keys (if present). Importantly,

the GID binding proof does not reveal any keys. The verifier then computes the

GID from the provided inputs and verifies that the computed GID matches the

provided GID. (We operate in the random oracle model and assume an ideal hash

function, which we approximate in our implementation using SHA hashes.) GID

24

binding proofs are used to bind a certificate to a GID, and enable authenticated

group communication, as described in Section 5.4.

5.2 Multicast Root Selection

Algorithm. SelectMR(min bw,GID):
1. cur hour ←get current hour()
2. fetch the cons from cache/directory server such that:

cons ← argmin{get valid after(cons) | cons ∈ get recent cons() and
cons get valid after(cons) ≥ cur hour}

3. for relay ∈ cons: /* construct ring */
3.1 if is stable(relay) and is fast(relay) and get bandwidth(relay)≥min bw:
3.1.1 relaypos ← hash(relaydigest +GID + cons) mod 2160

3.1.2 put relay on the ring at relaypos
4. beginpos ← hash(GID) mod 2160

5. relay ← find next(beginpos, ring)
6. while true: /* search for the first active relay */
6.1 if create circuit to mr(relay) == success:
6.1.1 return relay
6.2 relay ← find next(relay, ring)

Figure 5.1: MR selection algorithm. find next(X, ring) returns the relay on the ring
whose identifier is the least greatest than X, modulo 2160.

To enable group communication, MTor forms multicast trees over the Tor relays.

Clients join a group by forming circuits to the root of the desired group’s multicast

tree—i.e., the multicast root (MR). Thus, MTor requires a mechanism for ensuring

that clients who wish to join the same group select the identical MR. More concretely,

the MR selection algorithm should meet the following criteria:

• Correctness: all clients in a given group must agree on the same MR regardless

of their startup time and location, to ensure the multicast tree spans across all

clients during group communication.

25

• Anonymity: clients should select the MR without relying on global coordination,

or more generally, without disclosing their network location.

• Efficiency: MR selection should (i) introduce little or no overhead to the Tor net-

work, (ii) be stable enough for persistent group communication, and (iii) choose a

relay that has sufficient bandwidth to not be the bottleneck for group communi-

cation.

One straightforward solution is for the group initiator to register MR information

in a lookup service that all other Tor clients can access, in much the same way that

Tor hidden services register and advertise their introduction point [56]. This solution

is easy to deploy and does not introduce any overhead to the Tor network. However,

this requires exactly one client to be designated to monitor and update the MR

throughout the group communication. We desire a more flexible approach that

allows for MR-migration (that is, switching the MR from one relay to another) and

does not require the client that originated the group messaging session to stay online

for the session’s duration.

MTor uses an alternative design that leverages Tor’s existing infrastructure. In

Tor, clients periodically retrieve a consensus document that lists the available re-

lays, their public keys, network addresses, exit policy, status, and other information.

These documents are polled either from authoritative directories—which undergo a

voting protocol to form the (digitally signed) consensus—or directory caches. In ei-

ther case, clients authenticate the consensus document by verifying that it has been

signed by a majority of the directory authorities.1 As its name implies, the consensus

document should be approximately consistent among all clients. To mitigate edge

cases (e.g., in which a client retrieves the consensus moments before the directory

1Digests of the directory authorities’ public keys are hard-coded with the Tor client.

26

authorities generate a new consensus), MTor selects MR from the oldest available

consensus whose valid-after attribute is larger than the current hour time. We

note that Tor directory authorities can support such consensus requests with only

minor modification.

In MTor, clients independently select the MR using a local variant of consistent

hashing. Since the MR is a central point of failure in the multicast tree, MTor

first applies a filtering process to weed out undesirable relays. Only relays that

have earned the Stable and Fast flags (respectively indicators of stability and

performance) and can provide at least the bandwidth specified in the group descriptor

are considered. The remaining Tor relays are then logically organized in a ring over

[0, 2160), with each relay’s value in the ring being equal to a hash over its digest (a

fingerprint of the relay’s public key), GID2, and consensus document used for the

MR selection.3 Note that these “rings” are computed locally for each client using

only local knowledge and a cached copy of the consensus. The client selects the MR

by finding the relay whose value in the ring is the least greater (modulo 2160) than

the GID. The client then attempts to create a unicast Tor circuit to the MR (the

mechanism for selecting relays in this circuit is described in Section 5.3). If it is

unsuccessful, then the next closest value in the ring is considered the MR, and this

process repeats until a live candidate relay is discovered. The complete MR selection

algorithm is more formally presented in Figure 5.1.

2The GID is included to evenly distribute MR of different groups across relays.
3The consensus document is included in the preimage to prevent malicious relays from generating

public keys that yield generally advantageous positions in the ring. Since each communication
session has an unpredictable consensus, this effectively “randomizes” the placement of relays in the
ring for each group. Note that malicious relays cannot easily regenerate keys to find an advantageous
position for a current or incoming communication session, since the act of regenerating its keys will
cause it to lose the Stable flag and consequently become excluded from consideration.

27

5.3 Tree Formation

A client joins a multicast group by constructing a Tor circuit to the group’s MR.

The procedure for building such a circuit is similar to normal circuit construction

in Tor, with the exceptions that (1) the MR is used in place of an exit relay; (2) to

prevent certain deadlock conditions, we restrict the set of potential middle relays;

(3) each relay on the circuit must provide at least the bandwidth specified in the

group descriptor; and (4) if the any relay is already in the multicast tree (e.g., selected

by other group members), the client stops circuit construction and uses whatever is

upstream from that relay.

Relay selection A client who wishes to use group communication first either es-

tablishes a new group by creating a new group descriptor or obtains an existing

group descriptor through some out-of-band mechanism. Next, the client selects a

3-hop circuit, consisting of one of its guard relays, followed by a middle relay, and

ending with the MR. All three relays should provide at least the bandwidth speci-

fied in group descriptor. The middle relay is selected using Tor’s default bandwidth

weighting strategy, except that the client enforces that the middle relay has a higher

digest than that of the guard relay. This latter constraint prevents our distributed

tree construction algorithm from running into deadlock.4 Note that exit relays are

not necessary here since all group communication is carried over Tor’s SSL/TLS

connections, and never “exits” the anonymity network. We remark that the clients

who opt to use MTor for group communication rather than constructing multiple

unicast circuits (each of which consumes bandwidth at exit relays) are effectively

saving valuable exit relay bandwidth for non-group communication.

4As an example, consider the case where client A selects path x→ y →MR and client B selects
path y → x → MR. The algorithm might deadlock if two the clients begin path construction at
roughly the same time.

28

Tree construction After the guard, middle, and MR relays have been selected, the

client starts constructing the circuit to the MR by sending a CREATE cell with the

GID and a GID binding proof to its chosen guard. (In Tor, CREATE cells signal the

creation or extension of an anonymous circuit.) The circuit is similarly extended to

the middle and then the MR by tunneling additional CREATE cells, again including

the group identifier and a GID binding proof. However, if any relay is already in

the multicast tree (e.g., selected by other group members), the client stops circuit

construction and uses whatever is upstream from that relay. In effect, clients’ MTor

circuits may contain fewer than three hops if either the chosen guard or the middle

relay is already forwarding messages for that multicast group.

To support forwarding of multicast messages, each relay maintains a local key-

value store called the multicast forwarding table that is keyed on the group identifier

(which is communicated through CREATE cells) which contains routing information

for a group.

Upon receiving a CREATE cell, a relay looks up the included group identifier in

its multicast forwarding table, and responds as follows:

• If the relay has not previously received a CREATE cell, it replies with a CREATED

cell, mirroring Tor’s default behavior. After receiving the CREATED cell, the client

will continue its path construction towards MR via this relay.

• If the relay has already received a CREATE cell from another client, it replies with

a HOLD cell, indicating that tree construction is already under progress. After

receiving the HOLD cell, the client will wait for a BEGIN cell. The source of the BEGIN

cell is described below; conceptually, it signals that the tree has been created.

29

• If the relay has already received a BEGIN cell, it replies with a BEGIN cell, indi-

cating that the tree construction is completed. The client can now start group

communication.

In all cases, the relay records in its multicast forwarding table the previous hop

from which it received the CREATE cell and the next hop to which it forwards the

CREATE cell. This information represents the relay’s parent and children in the mul-

ticast tree. The table is later used to forward messages during group communication.

Lastly, exactly one MTor client will receive a CREATED cell from MR. When that

happens, the client informs MR of its role, which then multicasts a BEGIN cell across

the multicast tree, to inform all relays and clients on the multicast tree to start group

communication.

5.4 Sending and Receiving

A client can begin sending and receiving group messages once it has received the

BEGIN cell. Outgoing messages are sent via the client’s Tor circuit towards the MR.

In MTor, messages should traverse each edge in a multicast tree only once. When

a relay receives a message, it looks up its neighbors in the tree by searching its

multicast forwarding table for the records that are keyed by the group identifier.

The incoming message is then forwarded to the relay’s adjacent edges, excluding the

message’s incoming edge. Group messages percolate down the multicast tree, and

are eventually delivered by guard relays to the subscribed clients.

MTor has the potential to offer significant bandwidth savings for group commu-

nication as compared to unicast-based approach. Consider, for example, a strawman

solution based on vanilla Tor in which clients use an external service such as a bul-

letin board, IRC server, or Google Hangouts to aid in group communication. The

30

service supports group communication by “echoing” incoming messages to all con-

nected clients (i.e., through their Tor connections). MTor uses significantly less

bandwidth than this unicast-based approach, since the former (i) offers the possibil-

ity of message de-duplication by aggregating data on shared links in the multicast

tree, (ii) uses a single multicast root rather than multiple exit relays, which both

frees up exit relay resources and reduces the number of relays that are involved in

the group communication, and (iii) avoids the overhead of communicating with the

external service. In Section 6.1, we empirically measure these bandwidth savings

under realistic network conditions and workloads.

Message confidentiality If the group descriptor contains a cipher identifier and en-

cryption key, then all group messages are presumed to be encrypted by the messages’

senders. Receivers use the decryption and MAC keys from the group descriptor to

respectively decrypt and authenticate messages. Our design is purposefully flexible

and allows the creator of the group to specify the symmetric key cipher and MAC al-

gorithm. Importantly, this “end-to-end” encryption of group messages is transparent

to Tor relays, since messages are encrypted/decrypted only by the group members.

Authentication and DoS prevention When the group descriptor includes a cer-

tificate, MTor provides a weak form of authenticated multicast: only clients that

have knowledge of the private key that corresponds to the certificate may send mes-

sages. Clients sign their cells, storing the signature and a timestamp (to prevent

replay) as added fields.

Recall that relays are given both the GID and a GID binding proof, and hence

relays can extract the certificate (if it exists) from the proof. Relays enforce authenti-

cation by verifying received cells’ signatures and dropping cells that fail verification.

This mitigates potential DoS attack against the Tor network by preventing both

malicious clients and relays from propagating unauthentic messages.

