
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

6-14-2017

DStress: Efficient Differentially Private Computations on DStress: Efficient Differentially Private Computations on

Distributed Data Distributed Data

Antonis Papadimitriou
University of Pennsylvania

Andreas Haeberlen
University of Pennsylvania

Arjun Narayan
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_reports

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation (OVERRIDE) Recommended Citation (OVERRIDE)
Antonis Papadimitriou, Andreas Haeberlen, and Arjun Narayan, "DStress: Efficient Differentially Private
Computations on Distributed Data", \ Technical report MS-CIS-17-03, Department of Computer and
Information Science, University of Pennsylvania, June 2017

MS-CIS-17-03

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/1016
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F1016&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=repository.upenn.edu%2Fcis_reports%2F1016&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=repository.upenn.edu%2Fcis_reports%2F1016&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/1016
mailto:repository@pobox.upenn.edu

DStress: Efficient Differentially Private Computations on Distributed Data DStress: Efficient Differentially Private Computations on Distributed Data

Abstract Abstract
In this paper, we present DStress, a system that can efficiently perform computations on graphs that
contain confidential data. DStress assumes that the graph is physically distributed across many
participants, and that each participant only knows a small subgraph; it protects privacy by enforcing tight,
provable limits on how much each participant can learn about the rest of the graph. We also study one
concrete instance of this problem: measuring systemic risk in financial networks. Systemic risk is the
likelihood of cascading bankruptcies – as, e.g., during the financial crisis of 2008 – and it can be
quantified based on the dependencies between financial institutions; however, the necessary data is
highly sensitive and cannot be safely disclosed. We show that DStress can implement two different
systemic risk models from the theoretical economics literature. Our experimental evaluation suggests
that DStress can run the corresponding computations in about five hours, whereas a na¨ıve approach
could take several decades.

Disciplines Disciplines
Computer Engineering | Computer Sciences

Comments Comments
MS-CIS-17-03

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/1016

https://repository.upenn.edu/cis_reports/1016

DStress: Efficient Differentially Private Computations
on Distributed Data

Antonis Papadimitriou Arjun Narayan Andreas Haeberlen
University of Pennsylvania

Abstract
In this paper, we present DStress, a system that can effi-
ciently perform computations on graphs that contain con-
fidential data. DStress assumes that the graph is physically
distributed across many participants, and that each partici-
pant only knows a small subgraph; it protects privacy by en-
forcing tight, provable limits on how much each participant
can learn about the rest of the graph.

We also study one concrete instance of this problem: mea-
suring systemic risk in financial networks. Systemic risk is
the likelihood of cascading bankruptcies – as, e.g., during
the financial crisis of 2008 – and it can be quantified based
on the dependencies between financial institutions; however,
the necessary data is highly sensitive and cannot be safely
disclosed. We show that DStress can implement two differ-
ent systemic risk models from the theoretical economics lit-
erature. Our experimental evaluation suggests that DStress
can run the corresponding computations in about five hours,
whereas a naı̈ve approach could take several decades.

1. Introduction
In the age of “big data”, it is well known that many interest-
ing things can be learned by collecting and analyzing large
graphs, and a number of tools – including GraphLab [47],
PowerGraph [35], and GraphX [36] – have been developed
to make such analyses fast and convenient. Typically, these
tools assume that the user has a property graph G (that is, a
graph that has some data associated with its vertexes and/or
edges) and wishes to compute some function F(G) over this
graph and its properties. A common assumption is that there
is a single entity that knows the entire graph G and is there-
fore able to compute F(G) directly.

However, there is another class of use cases where the
graph G contains sensitive information and is spread across
multiple administrative domains. In this situation, each do-
main knows only a subset of the vertexes and edges, so it

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

EuroSys ’17, April 23 - 26, 2017, Belgrade, Serbia

c© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4938-3/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3064176.3064218
Reprinted from EuroSys ’17,, [Unknown Proceedings], April 23 - 26, 2017, Belgrade, Serbia, pp. 1–15.

cannot compute F(G) on its own, but the domains may not
be willing to share their data with each other because of pri-
vacy concerns.

One interesting real-world instance of this problem is the
computation of systemic risk in financial networks [1]. Mo-
tivated in part by the financial crisis of 2008, this topic has
recently seen a lot of interest in the theoretical economics
literature. Briefly, economists have discovered that one of
the causes for the crisis was a “snowball effect” in which
a few initial bankruptcies caused the failure of more and
more other banks due to financial dependencies. In theory,
it would be possible to quantify the risk of such a cascad-
ing failure by looking at the graph of financial dependencies
between the banks, and in fact economists have already de-
veloped a number of metrics [25, 27] that could be used to
quantify this “systemic” risk, and to ideally give some early
warning of an impending crisis.

However, in practice, the required information is ex-
tremely sensitive because it directly reflects the business
strategy of each bank. It is so sensitive, in fact, that banks
would prefer not to share it even with the government. This
is why current audits (such as the annual “stress tests” that
were introduced after the crisis, e.g., by the Dodd-Frank
Act in the United States) are strictly compartmentalized, so
that each auditor is only allowed to look at the data of one
particular bank. This provides some basic security, but it is
not sufficient to discover complex interdependencies, which
would require looking at data from all the banks. This is
why, in a recent working paper [30], the Office of Financial
Research (OFR) has started investigating ways to perform
system-wide stress tests while protecting confidentiality.

One possible approach would be to use secure multiparty
computation (MPC) [63], which would enable the banks to
collectively evaluate a function F(G) over their combined
financial data – say, one of the existing systemic risk mea-
sures [25, 27]. However, there are two challenges with this
approach. The first is performance: MPC does not scale well
to large numbers of parties or complex computations. As we
will show, computing systemic risk with a straightforward
application of MPC would literally take many years.

The second, and somewhat more subtle, challenge is pri-
vacy: MPC only guarantees that no one can learn the inter-
mediate results of the computation. However, even the final
result (the value of F(G)) can reveal information about the

1

underlying graph G, especially in the presence of auxiliary
information. To see this intuitively, imagine using MPC to
compute the average weight of the people in a room. This
will not reveal the weight of any single individual, but the
adversary can still infer the presence of a team of sumo
wrestlers by looking only at the final result. A similar con-
cern arises in the context of financial data [30, §4.2].