31

A clear disadvantage of using the above authentication scheme is that it incurs

significant bandwidth and computational overheads. We propose two potential so-

lutions to reduce these overheads: First, we can reduce bandwidth overheads by

relying on short signature schemes such as ECDSA which offers equivalent security

to a 2048-bit RSA signature using only a 283-bit public key [3]. Second, for single-

source streaming multicast messages, the sender may transmit special signature cells

that contain a signed list of upcoming (yet-to-be-received) cell hashes. After receiv-

ing a signature cell, a relay verifies the signature over the hashes, and then verifies

that the cells it subsequently receives have those hash values. Since the cost of verify-

ing a forged packet is relatively low and an adversary has a very limited opportunity

of finding a collision, MTor can use truncated hash digests. For example, if hashes

are truncated to 40-bits, then a single 512-byte signature cell can hold 91 40-bit

hashes, a 283-bit ECDSA signature, plus 18-byte header, reducing the verification

and storage cost by nearly two orders of magnitude.

5.5 Churn Handling

To effectively detect and recover from link or relay failures, MTor maintains multi-

cast tree states (i.e., its upstream and downstream links) as soft-state in each relay.

The MR periodically multicasts heartbeat cell across the tree. The relay receiving

the heartbeat cell will refresh the table entry for the incoming link; and the relay

successfully sending the heartbeat message will refresh the table entry correspond-

ing to the outgoing link. If any relay fails, all downstream relays and clients will

eventually expire and discard table entries associated with the group. In addition,

the affected clients will re-construct the path to MR as described in Section 5.3.

MTor can also tolerate the failure of multicast tree root. If any client can not

32

connect to MR after she has tried a pre-configured number of different paths, she can

simply select another active MR as described in Section 5.2. With high probability all

participants will again connect to an unanimous MR to form a multicast tree across

all group members. While in the rare scenario some clients may select different MRs

(e.g. the original MR goes down for a short period of time before coming online

again), the group can still recover from such inconsistency when it re-constructs

multicast tree in the next session.

To reduce the group’s vulnerability to slow relays, as well as deliberate DoS at-

tacks by malicious relays which intentionally drop cells from upstream links, each

heartbeat message provides a count of cells transmitted during the session, signed

with the signing key of the MR (signing keys are specified in Tor descriptor doc-

uments). By comparing the received number of cells with the advertised count in

the heartbeat message, the downstream clients can recognize such an attack and

optionally re-connect to the MR via a different path.

5.6 Flow Control and Message Loss

MTor ensures only best-effort delivery of multicast messages. It uses TCP to dissem-

inate messages reliably from parents to children in the multicast tree and for flow

control.

In particular, when a multicast cell arrives at a relay, it is duplicated and en-

queued on the internal output queues associated with each of the next hops. If

an output queue reaches its capacity limit, incoming cells will be dropped on that

queue; if all output queues reach their limit, then the relay blocks receiving from

its previous hop. Due to potential message dropping at the application-layer, MTor

offers best-effort, but potentially lossy multicast messaging (as do most multicast

33

schemes). The use of the predetermined bandwidth attribute in the group descrip-

tor reduces the probability of loss, as relays are selected based on their ability to

handle the group’s predicted data rate.

34

Chapter 6

Evaluation

In this chapter we present the evaluation results of MTor in terms of its anonymity

and network performance.

6.1 Network Performance

In this section, we measure the performance properties (i.e. bandwidth consumption,

transmission time, computation overhead and probability of unreliability) of MTor

and compare against unicast-based methods for group communication. The goals of

our evaluation are three-fold: (1) measure the bandwidth saving achieved by MTor

over unicast-based approach; (2) quantify the performance improvement as observed

by group members; and (3) study the churn handling overhead and probability of

unreliability due to relay failures.

6.1.1 Evaluation Methodology

We first describe the tools used to evaluate MTor. Specifically, we use TorPS [30],

which allows us to measure MTor’s bandwidth performance and anonymity as if it

35

were deployed on the live Tor network, and Shadow, which allows us to evaluate

MTor’s transmission time performance in an simulated network.

To provide an estimate of MTor’s bandwidth consumption on the actual Tor

network, we modified the Tor Path Simulator (TorPS) [30] to simulate MTor’s tree

construction algorithm over an one-month period of September 20141, using histor-

ical records of Tor consensus documents collected by the Tor Metrics Project [53].

During the simulation the multicast tree is re-constructed every hour. The band-

width consumption is then derived from the average size of multicast trees. TorPS

simulates the actual event of relays joining and leaving the Tor network using real

relay and consensus data from Tor’s historical records, and thus models the actual

live Tor network as it existed at a specific past period in time. Using TorPS thus

allows us to obtain an accurate estimate of MTor’s performance had it been deployed

on the live Tor network.

We also modified TorPS to estimate the probability of unreliability due to relay

failure, as well as the resilience of Tor and MTor communication against traffic

correlation attacks. In Section 6.1.7, we define the probability of unreliability and

discuss MTor’s churn handling performance. In Section 6.2, we adapt the security

analysis techniques introduced by Jansen et al. [30] to measure the ability of a

malicious adversary who controls some fraction of relays on the Tor network to de-

anonymize group members.

To measure the network latency and transmission time as experienced by group

members using MTor, we have implemented a prototype of MTor in C++ by adding

approximately 1500 lines of code based on Tor version 0.2.3.25. We then emu-

lated our prototype using Shadow [27] following a standard Tor network modeling

approach [25]. Shadow is a discrete-event network simulator that runs actual Tor

1Using the September 2014 dataset, TorPS includes 6192 relays.

36

code using a synthetic network stack and a topological map of the live Tor network.

Shadow allows us to simulate large-scale Tor deployments and measure performance

for different application scenarios. Shadow has recently been used to evaluate Tor’s

circuit scheduling [27, 18] and congestion management algorithms [26], as well as its

anonymity properties [30].

Because Shadow bypasses many OpenSSL encryption functions in order to allow

researchers to track cells, we do not use authenticated group messages or end-to-end

message encryption. The Shadow experiments assume public groups that anyone

can join and send/receive messages. We separately evaluate the overheads of au-

thenticated group messaging in MTor using micro-benchmarks.

6.1.2 Experimental setup

We use Shadow to simulate a Tor network of 455 relays, 1800 clients, and 500 client

destinations (which we generically refer to below as ”servers”). Relay capacities, geo-

graphic locations of relays, and link latencies between relays are configured according

to the configuration supplied with Shadow, which itself is configured using data from

Tor Metrics Portal [53] following Tor modeling best practices [25, 26]. Each server is

assigned 100 MBps bandwidth and clients are assigned unlimited bandwidth, which

is much higher than relay capacities and thus moves the performance bottleneck to

the Tor network.

To model a loaded Tor network, we include 1800 clients that fetch files from any

of the 500 servers via unicast Tor circuits. To match existing studies of behavior on

the live Tor network [32], 1350 clients behave as interactive web clients that fetch files

of 320KB in size, and sleep for up to one minute. Additionally, 300 clients repeatedly

fetch 50KB, 1MB or 5MB files, sleeping one minute in between each fetch. These

37

types of clients continuously repeat a fetch-sleep cycle where they fetch files from a

randomly selected server (out of 500 servers). Finally, another 150 clients behave

as bulk clients (e.g., file sharers) that continuously fetch data from a random server

and switch to a different server after every 5MB data transmission.

We include an additional 20 group communication clients in our Shadow topology.

To support our baseline comparison, which we explain in more detail below, we

also add one additional server that serves as external facilitator to support group

communication via traditional unicast Tor circuits.

6.1.3 Performance Metrics

We evaluate the performance of MTor and Tor using four metrics: (1) the overall

network bandwidth that is consumed to transmit the data to all clients; (2) the trans-

mission time, which measures the time it takes for a receiver to receive the sender’s

complete message (time-to-last-byte); (3) the packet loss rate due to a mismatch

between bandwidth capacity and the bandwidth requirements of real-time commu-

nication applications; and (4) the probability of unreliability due to relay failure.

Network bandwidth consumption is measured as the sum of bytes transmitted on

each link in the Tor overlay network during the course of an experiment, which pro-

vides insight into the burden imposed on the Tor overlay network. The transmission

time captures the latency experienced by end users, which tends to be dominated

by bandwidth capacity for large messages. The packet loss rate estimates the packet

loss due to unsatisfactory bandwidth capacity and network congestion. Finally, the

probability of unreliability measures the impact of communication disruption due to

relays on the multicast tree becoming unavailable during communication.

38

6.1.4 Modeling Group Communication Applications

To evaluate MTor’s performance properties under different communication scenar-

ios, we model three types of group communication applications. In all the MTor

experiments, clients communicate directly via the multicast tree.

• Single-source streaming. In the single-source streaming application, a single

non-anonymous server multicasts a file (e.g., representing a video or document)

of 10MB to a group of 20 anonymous clients. In our baseline scenario, all clients

connect to and receive data from the server via unicast Tor circuits. This scenario

explores the transmission time improvement from using MTor in a typical initiator-

responder scenario, where many initiators request the same data at around the

same time.

• Multi-source group streaming. In the multi-source streaming application,

we consider a group of 20 anonymous clients communicating with each other.

When measuring the performance of MTor, the traffic is transmitted via the mul-

ticast tree. Since vanilla Tor does not support anonymous group communication,

as our baseline for comparison, we consider a scenario in which all clients con-

nect to an external service that “echoes” messages to all other connected clients.

Tor clients connect to this external service, which we call the facilitator, through

unicast Tor circuits. (This is effectively the strawman solution proposed in Sec-

tion 5.4.)

• Audio conferencing. Our third use-case considers a group of 20 anonymous

39

clients doing real-time voice-over-IP communication. We assume VoIP is per-

formed using Internet Low Bitrate Codec (iLBC) [19] at 1666 Bps, which is ex-

tremely robust to packet loss2. Again, for our baseline configuration, all clients

that rely on vanilla Tor connect to a facilitator using dedicated circuits.

To model audio conferencing as a real-time application, each client queues a 1666-

byte message per second for transmission to other clients. The old message is

dropped if it is not sent before the new message gets queued. For both MTor

and baseline experiments, we simulate the audio conferencing for 30 minutes to

measure the message loss rate and transmission time distribution.

Limitation In our evaluation of group communication applications, we focus on

the characteristics of the data transmission at the transport layer, such as overall

network bandwidth consumption and transmission time distribution. To evaluate

the impact of network congestion on real-time group communication applications,

we additionally simulate the packet loss event in audio conferencing application,

where old message is dropped if it is not sent before the new message gets queued.

It is important to note that we do not emulate an actual audio conferencing

application – application layer behaviors such as iLBC codec, message ordering, re-

transmission etc. are omitted in our Shadow experiments. The absolute performance

of audio conferencing application may vary when these implementation details are

introduced. Nonetheless, we expect our evaluation results to be useful in understand-

ing the relative performance advantage of MTor over unicast-based approaches. A

realistic deployment and evaluation of these group communication applications over

MTor on live Tor network is deferred to future work.