In this paper, we present a system called DStress that
can efficiently analyze graphs that are spread across thou-
sands of administrative domains, while giving strong, prov-
able privacy guarantees on both the topology of the graph G
and the data it contains. DStress supports vertex programs,
a programming model that is also used in Pregel [48] and
Graphlab [47], two popular frameworks for non-confidential
graph computations. It addresses the first challenge with a
special graph-computation runtime that can execute vertex
programs in a distributed fashion, using MPC and a vari-
ant of ElGamal encryption for transferring data between do-
mains, and it addresses the second challenge by keeping in-
termediate results encrypted at all times, and by offering dif-
ferential privacy [22, 24] on the final result.

We have built a prototype of DStress, and we have eval-
uated it using two systemic-risk models from the theoreti-
cal economics literature. Our results show that these mod-
els could be evaluated on the entire U.S. banking system in
less than five hours on commodity hardware, using about
750 MB of traffic per bank. In Appendix ??, we also show
that the use of differential privacy (which was already sug-
gested by the OFR working paper [30]) does not signifi-
cantly diminish the utility of the systemic risk measure. In
summary, this paper makes the following three contribu-
tions:

• DStress, a scalable system for graph analytics with strong
privacy guarantees (Section 3);

• an application of DStress to privately measuring systemic
risk in financial networks (Section 4); and

• an experimental evaluation, based on a prototype imple-
mentation of DStress (Section 5).

2. Overview
We consider a scenario with a group of N participants Pi,
i = 1, . . . ,N that each know one vertex vi of a directed graph
G, as well as a) the edges that begin or end at vi, and b)
any properties associated with vi. The participants wish to
collectively compute a function F(G), such that:

• Value privacy: The computation process does not reveal
properties of vi to participants other than Pi;

• Edge privacy: The computation process does not reveal
the presence or absence of an edge (vi,v j) to participants
other than i and j; and

• Output privacy: The final output F(G) does not reveal
too much information about individual vertexes or edges
in G.

In the scenarios we are interested in, the number of parties
N is on the order of thousands; for instance, the number of
major banks in the U.S. banking system is about N = 1,750.

2.1 Background: Systemic risk
To explain how financial networks fit this model, we now
give a very brief introduction to systemic risk. Since this is a
complex topic, we focus on the aspects that are most relevant
to DStress; for more details, see [9, 13, 30].

Banks and other financial institutions, as part of their
regular business with clients, are exposed to risk. We can
think of this risk as a specific abstract event xi – such as
a drop in house prices – that, if it happened, would cause
bank b to lose a certain amount of money yi. Thus, b’s
balance sheet has exposure of the form: (if xi then −yi).
To prevent a buildup of excess exposure to any single future
event, b can in advance create derivatives on event xi and sell
part of this exposure to other banks (presumably for a fee).
We can think of these derivatives as “insurance contracts”
that specify that a certain sum will be due if and when
a particular event occurs. Thus, if b bought “insurance”
against xi from another bank that pays zi, b’s exposure would
now be: (if xi then zi− yi). More complicated forms of
derivatives also exist.

Banks regularly reinsure their risk by buying additional
derivatives from other banks. The result is a network of de-
pendencies that spans the entire financial sector. We can
think of this as a graph G that contains a vertex for each bank
and an edge (b1,b2) whenever b1 has sold a derivative to b2.
Vertexes would be annotated with the liquid cash reserves of
the corresponding bank, and edges would be annotated with
the payment that is due in each event. Using this graph, it is
possible to essentially simulate what would happen if a par-
ticular event were to occur – including possible cascading
failures, where the initial bankruptcy of a few critical banks
causes a “domino effect” that eventually affects a large frac-
tion of the network. The expected “damage” (and thus the
systemic risk) can then be measured in a variety of ways –
e.g., as the amount of money the government would need to
inject in order to stabilize the system. In Section 4, we dis-
cuss two concrete models from the economics literature in
more detail.

2.2 Strawman solutions
One obvious way to compute the systemic risk would be to
create an all-powerful government regulator that has access
to the financial data of all the banks. However, this does not
seem practical, since banks critical rely on secrecy to protect
their business practices [1]. Currently, regulatory bodies that
deal with less sensitive information about individual banks
already have extremely restrictive legal safeguards and mul-
tiple levels of oversight [30, §3.1].

Another potential approach, first suggested by [1], would
be to use multi-party computation (MPC) [63]: one could
design a circuit that takes each bank’s books as inputs, exe-

2

cutes the simulation in MPC, and finally outputs the desired
measure of risk. This approach would be more palatable for
the banks, since they would not need to reveal their secret
inputs. However, the circuit would be enormous: even the
simplest models of contagion in the literature essentially re-
quire raising a N ×N matrix to a large power, where N is
the number of banks (i.e., about 1,750). Despite recent ad-
vances in MPC, such as [12, 15, 17, 65], evaluating such a
large circuit with N = 1,750 parties is far beyond current
technology.

The cost of MPC could be reduced somewhat by dele-
gating the computation to a smaller number of parties, as
in Sharemind [12] or PICCO [65]. However, this approach
would do nothing to reduce the size of the circuit, and, given
the high stakes involved, the number of parties would still
need to be large – the largest collusion case reported in the
literature involved 16 banks [60]!

As discussed earlier, none of these approaches would
provide output privacy, and this would be a serious concern,
since the final output (i.e., the current level of systemic risk)
could be enough for some of the banks to make inferences
about the graph, particularly if they already know some of
the other edges and vertexes.

2.3 Our approach
Our approach is based on two key insights. Our first obser-
vation is that much of the enormous cost of the MPC-based
strawman comes from the fact that the graph is itself confi-
dential and therefore must be an input to the computation.
We can get around this by formulating the function F as
a vertex program – that is, as a sequence of computations
at each vertex that are interleaved with message exchanges
over the edges – and by executing it in a distributed fash-
ion. This is safe because each participant already knows the
edges that are adjacent to her vertex; the main challenge is
to prevent information leakage through intermediate results.
In DStress, we accomplish this with a combination of secret
sharing, small MPC invocations for the computations at each
vertex, and a special protocol for transferring shares without
revealing the topology of the graph.

Our second key insight is that we can use differential
privacy [24] to achieve output privacy. Differential privacy
provides strong, provable privacy guarantees, which should
be reassuring to the banks. Its main cost is the addition of
a small amount of random noise to the output, but, since
we are looking for early warnings of large problems, a bit
of imprecision (e.g., a shortfall of $1 billion is reported as
$0.95 billion) should not affect the utility of the results. If a
potential problem is detected, a more detailed investigation
could be conducted outside of our system.

3. The DStress system
We begin by briefly reviewing three technologies that DStress
relies on: differential privacy, secure multiparty computa-
tion, and ElGamal encryption.

Differential privacy: DStress is designed to provide differ-
ential privacy [24], one of the strongest known privacy guar-
antees. Differential privacy has a number of features that are
attractive in our setting, such as protection against attacks
based on auxiliary data (which have been the source of sev-
eral recent privacy breaches [3, 6, 53]), strong composition
theorems, and a solid mathematical foundation with prov-
able guarantees.

Differential privacy is a property of randomized queries
– i.e., the query computes not a single value but rather a
probability distribution over the range R of possible outputs,
and the actual output is then drawn from that distribution.
This can be thought of as adding a small amount of noise
to the output. Intuitively, a query is differentially private if a
small change to the input only has a statistically negligible
effect on the output distribution.

More formally, let I be the set of possible input data sets.
We say that two input data sets d1,d2 ∈ I are similar (and we
write d1 ∼ d2) if they differ in at most one element. Then, a
randomized query q with range R is ε-differentially private
if, for all possible sets of outputs S ⊆ R and all input data
sets d1,d2 ∈ I with d1 ∼ d2,

Pr[q(d1) ∈ S]≤ eε ·Pr[q(d2) ∈ S].

That is, any change to an individual element of the input
data can cause at most a small multiplicative difference (eε)
in the probability of any set of outcomes S. The parameter ε

controls the strength of the privacy guarantee; smaller values
result in better privacy. For more information on how to
choose ε , see, e.g., [40].

A common way to achieve differential privacy for queries
with numeric outputs is the Laplace mechanism [24], which
works as follows. Suppose q̄ : I→ R is a deterministic, real-
valued function over the input data, and suppose q̄ has a fi-
nite sensitivity s to changes in its input, i.e., |q̄(d1)− q̄(d2)| ≤
s for all similar databases d1,d2 ∈ I. Then q := q̄+Lap(s/ε),
i.e., the combination of q̄ and a noise term drawn from a
Laplace distribution with parameter s/ε , is ε-differentially
private. This corresponds to the intuition that the more sen-
sitive the query, and the stronger the desired guarantee, the
more “noise” is needed to achieve that guarantee.
Secure multiparty computation: DStress relies on secure
multiparty computation (MPC) to perform certain steps of
the graph algorithm it is running. MPC is a way for a set
of mutually distrustful parties to evaluate a function f over
some confidential input data x, such that no party can learn
anything about x other than what the output y := f (x) al-
ready implies. In the specific protocol we use (GMW [34]),
each party i initially holds a share xi of the input x such
that x = ⊕ixi (in other words, the input can be obtained by
XORing all the shares together), and, after the protocol ter-
minates, each party similarly holds a share yi of the output
y = f (x). The function f itself is represented as a Boolean
circuit. GMW is collusion-resistant in the sense that, if k+1

3

parties participate in the protocol, the confidentiality of x is
protected as long as no more than k of the parties collude.

ElGamal encryption: For reason that will become clear
later, DStress requires an encryption scheme with two un-
usual properties: an additive homomorphism and a way to
re-randomize public keys. Both can be elegantly accom-
plished using a variant of ElGamal [26]. The original El-
Gamal scheme consists of three functions: a key generator,
an encryption and a decryption function. These functions are
defined over some cyclic group G. Assume G is of order q
and has a generator g∈G. ElGamal’s key generator function
returns a random element x∈ Zq as the secret key, and a pub-
lic key h = gx. Moreover, given a public key h and a message
m, the encryption function picks a random y ∈ Zq (some-
times called an ephemeral key) and returns the ciphertext
c= (gy,m ·hy) = (gy,m ·gxy). Given a ciphertext c= (c1,c2),
and a secret key x, the decryption function first computes
s = cx

1 = gxy, then s−1 = c(q−x)
1 = gy(q−x) and finally returns

the recovered plaintext as c2 ·s−1 = mgxygqy−xy = mgqy = m.
ElGamal itself has a multiplicative homomorphism: if we

encrypt two messages m1 and m2 and multiply the two ci-
phertexts together, the result decrypts to the product m1 ·m2.
However, this can be turned into an additive homomorphism
using a small trick, which is to encrypt not the message
m itself but rather gm. The resulting scheme (exponential
ElGamal [19]) ensures that the product of two ciphertexts
gm1 · gm2 = gm1+m2 now decrypts to the sum of the under-
lying messages. The downside is that there is no easy way
to go back from gm to m – but, if the number of valid mes-
sages is small enough, the recipient can use a lookup table
to decrypt: simply precompute gc for all candidate messages
c and compare the results to the gm she received. Exponen-
tial ElGamal also satisfies our second requirement: if gx is
a public key, we can re-randomize it by raising it to some
value r, yielding a new public key gxr. If a message is en-
crypted with this new public key, it will not decrypt with the
original private key x; however, this can be fixed by raising
the ephemeral key in the ciphertext to r as well. Notice that
both operations (re-randomizing the public key and adjust-
ing ciphertexts) can be performed without knowledge of the
private key x.

3.1 Programming model
DStress is designed to run vertex programs. A vertex pro-
gram consists of (1) a graph G := (V,E); (2) for each vertex
v∈V , an initial state s0

v and an update function fv; (3) a num-
ber of iterations n; (4) an aggregation function A; (5) a no-op
message ⊥; and (6) a sensitivity s. DStress executes such an
algorithm as follows. First, each vertex v is first set to its ini-
tial state s0

v . Next, DStress performs a computation step by
invoking the update function fv for each vertex, which out-
puts a new state s1

v and, for each neighbor of v in G, exactly
one message. (If more messages need to be sent, they can be
included in one larger message.) When v has no data to send

to some neighbor, it outputs the no-op message ⊥ instead;
this is necessary to avoid leaking information through its
communication pattern. The computation step is followed by
a communication step, in which each vertex sends its mes-
sages along the edges to its neighbors; the recipients then
use the messages as additional inputs for their next compu-
tation step. After n computation and communication steps,
DStress performs a final computation step and then invokes
the aggregation function A, which reads the final state of
each node and combines the states into a single output value.
Finally, DStress draws a noise term from a Laplace distribu-
tion Lap(s/ε) and adds it to the output value, which yields
result of the computation.