2iLBC is a mandatory standard for VoIP over Cable and is also used by Google Voice and Skype.

40

6.1.5 Impact on the Bandwidth Consumption

2 4 6 8 10 12 14 16 18 20
Number of Clients

0

10

20

30

40

50

60

70

80

N
et

 B
an

dw
id

th
 C

on
su

m
pt

io
n

(M
B

)

Tor

MTor

(a) Network bandwidth con-
sumption

2 4 6 8 10 12 14 16 18 20
Number of Clients

0

1

2

3

4

5

B
an

dw
id

th
 C

on
su

m
pt

io
n

pe
r

C
lie

nt
 (

M
B

)

Tor

MTor

(b) Bandwidth consumption
per client

2 4 6 8 10 12 14 16 18 20
Number of Clients

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

N
et

w
or

k
B

an
dw

id
th

 S
av

in
gs

(c) Bandwidth saving ratio

0 200 400 600 800 1000
Number of Clients

0

500

1000

1500

2000

2500

3000

3500

4000

N
et

 B
an

dw
id

th
 C

on
su

m
pt

io
n

(M
B

)

Tor

MTor

(d) Network bandwidth con-
sumption

0 200 400 600 800 1000
Number of Clients

0

1

2

3

4

5
B

an
dw

id
th

 C
on

su
m

pt
io

n
pe

r
C

lie
nt

 (
M

B
)

Tor

MTor

(e) Bandwidth consumption
per client

0 200 400 600 800 1000
Number of Clients

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

N
et

w
or

k
B

an
dw

id
th

 S
av

in
gs

(f) Bandwidth saving ratio

Figure 6.1: Network bandwidth consumption by MTor and the baseline approach
via unicast Tor for small groups of up to 20 clients (top row) and large groups of up
to 1000 clients (bottom row), for the multi-source group streaming application. We
evaluate the bandwidth consumption with respect to 1MB worth of group messages
that are collectively transmitted by the group’s members. (a,d) The overall network
bandwidth consumption for small and large groups. (b,e) The average network
bandwidth consumed per client, for small and large groups. (c,f) The network
bandwidth consumption ratio of MTor to Tor for small and large groups.

MTor offers the potential for significant bandwidth savings due to message de-

duplication. To investigate how the Tor network could benefit from these savings

(i.e., by having to forward less traffic), we focus in this section on the multi-source

group streaming scenario. Recall that in the baseline setup, each client connects to an

external service via unicast Tor circuits. We simulate data transmissions from each

client to every other client in the group, and evaluate the resulting load on the Tor

network as a function of the group’s size. Our evaluation is based on paths produced

41

by our modified TorPS path simulator. We evaluate the bandwidth consumption

when clients collectively transmit 1MB of messages to the group members (i.e., each

client receives 1MB worth of message contents); as we show below, the overhead of

sending 1MB to the group varies considerably between vanilla Tor and MTor.

Although we fix our experiments in this section on a 1MB-sized conversation, we

remark that transmitting more data merely induces a linear increase in the amount

of network bandwidth consumed for both MTor and baseline experiments.

Figure 6.1 shows the network bandwidth consumption that results from MTor and

Tor as the number of clients increases from 1 to 1000. Tor’s bandwidth consumption

is derived theoretically as 4×client#×1MB, since 1MB data is transmitted along

3-hop Tor circuits to the facilitator for each client in the group. To measure MTor’s

bandwidth costs, we simulate tree construction 720 times and compute the average

number of links in the resulting multicast trees; the bandwidth is then computed as

the average number of links times 1MB. These figures demonstrate the bandwidth

savings MTor could achieve for small (top row) and large (bottom row) group sizes.

We make the following observations: bandwidth consumption in Tor increases

linearly with the number of clients by a factor of 4, whereas in MTor bandwidth

consumption is sublinear. The advantage of using MTor increases with group size;

MTor reduces the bandwidth cost by approximately 62% over vanilla Tor for a large

group with 1000 members (Figures 6.1a and 6.1d). The bandwidth savings in MTor

is due to two factors: (i) in MTor, clients’ paths are shorter (consisting of two hops

from the client to the MR) since they do not include links from exits to the sender;

and (ii) MTor removes unnecessary cell duplication when links are shared.

Figures 6.1b and 6.1e further highlight the benefits of cell de-duplication. Here,

the figures plot the bandwidth that is consumed in the Tor network, averaged across

the clients, as the size of the group increases. For Tor, each group member consumes

42

a fixed amount of 4MB bandwidth for each 1MB data transmitted, since no de-

duplication occurs and each client receives the sender’s communication via its own

3-hop Tor circuit. For MTor, when the size of group is 10, each client consumes

on average 2.8MB bandwidth for each 1MB data transmitted. As the size of group

increases to 1000, each client consumes on average only 1.5MB bandwidth, much

closer to the theoretical lower bound of 1MB bandwidth necessary to serve a client.

This is a direct result of de-duplication: links in the multicast tree are used by more

than one client, providing the opportunity for bandwidth savings. As more clients

join the group, these opportunities increase. For example, if a new client joins and

its guard is already part of the group’s multicast tree, then the only additional

bandwidth cost due to that client is the cost of sending a copy of group message

from the guard to the client.

Figures 6.1c and 6.1f plot the savings in network bandwidth consumption when

MTor is used in place of Tor for group communication, and highlight our earlier

results. MTor offers increasingly efficient group communication as the size of the

group increases. The savings increase from 29% for a group of 10 members to 62%

for a group of 1000 members.

Discussion We note that bandwidth saving in MTor is primarily due to three factors:

(1) each MTor client requires at most 3 links to connect to MR, whereas Tor always

requires a separate 4-link path for each connection; (2) as number of clients increases

it becomes more likely that a new client picks a guard node that is already in the

multicast tree, in which case it adds only one link in the overlay network; and (3)

MTor avoids the use of external facilitator to forward data.

43

50 100 150 200 250 300 350
Transmission Time (sec)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

F
ra

ct
io

n
MTor

Tor

(a)

0 1 2 3 4 5 6 7
Transmission Time (sec) ×103

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

F
ra

ct
io

n

MTor

Tor

(b)

0 10 20 30 40 50 60
Transmission Time (sec)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

F
ra

ct
io

n

MTor

Tor

(c)

Figure 6.2: Cumulative distribution of transmission time (determined using Shadow)
of (a) 10MB files from one sender to the group during single-source streaming, (b)
10MB files from each client to the group during multi-source streaming, and (c) 1666-
byte message per second from each client to the group during audio conferencing.

6.1.6 Impact on Transmission Time

We next consider performance from the perspective of group members. Here, we

emulate Tor and MTor in Shadow simulator. We use transmission time to capture

the delay experienced by end users to receive a message, since it encompasses both

network congestion as well as queuing delay at the sender, receiver, and the inter-

mediate relays. In other words, transmission time is an intuitive notion of a user’s

experience, which captures the bandwidth capacity between sender and receivers.

Figure 6.2 compares the transmission time distribution offered by vanilla Tor (us-

ing our baseline configuration) and MTor for each of our applications. We remark

that the performance improvement from using MTor is largely attributed to reduced

network congestion in the Tor network, instead of avoiding performance bottlenecks

at the server: although the server in the baseline setup handles one order of mag-

nitude more traffic than clients, it is configured with 100 MBps bandwidth, much

higher than the bandwidth of relays in the experiment.

Single-source streaming Figure 6.2a shows the cumulative distribution of trans-

mission time to transmit a 10MB file from a single server to 20 anonymous clients. In

both MTor and Tor experiments, 20 files are received and their time-to-last-byte are

44

measured. Our Shadow experiments show that MTor provides observably improved

transmission time and a much shorter tail than Tor for carrying out single-source

streaming.

For this small group of 20 clients, MTor reduces the median transmission time by

22% from 86.7 seconds to 67.6 seconds. In the 99th percentile, the time is reduced

by 43% from 317.3 seconds to 183.9 seconds. Overall, MTor reduces the latency for

55% of clients.

Multi-source group streaming Figure 6.2b shows the cumulative distribution of

transmission time to transmit 10MB file during anonymous group communication.

Since each client sends a copy of file to every other 19 clients, in total 390 copies of

10MB files are received by clients.

We observe that MTor significantly improves transmission time over vanilla Tor

in doing anonymous multi-source group communication. For a small group of 20

clients, MTor reduces the median transmission time by 41.5% from 2773 seconds to

1328 seconds. In the 99th percentile, the time is reduced by 55% from 5074 seconds

to 2285 seconds. Overall, MTor reduces the latency for 55% of clients.

In the baseline experiment, for every message that it receives, the external facil-

itator must transmit 19 copies (via 19 circuits) to the other group members. MTor

improves performance by (i) using message de-duplication, (ii) avoiding potentially

congested exit relays, and (iii) eliminating the need to forward messages through

facilitators.

Audio conferencing Figure 6.2c shows the cumulative distribution of transmission

times for the real-time audio conferencing application. Each client in the group at-

tempts to send a 1666-byte message per second. To deliver real-time audio messages

in a timely fashion, clients favor newer “audio samples” and drop unsent messages

if a new 1666-byte message is available.

45

We make the following observations: MTor successfully delivers 100% of the mes-

sages, while vanilla Tor delivers only 93% of all messages. At the 50 percentile, MTor

reduces the transmission time by 73% from 1.1 to 0.3 seconds. The slowest message

takes 2.5 seconds to be delivered in MTor, whereas it is 53 seconds in Tor. The result

shows that MTor enables anonymous group communication with real-time delivery

requirements, while Tor’s message loss rate and long-tail distribution of transmission

time would considerably reduce the user experience for these applications.

Discussion MTor is able to offer shorter transmission time because it imposes a

much lower burden on the sender: in vanilla Tor, the sender must duplicate each

outgoing message for each client’s connection, since each client connects to the sender

with its own anonymous path. In MTor, the sender only needs to send a single copy

of each message, relying instead on the multicast tree to propagate it to the receivers.

As the number of receivers grows, this asymmetry becomes more pronounced.

The encouraging results suggest that MTor can significantly improve transmission

time over Tor for both small and large-sized group communication. Such improve-

ment is particularly useful when anonymous real-time communication is desired.

6.1.7 Churn Handling Evaluation

In this section we evaluate the efficiency of the churn handling mechanism described

in Section 5.5.

Suppose the heartbeat cell is sent by MR every h seconds, the timer expires

after t seconds if not refreshed by heartbeat cell, and the construction of a new path

from client to MR takes p seconds. If any relay fails, the downstream clients will

be disconnected from MR for t + p seconds, during which each client detects timer

46

0 200 400 600 800 1000
Group Size

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

P
ro

ba
bi

lit
y

of
 U

nr
el

ia
bi

lit
y

×10 3

Figure 6.3: MTor’s probability of unreliability due to relay failure

expiration and reconnects to MR via a 2-hop circuit. Since each cell has 512 bytes,

the heartbeat cells will consume 512/t Bps of bandwidth per link.