The vertex programming model is quite general; there are
other systems that implement it – such as Pregel [48] – and
it can express a wide variety of graph algorithms. Not all
of these algorithms have privacy constraints, but there are
many that do; for instance, cloud reliability [64], criminal
intelligence [43, 62], and social science [14, 28, 45] all in-
volve analyzing graphs that can span multiple administrative
domains.

3.2 Threat model and assumptions
DStress relies on the following five assumptions:

1. The nodes are honest but curious (HbC), i.e., they will
faithfully execute DStress but try to learn as much about
the graph as they can;

2. The nodes do not have enough computational power to
break the cryptographic primitives we use;

3. There is an upper bound k on the number of nodes that
will collude;

4. There is a (publicly known) upper bound D on the degree
of any node in the graph; and

5. There is a trusted party (TP) that knows the identities of
all the nodes in the system and can perform some simple
setup steps. (The TP can be offline and never sees any
private information.)

Assumption 1 may seem counterintuitive at first, especially
in our systemic-risk case study, which involves valuable fi-
nancial data. However, recall that banks are already heavily
audited and inspected in most countries. These audits are
compartmentalized, so they cannot be used to measure sys-
temic risk directly; however, they could certainly be used to
verify that each bank has input the correct data and has exe-
cuted DStress correctly.

Assumption 2 is standard for virtually all protocols that
use cryptography; it implies that DStress offers computa-
tional differential privacy [50]. Assumption 3 seems plau-
sible for the banking scenario because of antitrust laws that
prevent large-scale collusion between banks; for other appli-
cations, the bound k could be chosen based on the largest ob-
served instance of collusion, plus a safety margin. Assump-
tion 4 is in accordance to economic incentives described

4

in [18], which suggest that the financial network is not fully
connected. An example of an institution that satisfies as-
sumption 5 is the Federal Reserve.

3.3 Basic operation
When executing an algorithm, DStress runs on a distributed
set of nodes, and it maps each vertex in the graph to a spe-
cific node that will provide the initial state for that vertex
and that will coordinate the corresponding computation and
communication steps. Unlike the (logical) vertexes, which
communicate over edges in the graph, the (physical) nodes
can communicate directly over a network, such as the In-
ternet. We expect that, for privacy reasons, each participant
would want to operate its own node, so that it does not have
to reveal its initial state to another party.

To prevent privacy leaks, DStress must not allow any
node to see intermediate states of the computation – not even
that of their own vertex, since it may have changed based
on messages from other vertices. Hence, DStress associates
each node i with a set Bi of other nodes that we refer to as the
block of i. The members of the block each hold a share of the
vertex’s current state, and they use MPC to update the state
based on incoming messages. To prevent colluding nodes
from learning the state of a vertex, each block contains k+1
nodes, where k is the collusion bound we have assumed.

A key challenge is to enable vertices to communicate
without weakening security or revealing the structure of the
graph. If (i, j) is an edge in the graph and i wants to send a
message m to j, then the members of block Bi, who would
each hold a share of m after the MPC that generated it,
cannot simply send their shares of m to the members of
block B j, since that would reveal the existence of the edge
(i, j) to both blocks. To avoid this problem, DStress redirects
all communication between blocks Bi and B j through the
nodes i and j, who already know that an edge exists between
them. To prevent i and j from reconstructing m, all shares
are encrypted, and we use ElGamal’s key re-randomization
feature to prevent the senders from learning the identities of
the recipients through their public keys.

3.4 One-time setup step
Before DStress can be used with a new graph, it is necessary
to perform a one-time setup step. This step has two differ-
ent purposes. First, it associates each node i with a block Bi
that contains k+ 1 different nodes, including i. This is nec-
essary to prevent curious nodes from filling their own blocks
with Sybil identities or with multiple instances of the same
node, which would weaken DStress’s collusion-resistance.
Second, it equips each block Bi with D different sets of pub-
lic keys. This is necessary to prevent colluding neighbors of
i from identifying members of Bi based on their public keys.

The setup step is coordinated by the trusted party (TP).
The TP begins by asking each node i for a) i’s public El-
Gamal key, and b) D different neighbor keys ni

1, . . . ,n
i
D,

which i can choose arbitrarily from Zq. The TP then ran-

domly picks a list of members for i’s block Bi and publishes
σTP({(k,Bk)}k=1..|V |,BA) – that is, a list of nodes and their
blocks that is signed with the TP’s private key. (Note that
this list does not contain information about edges and thus
reveals nothing about the structure of the graph.) BA is a spe-
cial block that is used for aggregation (Section 3.6); its k+1
members are also chosen randomly by the TP.

Next, the TP generates D block certificates for each block
Bi. A block certificate is a tuple Ci, j := σTP(g

x1ni
j ,gx2ni

j , . . . ,

gxDni, j), that is, it contains one public key for each member
of the corresponding block, but the keys in the j.th certificate
for node i are re-randomized using the j.th neighbor key
from node i. The TP signs each of the D block certificates
and then sends them to node i, who forwards each certificate
to a different neighbor. (If i has fewer than D neighbors in the
graph, it simply discards the leftover certificates.) Finally,
each node i distributes the block certificates it has received
from its neighbors to the members of its own block Bi, but
without identifying the specific neighbor – i only tells the
members of Bi which certificate is for its first neighbor, its
second neighbor, and so on.

Once this step is completed, the TP is no longer needed
and can leave the system. Notice that the TP has never
learned the topology of the graph.

3.5 Message transfer protocol
Next, we describe how the block certificates can be used to
securely send messages along edges of the graph. Since the
details of the full protocol are somewhat complicated, we
start with a simple but flawed strawman protocol and then
derive the full protocol in several steps.

Recall that, at the end of each computation step, each
node i sends a message mi, j (possibly the no-op message ⊥)
to each neighbor j in the graph. Since the computation step is
performed in MPC, at the end of the step each member of i’s
block Bi holds one share of mi, j, such that the message can
be reconstructed by XORing all the shares together. These
shares must be transferred to the members of B j, who then
use them as inputs to j’s’ next computation step.

Strawman #1: Each x ∈ Bi picks a different public key from
j’s block certificate and encrypts its share sx of mi, j with this
key. Then the members of Bi forward their encrypted shares
to i, who forwards them to j. j adjusts the ephemeral keys in
the ciphertexts using the neighbor key ni, j and then forwards
them to the members of B j, who decrypt them and thus each
obtain one share of mi, j.

This approach prevents the members of Bi and B j from
learning about each other directly: all communication is via
i and j, and the members of Bi only see the re-randomized
public keys of the members of B j, so they cannot identify
the latter by recognizing their public keys. However, this
approach weakens collusion resistance: if the same node n
happens to be a member of both Bi and B j, or if two nodes

5

Secret
value Shares Aggregated

ciphertexts
Encrypted
subshares

Adjusted
ciphertexts

Decrypted
aggregates

Recovered
shares

Secret
value

𝑖"

𝑖

𝑖#

𝑗"

𝑗

𝑗#

𝑚&,(=
⊕+ 𝑠+ = 1

𝑠&.=	 0

𝑠&=	 1

𝑠&/=	 0

𝑠(.=	 0

𝑠(=	 0

𝑠(/=	 1

[𝑠&.,(.=	 0]𝒋𝟏5

[𝑠&.,(=	 𝟏]𝒋5

[𝑠&.,(/=	 𝟏]𝒋𝟐5

[𝑠&,(.=	 1]𝒋𝟏5

[𝑠&,(=	 0]𝒋5

[𝑠&,(/=	 0]𝒋𝟐5

[𝑠&/,(.=	 1]𝒋𝟏5

[𝑠&/,(=	 𝟏]𝒋5

[𝑠&/,(/=	 0]𝒋𝟐5

[Σ+	 𝑠+,(.=	 2]𝒋𝟏5

[Σ+	 𝑠+,(=	 2]𝒋5

[Σ+	 𝑠+,(/=	 1]𝒋𝟐5

[2	 +	 58]𝒋𝟏5

[2	 	 -‐ 8]𝒋5

[1	 +	 14]𝒋𝟐5

[6𝟎](.
[-‐6](
[1𝟓](/

𝟔𝟎

−𝟔

1𝟓

Geometric
noise

𝑏𝑙𝑜𝑐𝑘	 𝐵& = {𝑖, 𝑖", 𝑖#} 𝑏𝑙𝑜𝑐𝑘	 𝐵(= {𝑗, 𝑗", 𝑗#}

𝑛&,(
𝑚&,(=

⊕+ 𝑠+ = 1

Figure 1: A message transfer example between two blocks of three nodes. [. . .] j′x denotes a ciphertext encrypted with the
randomized public key of jx, and [. . .] jx denotes a ciphertext encrypted with the original key.

n1 ∈ Bi and n2 ∈ B j collude, they can potentially learn two
shares. To prevent this, we make the following change:

Strawman #2: Like strawman #1, except that each x ∈ Bi
splits its share sx into k + 1 subshares sx,1, . . . ,sx,k+1 such
that sx =⊕y=1..k+1sx,y and then encrypts a different subshare
for each member of B j.

As long as the secret-sharing scheme is associative and com-
mutative, the members of B j can obtain valid (but different)
shares of mi, j simply by combining all the subshares they re-
ceive. This change also restores collusion resistance: as long
as both Bi and B j have at least one member that does not col-
lude, the colluding nodes will always miss at least one share,
namely the one that is sent between the two non-colluding
nodes. However, if n1 ∈ Bi and n2 ∈ B j collude, they can still
infer the presence of edges by recognizing subshares: n1 can
use some external channel to tell n2 about the subshares it
has sent, and if n2 subsequently receives one of them, they
can infer that their blocks are connected by an edge. We fix
this as follows:

Strawman #3: Like strawman #2, except that each mem-
ber of Bi breaks its subshare into individual bits and en-
crypts each bit separately. The encrypted bits are forwarded
through i as before, but, rather than forwarding them to j
directly, i uses the homomorphic addition in exponential El-
Gamal to combine the corresponding bits from different sub-
shares. This yields the encrypted sum of bits of the shares,
which j then forwards to B j. Members of B j decrypt the sums
and set their bit share to 0 iff the sum is even.

This approach almost meets our requirements, since the re-
cipients never see the senders’ original subshares and thus
cannot recognize them. However, because the homomorphic
operation is an addition and not an XOR, the encrypted
“bits” that arrive at B j are actually numbers that correspond
to the number of ones in the original subshares. This leaks
some information about the original shares. To see why, con-

sider the (extreme) case where the adversary controls k of the
k+ 1 nodes in both Bi and B j, and wishes to learn whether
the edge (i, j) exists. Suppose that, during some particular
communication step, the subshares of the adversary’s nodes
in Bi for each of the D messages add up to S1, . . . ,SD, respec-
tively. If the adversary’s nodes in B j then receive only sets
of shares that add up to less than Sn−1 or more than Sn +1
for all 1 ≤ n ≤ D, then the adversary knows that none of
the received messages could have come from Bi, so the edge
(i, j) cannot exist. Conversely, if, over the course of many
communication steps, the adversary’s nodes in B j always re-
ceive some set of shares that add up to Sn±1 for some n, the
adversary can be increasingly confident (though never com-
pletely certain) that the edge (i, j) does exist. If the adversary
controls fewer than k of the k+1 nodes in Bi and/or B j, the
risk of the adversary learning something about (i, j) in any
particular communication step diminishes, but it never com-
pletely disappears. We mitigate this risk by making one final
change:

Final protocol: Like strawman #3, except that i homomor-
phically adds an even random number from 2 ·Geo(α

2
k+1) to

each encrypted bit before forwarding it to B j via j, where
Geo is the geometric distribution1 as described in [33] and
α is a parameter in (0,1).