To quantify the unreliability due to network churn, we define the probability of

unreliability as the percentage of the time that any client in the group is disconnected

from the MR. We note that this is a conservative measure of unreliability, since it

assumes the disconnection of any client will impact all other clients in the group.

As part of our experimental setup, we assume that the heartbeat cell is sent

every h = 3 seconds, and the timer expires after t = 9 seconds. As evaluated

using the Torflow utility [39], the construction of a 3-hop path takes roughly p = 6

seconds. Under this setup, the heartbeat message consumes only 170 Bps bandwidth

per link. Figure 6.3 shows the probability of unreliability for groups of size 10 to

1000, estimated via simulation in our TorPS variant over the one month period of

September 2014. Recall that TorPS uses historical data from the live Tor network

to simulate network churn. We remark that for a group of size 1000, the probability

of unreliability is only 0.37% — that is, less than 15 seconds of communication will

be disrupted during an hour-long communication session.

47

6.1.8 Authentication Microbenchmarks

Neither Shadow nor TorPS allows us to measure the computational overhead of the

message authentication scheme described in Section 5.4, since neither simulator per-

forms actual cryptographic operations. Instead, we next describe microbenchmarks

that allow us to estimate the rate at which clients can generate signatures and relays

can verify them.

We use OpenSSL version 1.0.1’s benchmarking capability to measure the overhead

of signing and verifying 283-bit ECDSA signatures, as well as the cost of computing

SHA2 hashes. Our “client” runs a MacBook Pro with quad-core 2.2GHz Intel Core

i7 processor and is able to generate 1604 signatures and 267K hashes per second.

Measurements for our “relay” are taken from a commodity server with a quad-core

2.67GHz Xeon X3450 processor; the relay is able to verify 752 signatures per second

and can perform 375K hashes per second. All measurements are pinned to a single

core.

As described in Section 5.4, we can fit 91 hashes into a single signature cell when

the hashes are truncated to 40-bits. Based on the measurements above, the client can

send 95409 authenticated cells per second (equivalently 49 MBps). The amortized

verification rate for the relay is 58507 cells per second; our relay is able to forward

30 MBps of authenticated group communication data, per dedicated core.

6.2 Anonymity Performance

Tor is known to be vulnerable against traffic correlation attacks in which an adversary

who observes traffic entering and leaving the anonymity network can correlate that

traffic to identify pairs of communicating parties. Prior work has shown that traffic

correlation is an effective means of de-anonymizing Tor users, and can be performed

48

at low cost using statistical sampling techniques [35]. Arguably, it is the most serious

threat against Tor users’ anonymity [21, 55], as it directly exposes the identities of

the communicating parties and can be carried out either by network operators or

relay operators.

In this section, we evaluate how the use of MTor for group communication affects

an adversary’s ability to de-anonymize users through traffic correlation. The goal of

this section is to validate that MTor performs comparably to Tor in anonymity.

6.2.1 Adversary Model and Goals

Rank Bandwidth (MBps) Largest family member

1 327 bolobolo1

2 207 torpidsUAitlas

3 190 PrivacyRepublic0019

4 189 orion

5 155 AccessNow14

Table 6.1: Tor families with top observed bandwidth on September 30th, 2014. The
total observed bandwidth of all relays is 13 GB/s

We conservatively assume that an adversary is able to perfectly correlate traffic—

i.e., if it observes Tor cells belonging to the same flow at two different points in the

network, then the adversary can discern with perfect accuracy that those packets

do indeed belong to the same Tor circuit. Hence, our results should be interpreted

as a conservative measure of anonymity: real-world adversaries may not have the

computational resources to perfectly correlate traffic flows.

Further, we assume an adversary that runs relays in the Tor network and uses

these relays to observe traffic, correlate flows, and de-anonymize users. In particular,

we provision the adversary with an observed bandwidth budget of 131MBps, 327MBps

or 656MBps, which it may use to operate one or more relays in the Tor network,

49

such that the combined bandwidth of his relays does not exceed his bandwidth

budget. The adversary must fix his selection of relays and is not allowed to change

which relays it controls during the course of an experiment. We parameterize the

adversary’s bandwidth budget to consider MTor’s security against adversaries of

varying strength. As shown in Table 6.1, our bandwidth budgets conservatively

model adversaries that have up to twice the observed bandwidth of the largest Tor

families as of September 30th, 2014. (A Tor family consists of relays that report that

they are administered by the same entity.) These bandwidth budgets respectively

correspond to 1%, 2.5%, and 5% of the total observed bandwidth reported by all

relays as of September 30th, 2014.

To carry out a traffic correlation attack in vanilla (unicast) Tor, the adversary

needs to control both sides of a circuit (i.e., the guard and exit relay) to observe

(and later correlate) the source and destination of communication.

We conservatively assume that the adversary’s guard relay exhibits enough up-

time to obtain the Guard and Stable flags. We additionally assume that the

adversary’s exit relay does not have the Guard flag but does have an exit policy

that allows communication to all addresses and ports; this increases its chance of

being selected as an exit. All of the adversary’s relays have sufficient bandwidth to

obtain the Fast flag.

6.2.2 Anonymity Metrics

We consider an unicast connection as compromised if the adversary observes traffic

at both ends (i.e. guard and exit relay in Tor) of the anonymous connection. The

definition of compromise in a group communication setting is less clear since there

50

are potentially many receivers for a given message. In our anonymity evaluation, we

consider two types of compromise w.r.t. attacks defined in Section 2.1:

• Linkage. We say two clients in the same communication group are linked (i.e.,

correlated) if the adversary observes each of their guard traffic. The adversary does

not need to view their guard traffic simultaneously; observing their guard traffic

even at different points during the group communication is sufficient to allow the

adversary to determine that the two clients belong to the same communication

group, since traffic belonging to the same group may be identified by inspecting

the messages’ GID.

• Membership identification. An adversary who controls a client’s guard can

determine whether that client is participating in a given group by examining the

binding proofs (which contain a group’s unique GID).

In our anonymity analysis, we conservatively assume that two given clients are

linked if both guards are compromised at least once over the period of simulation;

and a client is identified as group member if its guard is compromised. Notice that,

by definition, linkage ≤ membership identification in terms of their probability of

occurrence.

To measure susceptibility to traffic correlation attacks, we adopt the following

security metrics from Johnson et al. [30] since we believe they are the most relevant

to users of Tor:

• Compromise rate: the probability distribution on the fraction of paths that

are compromised (w.r.t. linkage or membership identification) for a given user (in

a given period); and

51

• Time to first compromise: the probability distribution on the time until the

first path compromise (w.r.t. linkage or membership identification).

6.2.3 Experimental Setup

We envision that most users will continue to use vanilla Tor as their primary means of

anonymous communication: that is, they will continue to use unicast communication

to browse web, send emails, etc. Simultaneously, a smaller percentage of Tor users

will use MTor to participate in group communication.

User Model For the unicast Tor users, we adopt the user models introduced by

Johnson et al. [30] that are intended to reflect the behavior of actual users of the live

Tor network. These user models consist of a sequence of Tor streams and the times

at which they occur. Here, streams include DNS resolution requests in addition to

TCP connections to specific destinations. Johnson et al. construct these models by

using client applications on the live Tor network and tracing the behavior of the

local Tor client. We use models consisting of Tor users who use (i) Gmail/Google

Chat, (ii) Google Calendar/Docs, (iii) Facebook, and (iv) perform web searches.3

For MTor clients, we consider a large “webcasting” scenario in which 5000 MTor

clients participate in the same group and receive multicast messages from a single

sender. These webcasting sessions last for an hour, after which time the clients all

leave the group and join a new group webcasting session with (w.h.p.) a new MR.

This process repeats for the duration of the simulation.

Attacker configurations We first determine the bandwidth allocation between

3We remark that in MTor, all traffic is sent within the Tor network. Unlike vanilla Tor, MTor
does not use exit policies since exit relays are not used. Consequently, selecting the relay path to
the MR in MTor is not affected by the group members’ choice of application—this is in contrast
to standard unicast Tor where the choice of application (or more specifically, the destination port
of egress traffic) influences relay selection, since a compatible exit relay must be chosen. This has
an interesting effect on anonymity: unlike vanilla Tor, MTor’s susceptibility to traffic correlation
attacks is independent of its users’ choice of application.

52

0.5 0.6 0.7 0.8 0.9 1.0
Fraction of 100 MiBps allocated to guard

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

ba
bi

lit
y

Prob. of guard & exit compromise

Prob. of guard compromise

Prob. of exit compromise

Avg. guard compromise rate

Avg. exit compromise rate

Figure 6.4: Probability of observing traffic (y-axis) for various bandwidth allocation
strategies between the guard and exit (x-axis), using Tor consensus data from April
2014 through September 2014.

guard and exit relays that maximizes the adversary’s ability to de-anonymize ordi-

nary unicast Tor users. We tested guard-to-exit bandwidth ratios of 1:1, 2:1, 5:1,

10:1 and 50:1 using the TorPS path simulator. Figure 6.4 shows the compromise

rate with varying bandwidth allocation ratios between guard and exit relays. A 5:1

ratio maximizes the probability of compromising both sides of at least one stream

during the simulation period (blue line), which we adopt in the rest of this section.

This confirms an earlier result by [30].

Since exit relays are not used by MTor, adversaries who attempt to de-anonymize

group communication will spend their entire bandwidth budget in controlling guard

relays. Recall that an adversary succeeds in linkage and membership identification

correlation attacks by controlling the guard relay(s) used by a group’s clients.

To assign selection weights to adversary relay given its controlled bandwidth,

we use the fact that observed bandwidth that relays report in their consensus are

correlated with their consensus weights. We use linear regressions on the relays in the

consensus document during the simulation period to convert observed bandwidth of

adversary’s relays to consensus weight, where we use observed bandwidth as predictor

53

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Fraction of Streams - Membership (MTor)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

C
um

ul
at

iv
e

F
ra

ct
io

n

131 MBps

327 MBps

656 MBps

Figure 6.5: Cumulative distribution of the fraction of streams that allow the adver-
sary to perform membership identification (i.e., the compromise rate for membership
identification correlation attacks). The adversary’s bandwidth budget is shown in
the figures’ legends.

and consensus bandwidth as descriptor. We use separate regressions for guard relays

and exit relays, which result in correlations of determination of r2 = .55 and r2 = .63,

respectively.

6.2.4 Evaluation Results

For both unicast Tor and MTor clients, we use TorPS to conduct 5000 Monte Carlo

simulations of six months’ client activity spanning the period from April 2014 to

September 2014. We use the output of these simulations to evaluate the compromise

rate and time to first compromise for Tor and MTor, for the linkage and membership

identification attacks described above.

The adversary’s ability to perform membership identification attack in MTor is

depicted in Figure 6.5. The figure shows the cumulative distribution over the fraction

of streams that an adversary is able to compromise (i.e., determine that the client

is a member of the group). Our results indicate that an adversary who continuously

contributes 131MBps of guard bandwidth to the network fails to identify more than

54

0 50 100 150 200
Time to first compromise (days)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

C
um

ul
at

iv
e

F
ra

ct
io

n

Membership (MTor)

Linkage (Tor)

Linkage (MTor)

(a)

0 50 100 150 200
Time to first compromise (days)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

C
um

ul
at

iv
e

F
ra

ct
io

n

Membership (MTor)

Linkage (Tor)

Linkage (MTor)

(b)

0 50 100 150 200
Time to first compromise (days)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

C
um

ul
at

iv
e

F
ra

ct
io

n

Membership (MTor)

Linkage (Tor)

Linkage (MTor)

(c)

Figure 6.6: Time to first compromise with an adversary budget of (a) 131MBps,
(b) 327MBps, and (c) 656MBps.

58% of the MTor clients during the simulation’s six-month window. For 90% of the

clients, the adversary is able to successfully determine group membership for only

approximately 12% of the clients’ multicast groups. (Recall that MTor clients change

groups every hour.) MTor fares worse against more well-provisioned adversaries,

although we note that even against an adversary who would constitute the largest

contributor to Tor (the 327MBps case), 70% of clients have fewer than 12% of their

streams compromised.

Figure 6.6 plots the cumulative distribution of the time to first compromise for

MTor and Tor. A direct comparison between MTor and Tor is not possible, since

the latter uses unicast workloads (web browsing, etc.) while the former is based

on group communication. Generally, however, we expect MTor to provide greater

resistance to linkage attacks than vanilla Tor for most clients: In vanilla Tor, exit

relays are chosen independently for each new circuit, while the choice of guard relays

persists across circuits.4 An adversary who controls an exit relay can therefore wait

until his relay is chosen. In contrast, MTor avoids the use of exit relays, requiring

the adversary to control the guard relays of the two clients it is attempting to di-

rectly link. Adversaries who are not sufficiently lucky to operate the guards must

4The Tor Project is currently investigating how often Tor guard relays should be rotated [12, 14].
In the current version of Tor, a client rotates guards between 30 and 60 days (uniformly chosen).

55

wait potentially months before clients select other guards. This trend is observ-

able in Figure 6.6 for all tested attacker strengths: albeit with different underlying

workloads, the adversary is more quickly able to perform linkage correlation attacks

against Tor than it is against MTor.

Against our 131MBps adversary, approximately 69% of clients were not identi-

fied as being a group member within 100 days. Against an adversary who would

constitute the largest contributor to Tor (the 327MBps case), roughly 40% of clients

were not identified in that same period. We note that these results should be con-

sidered conservative measures of the anonymity offered by MTor, since in practice,

most users would presumably not continuously participate in a group for such a long

duration.

Comparing Figures 6.6a, 6.6b, and 6.6c, we observe that the time-to-first com-

promise increases roughly linearly with the adversary’s provisioned bandwidth bud-

get, for both membership identification and linkage attacks. This is due to Tor’s

bandwidth-weighted relay selection policy: clients choose relays proportional to how

much bandwidth they contribute to the network, thus increasing the adversary’s

bandwidth budget by a constant factor also increases the probability that clients

will select its relays by roughly the same factor.

56

Chapter 7

Summary

In this chapter we summarize the dissertation and provide a few promising directions

for future work.

7.1 Discussion

Incremental deployment MTor requires changes to both Tor clients and relays.

Importantly, however, since MTor works alongside standard unicast Tor, it does not

require that all clients and relays support anonymous multicast communication. A

straightforward approach to incrementally deploying MTor involves the introduction

of a new Tor flag, MTor, that is assigned to relays by the Tor directories if those

relays support group communication. Once a sufficiently large number of relays

advertise the MTor flag in their descriptors (hence offering diverse options for relay

selection), MTor-capable clients can then choose amongst those relays when selecting

and building a path to the MR.

Growth of the Tor network MTor offers bandwidth savings due in part to its de-

duplication of messages. If the Tor network expands to include more relays with the

57

Stable and Fast flags, then the probability that clients using MTor will select the

same relays in their paths to the MR will decrease, thus providing fewer opportunities

for de-duplication. One possible approach to counter this effect is to adopt the

MTor flag described above, and assign it only to a fixed number of relays such that

the opportunities for de-duplication also remain fixed. An alternative approach is

to bias the selection of the middle relay in MTor circuits by incorporating the GID

into the relay selection process; here, the intended effect is to cause clients to select

relays that are more likely already participating in the multicast tree.

Fortunately, our TorPS simulation using recent consensus data from the live Tor

network indicates that opportunities for de-duplication do exist in current Tor (see

Section 6.1.5). And, independent of de-duplication, MTor offers other bandwidth

savings. Since it handles message distribution within the Tor network, MTor (i) elim-

inates the need to burden exit relays and, more importantly, (ii) reduces network

bandwidth consumption by removing at least two hops between clients in the same

group. The latter holds since in the worst case in MTor, traffic traverses a 2-hop

path to the MR and a 2-hop path down to another group member; in contrast, a

client using vanilla Tor and an external facilitator must send traffic via a 3-hop path

to the facilitator, which then forwards the traffic via a 3-hop path to the client.

Adjusting guard rotation Recent work proposes replacing Tor’s current guard

design—which now consists of using three guards that are discarded after between 30

and 60 days of use—with a single fixed guard that is maintained for nine months [14].

The policy change directly targets Tor’s susceptibility to traffic correlation attack

by requiring the adversary to wait longer if it does not control a particular target

user’s guard relay; that is, it forces the adversary to get lucky early on. If adopted,

such a policy will also significantly improve MTor’s anonymity properties, since the

58

findings are directly applicable: a prerequisite of both linkage and membership iden-

tification attacks is that the adversary controls the user’s guard relay, and a longer

guard rotation period means that the adversary must wait longer for its relays to be

chosen as guards. Fortunately, the Tor Project seems prone to move towards this

longstanding, single-guard model [13].

7.2 Conclusion

This dissertation presents the design and implementation of MTor, which to the

best of our knowledge is the first system that provides low-latency anonymous group

communication with a decentralized trust infrastructure. MTor gracefully scales

with the size of the communication group by constructing multicast trees on top of

the Tor overlay network, and allows dynamic group composition without relying on

global coordination.

We performed comprehensive analysis of MTor’s bandwidth consumption, la-

tency, unreliability, and anonymity performance using recently proposed simulation

techniques with realistic models of the Tor topology and historical datasets of Tor

relay information. Our results are encouraging: the bandwidth consumption and

latency performance scale gracefully as additional clients join the group communi-

cation. We show that MTor achieves significant performance improvements that

enable new forms of anonymous group communication (e.g., anonymous VoIP) while

providing anonymity that is comparable to that provided by vanilla Tor.

59

7.3 Future Directions

Our long term goal is to integrate MTor into Tor ecosystem to enable scalable anony-

mous group communication for Tor’s hundreds of thousands of daily users. The work

presented in this dissertation is the first step towards this goal.

In this section, we discuss some open questions and future directions in order to

make MTor into reality, or more generally, to enable anonymous group communica-

tion in adversarial environment.

7.3.1 Sybil Attack Mitigation

Multi-source anonymous group communication with dynamic membership presents

a unique challenge to message de-multiplexing: it is infeasible to affix verifiable iden-

tity information of sender to messages, making it hard to aggregate messages securely

per-source at receiver. On the other hand, to work in a potentially adversarial envi-

ronment, it is necessary for group communication protocol to prevent Sybil attacks,

in which misbehaving sender may create unlimited anonymous Sybil identities or

spoof identities of other clients to disrupt group communication.

To enable secure message de-multiplexing in multi-source anonymous group com-

munication, one possible solution is to de-multiplex messages based on the hash

value of identities of relays each message has traversed. More specifically, each relay

updates message’s de-multiplex key by hashing it with its own identity before for-

warding the message to its neighbors, such that the calculation of the de-multiplex

key is effectively distributed across relays on the path from source to destination. As

part of future work, we hope to verify that the solution does prevent Sybil attacks

without introducing unexpected vulnerability for user’s anonymity.

60

7.3.2 Denial-of-Service Attack Mitigation

While multicast primitive enables efficient group communication, it also opens oppor-

tunity for DoS (flooding) attack since it amplifies messages by design. To mitigate

DoS attack, MTor provides authenticated multicast, where relays verify received

messages’ signature and drop messages that fail verification. However, such ap-

proach incurs undesirable computation overhead for each forwarded message even

when there is no DoS attack.

Ideally, we would like to mitigate DoS attack in anonymous communication in

such a way that (1) blocks attack traffic at the relay closest to the source to minimize

its impact, and (2) incurs no computation or bandwidth overhead when there is no

DoS attack.

One promising idea is to use Pushback [23] to dynamically push message authen-

tication functionality from receiver to the relay closest to attacker when unauthen-

ticated messages are detected, and turn off message authentication at intermediate

relays if they have not seen unauthenticated messages for a pre-configured period of

time. As part of future work, we plan to fulfill the design detail, implement it in

MTor and verify its effectiveness against DoS attack.

7.3.3 Secure Congestion Control

While message authentication can prevent unauthenticated messages from impact-

ing network, it is not useful against insider attack where attacker can also send

authenticated messages. For example, some misbehaving clients may keep sending

messages regardless of their allocated share of bandwidth. For MTor to work in an

adversarial environment, we need a mechanism to enforce fair bandwidth allocation

61

among anonymous clients without requiring them to coordinate with each other or

with any global authority.

However, the requirement of anonymity presents unique challenge to enforcing

congestion control. Unlike non-anonymous multicast system, MTor can not track

the amount of bandwidth consumed by clients. One promising solution is to push

rate limit from multicast root to clients such that each relay enforces the rate limit

it received from upstream relays. We leave the design and evaluation of secure

congestion control to future work.

62

Appendix A

MTor Pseudocode

The implementation of MTor includes an addition of 1000 lines of C++ code based

on Tor-0.2.3.25. In this chapter we provide code snippets to outline the implementa-

tion of MTor. Please refer to [34] for complete implementation and evaluation suit.

In file main.c:

1 /∗∗ Perform regular maintenance tasks. This function gets run once per

2 ∗ second by second elapsed callback().

3 ∗/

4 void run scheduled events()

5 {

6 ... /∗ Tor code ∗/

7

8 /∗∗ increase channel package window and deliver window∗/

9 channel increase window();

10 }

In file config.c:

1 static config var t option vars[] = {

2

3 ... /∗ configuration options from Tor ∗/

4

5 /∗ default MTor port used by application ∗/

6 VPORT(MulticastPort, LINELIST, 9050),

7

63

8 /∗ default bandwidth limit for MTor application∗/

9 V(MulticastBandwidth, MEMUNIT, ”5 MB”),

10 }

In file command.c:

1 /∗ Process a cell that was just received on conn. ∗/

2 void

3 command process cell(cell t ∗cell, or connection t ∗conn)

4 {

5 ... /∗ Tor code ∗/

6

7 switch (cell−>command) {

8 case CELL MULTICAST BEGIN:

9 case CELL MULTICAST HOLD:

10 case CELL MULTICAST DATA:

11 ++stats n multicast cells processed;

12 command process multicast cell(cell, conn);

13 break;

14

15 ... /∗ Tor code ∗/

16 }

17 }

18

19 /∗∗ Process a ’multicast data’ cell that just arrived from

20 ∗ conn.