This preserves correctness: the recipients will receive an
even (but otherwise random) number if and only if it would
have received a zero bit using strawman #3. However, the
adversary’s chances of learning something useful have di-
minished dramatically: the sum of bits is now noised, and it
is very hard for the adversary to extract information from
this side-channel. In fact, as [33] shows, the application
of geometric noise provides ε-differential privacy, where
ε = − lnα . This way, we can maintain a privacy budget to

1 The geometric distribution is a discretized version of the Laplace distribu-
tion, which is widely used in differential privacy.

6

keep track of what the adversary learns and make sure that
the probability of an edge leaking is minimal. For details re-
garding the sensitivity analysis and differential privacy guar-
antees of the protocol, please refer to Appendix ??.

The overall effect is that, for each edge (i, j) in the graph,
the members of block Bi can transfer the shares of a mes-
sage to the members of block B j such that a) no group of k
or fewer colluding nodes can learn the contents of the mes-
sage, and that b) edge privacy (Section 2) is maintained. We
provide a formal proof of the first property in Appendix ??,
and a detailed discussion of edge privacy in Appendix ??.

3.6 Executing a program
Next, we describe how DStress executes a program. For sim-
plicity, we focus only on the algorithm and ignore practical
challenges, such as fault tolerance; these challenges are or-
thogonal and can be addressed with existing techniques. Re-
call that each execution has n computation and communica-
tion steps, followed by aggregation and noising.
Initialization step. DStress maintains the invariant that, at
the beginning of each computation step, each member of
a node i’s block Bi has 1) a share of the current state of
i’s vertex, and 2) shares of D input messages, which can
either be messages of i’s neighbors or instances of the no-op
message ⊥. To make this invariant true at the first step, each
node i starts by loading the initial state of its local vertex, as
well as D copies of ⊥ (since there are no real messages yet),
and splits each of them into |Bi| shares, one for each member
of its block Bi.
Computation step. In each computation step, the members
of each block Bi use MPC to evaluate the update function
of the corresponding vertex vi. The circuit has inputs for
the D input messages and the current state of vi, as well as
outputs for D output messages and the new state of vi. (If the
degree of the vertex is less than D, some of the messages are
copies of ⊥.) Note that both inputs and outputs of an MPC
step remain shared among the members of the block and are
never revealed to any individual node.
Communication step. In this step, DStress invokes the pro-
tocol from Section 3.5 to send each message along the cor-
responding edge of the graph. Because each directed edge is
used to send exactly one message, a node can immediately
proceed to the next computation step once it has received a
message from each of its in-neighbors; there is no need for
global coordination.
Aggregation+noising step. Once n computation and com-
munication steps have been performed, each block Bi holds
shares of vertex vi’s final state. Next, DStress evaluates the
aggregation function A on the final states, using the special
aggregation block BA. Each block sends its state shares and
some random shares to BA; the members of BA then use
MPC to a) evaluate A on the states; b) combine the random
shares to get a random input seed, c) draw a noise term from
Lap(s/ε) using the seed; and d) output the sum of that term

and the result of A. The simplest way to implement this is to
use a single aggregation block, but this could become a bot-
tleneck for larger graphs; in this case, the aggregation can be
performed hierarchically, using a tree of aggregation blocks.

3.7 Limitations
DStress currently executes a fixed number of iterations. Dy-
namic convergence checks are problematic from the per-
spective of differential privacy because the number of rounds
is itself disclosive and would need to be treated as an addi-
tional output. However, if the number of rounds is chosen
conservatively, this restriction will cost some performance
but should not affect correctness.

DStress is limited to executing vertex programs that a)
can be expressed as Boolean circuits, and b) have a known,
finite sensitivity bound. The first limitation exists because
DStress uses MPC to execute the computation steps; it ef-
fectively means that the update functions cannot have dy-
namic loop bounds or unbounded recursion. The second lim-
itation currently prevents ad-hoc queries, but we speculate
that DStress could be augmented with automated sensitivity
inference, e.g., using linear type systems [31, 38] or a system
like CertiPriv [4]. Sensitivity inference for graphs is con-
sidered challenging, but the community is making progress
with systems like wPINQ [58], which can automatically de-
rive the sensitivity for an important class of graph algo-
rithms. Also, one can find algorithms with known sensitivity
in the differential privacy literature (e.g., in [42]), as we did
for the two algorithms we used in section 4.4.

DStress’s current design assumes a single bound D on the
degree of each vertex in the financial network. If, despite the
evidence in [18], the maximum degree was very large, this
would slow down our algorithm. However, one could avoid
this by dividing the vertexes into buckets based on their ap-
proximate degree – e.g., one bucket for vertexes with fewer
than 100 neighbors and another for the rest. This would re-
veal a small amount of information about the degree of each
bank (which would probably be heavily correlated with the
bank’s size), but in return, the MPC block computations for
most banks would be much faster than if a single conserva-
tive degree bound were used for all banks.

4. Case studies
In this section, we describe two different models of financial
contagion from the economics literature, and we show how
they can be implemented in DStress to compute a measure
of systemic risk.

4.1 Metrics and Privacy Guarantees
We follow a recommendation from the OFR working pa-
per [30, §4.3] and measure systemic risk as the total dollar
shortfall (TDS) – that is, the amount of extra money that the
government would need to make available to prevent fail-
ures if the contracted event were to occur. It would perhaps

7

--INIT(i)
cash[i] = Liquid reserve at i
debts[i][j] = Debt owed by i to j
credits[i][j] = Debt owed by j to i
totalDebt[i] = sum j(debts[i][j])
prorate[i] = 1.0
noOpMessage = 0
sensitivity = 1/r # See Section 4.4

--UPDATE(i)
liquid = cash[i]
foreach j in neighbors(i)
shortfallJ = recvFrom(j)
liquid += credits[i][j] - shortfallJ

if (liquid < totalDebt[i])
prorate[i] = liquid / totalDebt[i]

--COMMUNICATE WITH(i)
foreach j in neighbors(i)
sendTo(j, debts[i][j]*(1-prorate[i]))

--AGGREGATE
totalShortfall =
sum i(totalDebt[i]*(1-prorate[i]))

(a) Based on Eisenberg and Noe [25]