21 ∗/

22 static void

23 command process multicast cell(cell t ∗cell, or connection t ∗conn)

24 {

25 circuit t ∗circ, ∗channel;

26 circid t origin circ id;

27 edge connection t ∗edge conn;

28

29 /∗ Multicast this cell to all interfaces except the incoming one∗/

30 origin circ id = cell−>circ id;

31 if (server mode(get options()))

32 channel multicast cell(cell−>channel id, cell, origin circ id, conn);

33

34 cell−>circ id = origin circ id;

35 channel = channel get by channelid(cell−>channel id);

36

37 for (circ=channel; circ; circ=circ−>next multicast) {

38 switch (cell−>command) {

39 case CELL MULTICAST DATA:

40 if (CIRCUIT IS ORIGIN(circ)) {

41 circuit receive multicast data(cell, circ);

42 }

43 break;

44 case CELL MULTICAST BEGIN:

45 channel set state(cell−>channel id, CHANNEL STATE OPEN);

46 if (CIRCUIT IS ORIGIN(circ)) {

64

47 /∗ Like if we have received cell created ∗/

48 if (circ−>state == CIRCUIT STATE BUILDING) {

49 origin circuit t ∗origin circ = TO ORIGIN CIRCUIT(circ);

50 circuit receive multicast begin(origin circ);

51 }

52 /∗ Like if we have received relay command begin ∗/

53 for (edge conn = TO ORIGIN CIRCUIT(circ)−>p streams; edge conn;

54 edge conn = edge conn−>next stream) {

55 entry connection t ∗entry conn = EDGE TO ENTRY CONN(edge conn);

56 if (entry conn−>channel id != cell−>channel id)

57 continue;

58 edge conn−> base.state = AP CONN STATE OPEN;

59 /∗ handle anything that might have queued ∗/

60 if (connection edge package raw inbuf(edge conn, 1, NULL) < 0) {

61 /∗ (We already sent an end cell if possible) ∗/

62 connection mark for close(TO CONN(edge conn));

63 continue;

64 }

65 }

66 }

67 break;

68 case CELL MULTICAST HOLD:

69 channel set state(cell−>channel id, CHANNEL STATE HOLD);

70 break;

71 }

72 }

73 }

In file or.h:

1 /∗∗ Type for sockets listening for Multicast requests∗/

2 #define CONN TYPE AP MULTICAST LISTENER 16

3

4 /∗ A Multicast SOCKS proxy connection from the user application to

5 ∗ the onion proxy. ∗/

6 #define CONN TYPE AP MULTICAST 17

7

8 /∗∗ The circuit is used for Tor Multicast. ∗/

9 #define CIRCUIT PURPOSE MULTICAST 20

10

11 /∗ Types for channel states ∗/

12 #define CHANNEL STATE NONE 0

13 #define CHANNEL STATE BUILDING 1

14 #define CHANNEL STATE HOLD 2

15 #define CHANNEL STATE OPEN 3

16

17 /∗ Types for multicast cell ∗/

18 #define CELL MULTICAST BEGIN 100

19 #define CELL MULTICAST HOLD 101

20 #define CELL MULTICAST DATA 102

21

22 typedef struct cell t {

65

23 ... /∗ original cell t fields ∗/

24

25 /∗∗ Identify a multicast channel∗/

26 channelid t channel id;

27 };

28

29 typedef struct entry connection t {

30 ... /∗ original cell t fields ∗/

31

32 /∗∗ Identify a multicast channel∗/

33 channelid t channel id;

34 };

35

36 typedef struct circuit t {

37 ... /∗ original cell t fields ∗/

38

39 channelid t channel id;

40 uint8 t channel state;

41

42 /∗ Next circuit in linked list of all circuits

43 ∗ with the same channel id. ∗/

44 struct circuit t ∗next multicast;

45

46 /∗ Next circuit in linked list of circuits

47 ∗ with the different channel id. ∗/

48 struct circuit t ∗next channel;

49 };

50

51 typedef struct or options t {

52 ... /∗ original cell t fields ∗/

53

54 /∗ How much bandwidth, on average, are we willing

55 ∗ to use for multicast connection in a second? ∗/

56 uint64 t MulticastBandwidth;

57

58 /∗ Ports to listen on for Multicast SOCKS connections. ∗/

59 config line t ∗MulticastPort lines;

60 };

In file circuituse.c:

1 /∗∗ Find an open circ that we’re happy to use for conn and return 1. If

2 ∗ there isn’t one, and there isn’t one on the way, launch one and return

3 ∗ 0. If it will never work, return −1.

4 ∗/

5 static int

6 circuit get open circ or launch(entry connection t ∗conn,

7 uint8 t desired circuit purpose,

8 origin circuit t ∗∗circp)

9 {

10 ... /∗ original Tor code ∗/

11

66

12 /∗ Add newly created circuit to associated channel ∗/

13 if (circ && conn−>channel id > 0) {

14 TO CIRCUIT(circ)−>channel id = conn−>channel id;

15 channel search and append(conn−>channel id,

16 TO CIRCUIT(circ));

17 }

18 ... /∗ original Tor code ∗/

19 }

In file connection or.c:

1 /∗ Pack the cell t host−order structure src into network−order

2 ∗ in the buffer dest.

3 ∗/

4 void

5 cell pack(packed cell t ∗dst, const cell t ∗src)

6 {

7 char ∗dest = dst−>body;

8 set uint16(dest, htons(src−>circ id));

9 ∗(uint8 t∗)(dest+2) = src−>command;

10

11 /∗ Add field channel id ∗/

12 set uint32(dest+3, htonl(src−>channel id));

13 memcpy(dest+7, src−>payload, CELL PAYLOAD SIZE);

14 }

15

16 /∗ Unpack the network−order buffer src into a host−order

17 ∗ cell t structure dest.

18 ∗/

19 static void

20 cell unpack(cell t ∗dest, const char ∗src)

21 {

22 dest−>circ id = ntohs(get uint16(src));

23 dest−>command = ∗(uint8 t∗)(src+2);

24

25 /∗ Add field channel id ∗/

26 dest−>channel id = ntohl(get uint32(src+3));

27 memcpy(dest−>payload, src+7, CELL PAYLOAD SIZE);

28 }

In file circuitlist.c:

1 /∗ Allocate a new or circuit t, connected to p conn as

2 ∗ p circ id. If p conn is NULL, the circuit is unattached. ∗/

3 or circuit t ∗

4 or circuit new(channelid t channel id,

5 circid t p circ id, or connection t ∗p conn)

6 {

7 ... /∗ original Tor code ∗/

8

9 /∗ Add newly created circuit to its associated channel ∗/

10 if (channel id > 0) {

67

11 TO CIRCUIT(circ)−>channel id = channel id;

12 channel search and append(channel id, TO CIRCUIT(circ));

13 }

14 ... /∗ original Tor code ∗/

15 }

16

17 /∗ Increase delivery window and package window for all channels∗∗/

18 void

19 channel increase window()

20 {

21 if (global channellist == NULL)

22 return;

23

24 const or options t ∗options = get options();

25 uint64 t multicast bandwidth = options−>MulticastBandwidth;

26 int multicast window increment = multicast bandwidth / CELL NETWORK SIZE;

27 int multicast window max = 10∗multicast window increment;

28

29 circuit t ∗head, ∗circ;

30 edge connection t ∗edge conn;

31 for (head=global channellist; head; head=head−>next channel) {

32 for (circ=head; circ; circ=circ−>next multicast) {

33 if (!circ−>marked for close &&

34 circ−>purpose == CIRCUIT PURPOSE MULTICAST) {

35 /∗ Increase circuit window ∗/

36 circ−>package window += multicast window increment∗2;

37 circ−>deliver window += multicast window increment ∗2;

38 if (circ−>package window > multicast window max ∗2)

39 circ−>package window = multicast window max ∗2;

40 if (circ−>deliver window > multicast window max ∗2)

41 circ−>deliver window = multicast window max ∗2;

42

43 /∗ Increase stream window ∗/

44 for (edge conn = TO ORIGIN CIRCUIT(circ)−>p streams;

45 edge conn; edge conn = edge conn−>next stream) {

46 edge conn−>package window += multicast window increment;

47 edge conn−>deliver window += multicast window increment;

48 if (edge conn−>package window > multicast window max)

49 edge conn−>package window = multicast window max;

50 if (edge conn−>deliver window > multicast window max)

51 edge conn−>deliver window = multicast window max;

52 }

53 /∗ Start reading from edge as if we received sendme cell ∗/

54 circuit resume edge reading(circ, NULL);

55 }

56 }

57 }

58 }

59

60 /∗ Get channel by channel id. ∗/

61 circuit t ∗

62 channel get by channelid(channelid t channel id)

68

63 {

64 circuit t ∗circ;

65 for (circ=global channellist; circ; circ = circ−>next channel) {

66 if (circ−>channel id == channel id) {

67 return circ;

68 }

69 }

70 return NULL;

71 }

72

73 /∗ Append next to global channellist. Return 1 if there

74 ∗ exists circ with the same channel ID. ∗/

75 int

76 channel search and append(channelid t channel id, circuit t ∗next)

77 {

78 tor assert(channel id > 0);

79 circuit t ∗circ;

80 for (circ=global channellist; circ; circ = circ−>next channel) {

81 if (!CIRCUIT IS ORIGIN(circ) &&

82 circ−>channel id == channel id) {

83 break;

84 }

85 }

86 if (circ == NULL) {

87 next−>next channel = global channellist;

88 global channellist = next;

89 next−>channel state = CHANNEL STATE BUILDING;

90 return 0;

91 }

92 else {

93 next−>next multicast = circ−>next multicast;

94 circ−>next multicast = next;

95 next−>channel state = circ−>channel state == CHANNEL STATE OPEN?