--INIT(i)
base[i] = Base assets held by i
origVal[i] = initial valuation of i
value[i] = current valuation of i
insh[i][j] = share of j held by i
threshold[i] = i’s failure threshold
penalty[i] = penalty if <threshold
noOpMessage = 0
sensitivity = 2/r # See Section 4.4

--UPDATE(i)
value[i] = base[i]
foreach j in neighbors(i)
discount = recvFrom(j)
value[i] += insh[i][j] *

(1-discount)*origVal[i][j]
if (value < threshold[i])
value[i] = value[i] - penalty[i]

--COMMUNICATE WITH(i)
foreach j in neighbors(i)
sendTo(j, 1-(value[i]/origVal[i]))

--AGGREGATE
totalShortfall =
sum i((value[i]<threshold[i]) ?
(threshold[i]-value[i]) : 0)

(b) Based on Elliott, Golub, and Jackson [27]

Figure 2: Two algorithms for measuring systemic risk from the economics literature, implemented in DStress.

be more intuitive to compute the number of banks that fail,
but TDS has two key advantages. First, it is more meaningful
because it can distinguish between a small shortfall such as
$10,000 (which, in a large bank, is easily fixed) and a large,
more serious shortfall such as $10 billion. Second, it is a
better fit for differential privacy. It is well known that the an-
swer to many questions about graph-shaped data can change
radically when even a single edge is added or removed, and
thus such questions cannot be answered with differential pri-
vacy. However, the TDS is an exception: adding or removing
edges does not disproportionally affect the TDS [39].

The privacy guarantee that results when we add noise to
the TDS is called dollar-differential privacy; it was first in-
troduced in [30]. In this model, the sensitive data we are pro-
tecting consists of the investment portfolios of all the banks,
and we consider two data sets d1,d2 to be similar (d1 ∼ d2)
if one can be transformed into the other by reallocating at
most T dollars in a single portfolio. The resulting privacy
guarantee completely protects all positions with value up to
T , although an adversary might be able to infer some infor-
mation about very large positions.

4.2 The Eisenberg-Noe Model
Our first model, from Eisenberg and Noe [25], considers
banks holding debt contracts from and to other banks. A
stress test based on this model would first, based on some hy-

pothetical future scenario2, compute a netted exposure graph
on a bilateral basis between the banks, as is done in per-
bank stress tests today. After computing each bank’s con-
tractual obligations, this would result in a graph of payments
between the banks. Then, each bank’s liquid reserves plus
incoming payments (i.e., debts paid by other banks) would
be compared to its total debt. If the debts are bigger, the
bank would be deemed bankrupt, and its payments would
be adjusted based on what assets the bank actually has. As
proven in [25], if there are n banks, this process converges to
a unique solution after at most n iterations.

Figure 2(a) shows an implementation in DStress. Initially,
the algorithm assumes that each node can pay its obligations
in full (prorate=1); in each update step, each node i com-
putes its local shortfall as a fraction of its debt, and sends a
message to each adjacent node j that contains the amount of
i’s debt to j that i is unable to pay. The final aggregation step
computes the TDS.

4.3 The Elliott-Golub-Jackson Model
The second model, from Elliott, Golub, and Jackson [27],
describes a very different type of contagion, using equity
cross-holdings to represent inter-institutional dependencies.
In this model, there is a set of primitive assets, which have

2 Regulators choose one or more hypothetical events/shocks, and they build
custom models based on those described in the economics literature [29].

8

associated prices. Banks own their own individual basket of
these assets, as well as potentially equity in each other. Thus,
the valuation of a bank is a) the value of its own primitive
assets, plus b) its fraction of the primitive assets owned by
other banks in which it (directly or transitively) holds an eq-
uity stake. The latter can be computed via fixpoint iteration.
The model has another unusual feature: when a bank’s val-
uation falls below a bank-specific threshold, it is considered
to have failed, and its value drops by an additional penalty.
This is different from the Eisenberg-Noe model, which is in-
spired by the allocation of assets in traditional bankruptcy
proceedings; the intent is to represent “distressed” institu-
tions that may not fail to the point of actual bankruptcy but
still face sudden additional costs due to, e.g., a downgraded
credit rating.

[27] also shows that the fixpoint is not unique and de-
pends on the starting conditions and on which nodes fail first;
thus, there is a possibility of false negatives. However, this
is not due to our implementation in DStress – it is simply
how the algorithm works as originally proposed. The algo-
rithm is also not guaranteed to converge after n steps, as each
step can cause a valuation drop even beyond the discontinu-
ous drop. However, as shown in [39], it converges to its final
value monotonically, and thus a limited number of iterations
provides a good approximation result.

Figure 2(b) shows an implementation in DStress. Initially,
each bank has some exogenous valuation origVal; in each
step, each bank computes a discount to its own value, based
on its primitive assets and the current valuation of its equity
holdings, and then propagates that discount to its neighbors
in the graph. The final aggregation step computes the TDS
of all failed banks relative to their failure threshold, as sug-
gested by [27].

4.4 Sensitivity bounds
Recall that DStress requires the programmer to provide a
bound on the program’s sensitivity to changes in its input.
We rely on a proof by Hemenway and Khanna [39], which
shows that the sensitivity of the Elliott-Golub-Jackson algo-
rithm is 2/r, where r is an upper bound on the leverage ratio
of the banks (that is, the ratio between a bank’s total assets
and its equity may not exceed 1 : r). This type of constraint is
already mandated by law today because leverage limits pro-
vide some stability: they create a “cushion” that can absorb
some losses. The proof does not directly consider Eisenberg-
Noe, but, using an argument analogous to [39, §5.2], it is
possible to derive a sensitivity bound of 1/r.

4.5 Utility
This leaves two practical questions: 1) how frequently could
these algorithms be safely executed, and 2) how does the
addition of noise affect the utility of the output? We cannot
hope to give final answers here because of the many policy
decisions that would be involved, but we can at least provide
ballpark figures.

First, we need to choose the privacy parameter ε . We
assume that the banks would want to prevent an adversary
from increasing their confidence in any fact about the input
data by more than a factor of two; this yields eεmax = 2 and
thus a privacy “budget” of εmax = ln2.