96 CHANNEL STATE OPEN : CHANNEL STATE HOLD;

97 }

98 return 0;

99 }

In file relay.c:

1 /∗ Deliver the cell to edge connections associated with the channel ∗/

2 int

3 circuit receive multicast data(cell t ∗cell, circuit t ∗circ)

4 {

5 int reason;

6 edge connection t ∗edge conn;

7 for (edge conn = TO ORIGIN CIRCUIT(circ)−>p streams; edge conn;

8 edge conn = edge conn−>next stream) {

9 entry connection t ∗entry conn = EDGE TO ENTRY CONN(edge conn);

10 if (entry conn−>channel id != cell−>channel id)

11 continue;

12 connection edge process relay cell(cell, circ, edge conn);

69

13 }

14 return 0;

15 }

16

17 /∗ Multicast cell to all circuits which have the channel id ∗/

18 int

19 channel multicast cell(channelid t channel id,

20 cell t ∗cell, circid t circid,

21 or connection t ∗conn)

22 {

23 circuit t ∗circ, ∗channel;

24 or connection t ∗or conn=NULL;

25 cell direction t cell direction;

26

27 channel = channel get by channelid(channel id);

28

29 for (circ=channel; circ; circ=circ−>next multicast) {

30 if (circ−>marked for close) {

31 tor fragile assert();

32 continue;

33 }

34 if (cell−>command == CELL MULTICAST HOLD &&

35 circ−>channel state == CHANNEL STATE HOLD)

36 continue;

37 if (circ−>n circ id) {

38 cell−>circ id = circ−>n circ id;

39 or conn = circ−>n conn;

40 cell direction = CELL DIRECTION OUT;

41 if (or conn != conn || cell−>circ id != circid) {

42 append cell to circuit queue(circ, or conn, cell,

43 cell direction, 0);

44 }

45 }

46 if (!CIRCUIT IS ORIGIN(circ) &&

47 TO OR CIRCUIT(circ)−>p circ id) {

48 cell−>circ id = TO OR CIRCUIT(circ)−>p circ id;

49 or conn = TO OR CIRCUIT(circ)−>p conn;

50 cell direction = CELL DIRECTION IN;

51 if (or conn != conn || cell−>circ id != circid) {

52 append cell to circuit queue(circ, or conn, cell,

53 cell direction, 0);

54 }

55 }

56 }

57 return 0;

58 }

59

60 /∗ Create and multicast a cell with specified commands in header fields ∗/

61 int

62 channel multicast command(channelid t channel id, uint8 t cell command,

63 uint8 t relay command, circid t circid,

64 or connection t ∗conn, const char ∗payload,

70

65 size t payload len)

66 {

67 cell t cell;

68 relay header t rh;

69 circuit t ∗circ, ∗channel;

70 or connection t ∗or conn=NULL;

71 cell direction t cell direction;

72

73 memset(&cell, 0, sizeof(cell t));

74 cell.command = cell command;

75 cell.channel id = channel id;

76

77 memset(&rh, 0, sizeof(rh));

78 rh.command = relay command;

79 rh.stream id = 0;

80 rh.length = payload len;

81 relay header pack(cell.payload, &rh);

82 if (payload len)

83 memcpy(cell.payload+RELAY HEADER SIZE, payload, payload len);

84 return channel multicast cell(channel id, &cell, circid, conn);

85 }

86

87

88 /∗∗ If conn has an entire relay payload of bytes on its inbuf (or

89 ∗ package partial is true), and the appropriate package windows aren’t

90 ∗ empty, grab a cell and send it down the circuit.

91 ∗

92 ∗ Return −1 (and send a RELAY COMMAND END cell if necessary) if conn should

93 ∗ be marked for close, else return 0.

94 ∗/

95 int

96 connection edge package raw inbuf(edge connection t ∗conn, int package partial,

97 int ∗max cells)

98 {

99 ... /∗ original Tor code ∗/

100

101 /∗ Call channel multicast command instead if it is a multicast circuits ∗/

102 if (circ−>channel id > 0 && conn−> base.state == AP CONN STATE OPEN) {

103 channel multicast command(circ−>channel id, CELL MULTICAST DATA,

104 RELAY COMMAND DATA, 0, NULL,

105 payload, length)

106 }

107 else {

108 connection edge send command(conn, RELAY COMMAND DATA,

109 payload, length)

110 }

111 ... /∗ original Tor code ∗/

112 }

113

114

115 /∗∗ Check if the package window for circ is empty (at

116 ∗ hop layer hint if it’s defined).

71

117 ∗

118 ∗ If yes, tell edge streams to stop reading and return 1.

119 ∗ Else return 0.

120 ∗/

121 static int

122 circuit consider stop edge reading(circuit t ∗circ, crypt path t ∗layer hint)

123 {

124 /∗ Stop reading all circuits with the same channel id

125 ∗ if it is a multicast circuit ∗/

126 if (circ−>channel id > 0) {

127 if (circ−>package window <= 0) {

128 for (conn = TO ORIGIN CIRCUIT(circ)−>p streams; conn;

129 conn=conn−>next stream)

130 connection stop reading(TO CONN(conn));

131 return 1;

132 }

133 return 0;

134 }

135 ... /∗ original Tor code ∗/

136 }

137

138 static int

139 set channel blocked on circ(channelid t channel id, int block) {

140 circuit t ∗channel, ∗circ;

141 edge connection t ∗edge = NULL;

142 channel = channel get by channelid(channel id);

143

144 if (block == 0) {

145 for (circ=channel; circ; circ=circ−>next multicast) {

146 if (circ−>n circ id) {

147 if (circ−>n conn cells.n > CELL QUEUE LOWWATER SIZE) {

148 // can not unblock this channel

149 return 0;

150 }

151 }

152

153 if (!CIRCUIT IS ORIGIN(circ) && TO OR CIRCUIT(circ)−>p circ id) {

154 or circuit t ∗orcirc = TO OR CIRCUIT(circ);

155 if (orcirc−>p conn cells.n > CELL QUEUE LOWWATER SIZE) {

156 // can not unblock this channel

157 return 0;

158 }

159 }

160 }

161 }

162

163 for (circ=channel; circ; circ=circ−>next multicast) {

164 if (circ−>marked for close) {

165 tor fragile assert();

166 continue;

167 }

168 circ−>streams blocked on channel = block;

72

169

170 if (CIRCUIT IS ORIGIN(circ)) {

171 edge = TO ORIGIN CIRCUIT(circ)−>p streams;

172 for (; edge; edge = edge−>next stream) {

173 connection t ∗conn = TO CONN(edge);

174 edge−>edge blocked on circ = block;

175

176 if (block) {

177 if (connection is reading(conn))

178 connection stop reading(conn);

179 } else {

180 if (!connection is reading(conn))

181 connection start reading(conn);

182 }

183 }

184 }

185 }

186

187 return 0;

188 }

189

190 static int

191 set streams blocked on circ(circuit t ∗circ, or connection t ∗orconn,

192 int block, streamid t stream id)

193 {

194 if (circ−>channel id > 0) {

195 return set channel blocked on circ(circ−>channel id, block);

196 }

197 ... /∗ original Tor code ∗/

198 }

In file connection ap multicast.c:

1 /∗ Process new bytes that have arrived on conn−\>inbuf. ∗/

2 int

3 connection multicast process inbuf(edge connection t ∗conn, int package partial)

4 {

5 switch (conn−> base.state) {

6 case AP CONN STATE SOCKS WAIT:

7 if (connection multicast handshake process socks(EDGE TO ENTRY CONN(conn)) <0) {

8 return −1;

9 }

10 return 0;

11 case AP CONN STATE OPEN:

12 if (connection edge package raw inbuf(conn, package partial, NULL) < 0) {

13 connection mark for close(TO CONN(conn));

14 return −1;

15 }

16 return 0;

17 }

18 tor fragile assert();

19 return −1;

73

20 }

21

22 /∗ Read another step of the socks handshake out of conn−>inbuf. ∗/

23 static int

24 connection multicast handshake process socks(entry connection t ∗conn)

25 {

26 socks request t ∗socks;

27 int sockshere;

28 const or options t ∗options = get options();

29 int had reply = 0;

30 connection t ∗base conn = ENTRY TO CONN(conn);

31

32 socks = conn−>socks request;

33 sockshere = fetch from buf socks(base conn−>inbuf, socks,

34 options−>TestSocks, options−>SafeSocks);

35

36 if (socks−>replylen) {

37 had reply = 1;

38 connection write to buf((const char∗)socks−>reply, socks−>replylen,

39 base conn);

40 socks−>replylen = 0;

41 if (sockshere == −1) {

42 /∗ An invalid request just got a reply, no additional

43 ∗ one is necessary. ∗/

44 socks−>has finished = 1;

45 }

46 }

47 return connection multicast handshake rewrite and attach(conn);

48 }

49

50

51 /∗ Locate the multicast root for the group and connect to it via a circuit ∗/

52 int

53 connection multicast handshake rewrite and attach(entry connection t ∗conn)

54 {

55 socks request t ∗socks = conn−>socks request;

56

57 /∗ Find multicast root given user−specified group ID∗/

58 const node t ∗node = locate rendezvous point(socks−>gid);

59 conn−>chosen exit name = tor strdup(hex str(node−>identity, DIGEST LEN));

60 conn−>channel id = getNextChannelId();

61 conn−>want onehop = 0;

62

63 /∗ Construct a circuits connecting to multicast root ∗/

64 return connection ap handshake attach circuit(conn);

65 }

74

Bibliography

[1] Masoud Akhoondi, Curtis Yu, and Harsha V. Madhyastha. LASTor: A Low-

Latency AS-Aware Tor Client. In IEEE Symposium on Security and Privacy

(Oakland), 2012.

[2] M. AlSabah, K. Bauer, I. Goldberg, D. Grunwald, D. McCoy, S. Savage, and

G. Voelker. DefenestraTor: Throwing out Windows in Tor. In Privacy Enhanc-

ing Technologies Symposium (PETS), 2011.

[3] S. Blake-Wilson, N. Bolyard, V. Gupta, C. Hawk, and B. Moeller. Elliptic

Curve Cryptography (ECC) Cipher Suites for Transport Layer Security (TLS).

RFC 4492, IETF, 2006.

[4] Xiang Cai, Xin Cheng Zhang, Brijesh Joshi, and Rob Johnson. Touching from

a Distance: Website Fingerprinting Attacks and Defenses. In ACM Conference

on Computer and Communications Security (CCS), 2012.

[5] Miguel Castro, Peter Druschel, Anne-Marie Kermarrec, and Antony I. T. Row-

stron. Scribe: A Large-Scale and Decentralized Application-Level Multicast

Infrastructure. 20(8), October 2002.

[6] David Chaum. The Dining Cryptographers Problem: Unconditional Sender and

Recipient Untraceability. Journal of Cryptology, 1(1):65–75, 1988.

75

[7] David L. Chaum. Untraceable Electronic Mail, Return Addresses, and Digital

Pseudonyms. Communications of the ACM, 24(2):84–90, 1981.

[8] Yang-hua Chu, Sanjay G Rao, and Hui Zhang. A Case for End System Multi-

cast. In ACM SIGMETRICS Performance Evaluation Review, 2000.

[9] Henry Corrigan-Gibbs and Bryan Ford. Dissent: Accountable Anonymous

Group Messaging. In ACM Conference on Computer and Communications Se-

curity (CCS), 2010.

[10] Henry Corrigan-Gibbs, David Isaac Wolinsky, and Bryan Ford. Proactively

Accountable Anonymous Messaging in Verdict. In USENIX Security Symposium

(USENIX), 2013.

[11] Stephen E Deering and David R Cheriton. Multicast routing in datagram inter-

networks and extended lans. ACM Transactions on Computer Systems (TOCS),

8(2):85–110, 1990.

[12] Roger Dingledine. Research Problem: Better Guard Rotation Parame-

ters, August 2011. Available at https://blog.torproject.org/blog/

research-problem-better-guard-rotation-parameters.

[13] Roger Dingledine. Improving Tor’s Anonymity by Changing Guard Parame-

ters (blog post), October 2013. Available at https://blog.torproject.org/

blog/improving-tors-anonymity-changing-guard-parameters.

[14] Roger Dingledine, Nicholas Hopper, George Kadianakis, and Nick Mathewson.

One Fast Guard for Life (or 9 months). In Privacy Enhancing Technologies

Symposium (PETS), 2014.

76

https://blog.torproject.org/blog/research-problem-better-guard-rotation-parameters
https://blog.torproject.org/blog/research-problem-better-guard-rotation-parameters
https://blog.torproject.org/blog/improving-tors-anonymity-changing-guard-parameters
https://blog.torproject.org/blog/improving-tors-anonymity-changing-guard-parameters

[15] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The Second-

Generation Onion Router. In USENIX Security Symposium (USENIX), August

2004.

[16] Roger Dingledine and Steven Murdoch. Performance Improvements on Tor,

or, Why Tor is Slow and What We’re Going to Do About It. https://svn.

torproject.org/svn/projects/roadmaps/2009-03-11-performance.pdf,

March 2009.

[17] Paul Francis. Yoid: Extending the Internet Multicast Architecture,

2000. Unpublished manuscript, available at https://mpi-sws.org/˜francis/

yoidArch.pdf.

[18] John Geddes, Rob Jansen, and Nicholas Hopper. IMUX: Managing Tor Con-

nections from Two to Infinity, and Beyond. In Workshop on Privacy in the

Electronic Society (WPES), 2014.

[19] http://tools.ietf.org/html/rfc3951.

[20] Sharad Goel, Mark Robson, Milo Polte, and Emin Sirer. Herbivore: A scalable

and efficient protocol for anonymous communication. Technical report, Cornell

University, 2003.

[21] Angèle Hamel, Jean-Charles Grégoire, and Ian Goldberg. The Mis-entropists:

New Approaches to Measures in Tor. Technical Report 2011-18, Cheriton School

of Computer Science, University of Waterloo, 2011.

77

https://svn.torproject.org/svn/projects/roadmaps/2009-03-11-performance.pdf
https://svn.torproject.org/svn/projects/roadmaps/2009-03-11-performance.pdf
https://mpi-sws.org/~francis/yoidArch.pdf
https://mpi-sws.org/~francis/yoidArch.pdf
http://tools.ietf.org/html/rfc3951

[22] Dominik Herrmann, Rolf Wendolsky, and Hannes Federrath. Website Finger-

printing: Attacking Popular Privacy Enhancing Technologies with the Multino-

mial Naive-bayes Classifier. In ACM Workshop on Cloud Computing Security

(CCSW), 2009.

[23] John Ioannidis and Steven M. Bellovin. Implementing pushback: Router-based

defense against ddos attacks. In Network and Distributed System Security Sym-

posium (NDSS), 2002.

[24] John Jannotti, David K. Gifford, Kirk L. Johnson, M. Frans Kaashoek, and

James W. O’Toole, Jr. Overcast: Reliable Multicasting with an Overlay Net-

work. In Symposium on Operating System Design & Implementation (OSDI),

2000.

[25] Rob Jansen, Kevin S Bauer, Nicholas Hopper, and Roger Dingledine. Method-

ically modeling the tor network. In CSET, 2012.

[26] Rob Jansen, John Geddes, Chris Wacek, Micah Sherr, and Paul Syverson. Never

Been KIST: Tor’s Congestion Management Blossoms with Kernel-Informed

Socket Transport. In USENIX Security Symposium (USENIX), August 2014.

[27] Rob Jansen and Nicholas Hopper. Shadow: Running Tor in a Box for Accurate

and Efficient Experimentation. In Network and Distributed System Security

Symposium (NDSS), 2012.

[28] Rob Jansen, Nicholas Hopper, and Yongdae Kim. Recruiting New Tor Relays

with BRAIDS. In ACM Conference on Computer and Communications Security

(CCS), 2010.

78

[29] Rob Jansen, Aaron Johnson, and Paul F Syverson. LIRA: Lightweight Incen-

tivized Routing for Anonymity. In Network and Distributed System Security

Symposium (NDSS), 2013.

[30] Aaron Johnson, Chris Wacek, Rob Jansen, Micah Sherr, and Paul Syverson.

Users Get Routed: Traffic Correlation on Tor By Realistic Adversaries. In ACM

Conference on Computer and Communications Security (CCS), November 2013.

[31] Seth F Kreimer. Technologies of protest: Insurgent social movements and the

first amendment in the era of the internet. University of Pennsylvania Law

Review, pages 119–171, 2001.

[32] Damon McCoy, Kevin Bauer, Dirk Grunwald, Tadayoshi Kohno, and Douglas

Sicker. Shining Light in Dark Places: Understanding the Tor Network. In

Privacy Enhancing Technologies Symposium (PETS), 2008.

[33] Brad Moore, Chris Wacek, and Micah Sherr. Exploring the Potential Bene-

fits of Expanded Rate Limiting in Tor: Slow and Steady Wins the Race with

Tortoise. In Annual Computer Security Applications Conference (ACSAC), De-

cember 2011.

[34] MTor Development Repository. https://github.com/multicastTor.

[35] Steven J. Murdoch and George Danezis. Low-Cost Traffic Analysis of Tor. In

IEEE Symposium on Security and Privacy (Oakland), 2005.

[36] Tsuen-Wan “Johnny” Ngan, Roger Dingledine, and Dan Wallach. Building

Incentives into Tor. In Financial Cryptography and Data Security, 2010.

79

https://github.com/multicastTor

[37] Andriy Panchenko, Lukas Niessen, Andreas Zinnen, and Thomas Engel. Website

Fingerprinting in Onion Routing Based Anonymization Networks. In ACM

Workshop on Privacy in the Electronic Society (WPES), 2011.

[38] Ginger Perng, Michael K Reiter, and Chenxi Wang. M2: Multicasting Mixes

for Efficient and Anonymous Communication. In International Conference on

Distributed Computing Systems (ICDCS), 2006.

[39] Mike Perry. Torflow: Tor network analysis. Proc. 2nd HotPETs, pages 1–14,

2009.

[40] Joel Reardon and Ian Goldberg. Improving Tor using a TCP-over-DTLS Tunnel.

In USENIX Security Symposium (USENIX), 2009.

[41] Michael K. Reiter and Aviel D. Rubin. Crowds: Anonymity for Web Trans-

actions. ACM Transactions on Information and System Security, 1(1):66–92,

1998.

[42] Ronald L Rivest, Adi Shamir, and Yael Tauman. How to Leak a Secret. In

Advances in Cryptology (ASIACRYPT), 2001.

[43] http://www.rooms.me.

[44] https://www.secret.ly.

[45] Micah Sherr, Boon Thau Loo, and Matt Blaze. Towards Application-Aware

Anonymous Routing. In USENIX Workshop on Hot Topics in Security (Hot-

Sec), August 2007.

[46] Micah Sherr, Andrew Mao, William R. Marczak, Wenchao Zhou, Boon Thau

Loo, and Matt Blaze. A3: An Extensible Platform for Application-Aware

80

http://www.rooms.me
https://www.secret.ly

Anonymity. In Network and Distributed System Security Symposium (NDSS),

2010.

[47] Clay Shields and Brian Neil Levine. Hordes: A Multicast Based Protocol for

Anonymity. Journal of Computer Security, 10(3):213–240, 2002.

[48] Robin Snader and Nikita Borisov. A Tune-up for Tor: Improving Security and

Performance in the Tor Network. In Network and Distributed System Security

Symposium (NDSS), 2008.

[49] Paul F. Syverson, David M. Goldschlag, and Michael G. Reed. Anonymous

Connections and Onion Routing. In IEEE Symposium on Security and Privacy

(Oakland), 1997.

[50] Can Tang and Ian Goldberg. An Improved Algorithm for Tor Circuit Scheduling.

In ACM Conference on Computer and Communications Security (CCS), 2010.

[51] Al Teich, Mark S Frankel, Rob Kling, and Ya-ching Lee. Anonymous com-

munication policies for the internet: Results and recommendations of the aaas

conference. The Information Society, 15(2):71–77, 1999.

[52] http://www.theguardian.com/world/2014/oct/16/

-sp-revealed-whisper-app-tracking-users.

[53] Tor Project, Inc. Tor Metrics Portal. https://metrics.torproject.org/.

[54] Tor Project, Inc. A Critique of Website Traffic Fingerprinting

Attacks, 2014. Available at https://blog.torproject.org/blog/

critique-website-traffic-fingerprinting-attacks.

81

http://www.theguardian.com/world/2014/oct/16/-sp-revealed-whisper-app-tracking-users
http://www.theguardian.com/world/2014/oct/16/-sp-revealed-whisper-app-tracking-users
https://metrics.torproject.org/
https://blog.torproject.org/blog/critique-website-traffic-fingerprinting-attacks
https://blog.torproject.org/blog/critique-website-traffic-fingerprinting-attacks

[55] Tor Project, Inc. Tor FAQ: What Attacks Remain Against Onion Rout-

ing, 2014. Available at https://www.torproject.org/docs/faq.html.en#

AttacksOnOnionRouting.

[56] Tor Project, Inc. Tor Rendezvous Specification, 2014. Avail-

able at https://gitweb.torproject.org/torspec.git?a=blob_plain;hb=

HEAD;f=rend-spec.txt.

[57] Tao Wang, Kevin Bauer, Clara Forero, and Ian Goldberg. Congestion-aware

Path Selection for Tor. In Financial Cryptography and Data Security (FC),

2012.

[58] Zachary Weinberg, Jeffrey Wang, Vinod Yegneswaran, Linda Briesemeister,

Steven Cheung, Frank Wang, and Dan Boneh. StegoTorus: A Camouflage

Proxy for the Tor Anonymity System. In ACM Conference on Computer and

Communications Security (CCS), 2012.

[59] http://www.whisper.sh.

[60] http://www.yikyakapp.com.

82

https://www.torproject.org/docs/faq.html.en#AttacksOnOnionRouting
https://www.torproject.org/docs/faq.html.en#AttacksOnOnionRouting
https://gitweb.torproject.org/torspec.git?a=blob_plain;hb=HEAD;f=rend-spec.txt
https://gitweb.torproject.org/torspec.git?a=blob_plain;hb=HEAD;f=rend-spec.txt
http://www.whisper.sh
http://www.yikyakapp.com