Next, we need to calculate the amount of noise that would
be added to the output. This depends on a) which input data
sets would be considered similar (i.e., at what threshold T
the banks would wish to protect their financial data), and b)
the sensitivity of the program. For a), we follow an argu-
ment from Flood et al. [30] and assume that a granularity of
T = $1 billion – roughly the size of the 100th largest bank’s
equity – is reasonable. For b), we use Elliot-Golub-Jackson
as an example and set the leverage bound to r = 0.1, as man-
dated by the Basel III framework [2]. This yields a sensitivity
of 2/r = 20 (independent of the number of iterations); thus,
the noise would be drawn from T ·Lap(20/εquery).

Finally, we need to decide how precise the output needs to
be, which controls the “privacy cost” εquery of the program.
In 2015, the annual stress test mandated by Dodd-Frank
yielded a TDS of about $500 billion [11], which was con-
sidered safe. We add a generous safety margin and assume
that it would be sufficient to compute the TDS to within
±$200 billion. To ensure that the noise is lower than that
with at least 95% confidence, we must choose εquery ≥ 0.23.

Since banks must retrospectively disclose their aggregate
positions every year anyway, it seems reasonable to replen-
ish the privacy budget once per year. Thus, it seems safe to
execute Elliot-Golub-Jackson up to (ln2)/0.23≈ 3 times per
year, which is more frequent than today’s annual stress tests.

4.6 Threat model
Recall from Section 3.2 that DStress assumes that the parties
are honest but curious (HbC). At first glance, it is not obvi-
ous that this assumption holds universally in the financial
world. However, recall that banks are heavily regulated, and
that they already have to submit to audits today. It should be
possible to use these audits to verify that the banks a) con-
tribute accurate information, and that they b) correctly per-
form the steps of the DStress algorithm. For privacy reasons,
today’s audits are compartmentalized – that is, each auditor
gets to see only the information from a single bank – but
this is sufficient for our purposes: each auditor only needs
to verify the steps that are taken by the specific bank she is
responsible for,

5. Evaluation
In this section, we report results from our experimental eval-
uation of DStress. Our main goal is to determine whether
DStress’s costs are low enough for our application scenario,
and whether it is sufficiently scalable.

5.1 Prototype and experimental setup
For our experiments, we built a prototype of DStress that
consists of three components: 1) the Wysteria MPC run-

9

 0

 10

 20

 30

 40

 50

 60

 70

 80

Initialization EN step
(D=100)

EGJ step
(D=100)

Aggregation
(N=100)

Noising

C
o
m

p
u
ta

ti
o
n
 t
im

e
 (

s
)

Block size 8
Block size 12
Block size 16
Block size 20

 0

 20

 40

 60

 80

 100

 120

Initialization
(B=20)

EN step
(B=20)

EGJ step
(B=20)

C
o
m

p
u
ta

ti
o
n
 t
im

e
 (

s
)

Max degree 10
Max degree 40
Max degree 70

Max degree 100

Aggregation
(B=20)

 0

 20

 40

 60

 80

 100
N=50

N=100
N=150
N=200

Figure 3: Computation time spent on MPC, with different block sizes (left), and different values for D and N (right).

time [59], which is based on an implementation of the GMW
protocol [34] provided by Choi et al. [17]; 2) a distributed
execution engine for graph algorithms; and 3) an imple-
mentation of the communication protocol from Section 3.5,
based on the cryptographic primitives in the OpenSSL li-
brary. Our prototype generates Laplace noise using a cir-
cuit design from Dwork et al. [23]. To save computation
and bandwidth, we apply a widely used ElGamal optimiza-
tion [44] that reuses the same ephemeral key for each of the
L bits in the share but requires L different public keys. Ex-
cluding Wysteria, our prototype consists of 11,904 lines of
Java and 953 lines of C.

Unless otherwise noted, we conducted our experiments
on Amazon EC2. We used up to 100 m3.xlarge instances,
which each have four virtual Intel Xeon E5-2670 v2 2.5 GHz
CPUs, 15 GB of memory, and two 40GB partitions of SSD-
based storage. All the instances were located in the same
EC2 region. For elliptic curves, we selected the NIST/SECG
curve over a 384-bit prime field (secp384r1); this offers se-
curity equivalent to 192-bit symmetric cryptography, which
is more than enough to defend against current cryptanalytic
capabilities. We kept the default parameters for Wysteria and
GMW: shares had a length of 12 bits (stored as 13 bytes),
and the statistical security parameter for GMW was k = 80.

5.2 Microbenchmarks: Computation
DStress contains two main sources of computation cost: the
MPC invocations that are used to perform the steps of the
graph algorithm, and the cryptographic operations in the
communication protocol. We evaluate each in turn.

MPC invocations: DStress performs four different kinds
of operations in MPC: 1) the initialization step that gen-
erates the shares of each node’s initial state; 2) the graph
algorithm’s computation step; 3) the graph algorithm’s ag-
gregation step; and 4) the final addition of Laplace noise.
To quantify the cost of each, we performed a series of mi-
crobenchmarks in which we ran each MPC in isolation,
using only Wysteria, for different block sizes. Since the
computation steps in Eisenberg-Noe (EN) and Elliot-Golub-
Jackson (EGJ) are different, we ran two separate experi-
ments for this step.

 0

 1

 2

 3

 4

 5

 6

 7

Share
initialization

EN step
(D=100)

EGJ
(D=100)

Aggregation
(N=100)

T
ra

ff
ic

 p
e
r

n
o
d
e
 (

M
B

)

Block size 8

Block size 12

Block size 16

Block size 20

Noising
 0

 1

 2

 3

 4

 5

 6

 7

T
ra

ff
ic

 p
e
r

n
o
d
e
 (

M
B

)

Figure 4: Per-node traffic generated by MPC computation
steps with different block sizes.

The left part of Figure 3 shows the end-to-end completion
times varied with the block size. There is a linear depen-
dence, which is consistent with the theoretical complexity
of GMW (the total cost is quadratic, but the nodes are work-
ing in parallel). We note that a block size of 20 is plausible in
our setting: recall that the block size must be greater than the
collusion bound k, and, to our knowledge, the largest known
instance of collusion in the banking world was the LIBOR
scandal, which involved 16 banks [60].

The right part of Figure 3 shows how the time for the
initialization and computation steps varied with the degree
bound D, and how the time for the aggregation step var-
ied with the number of nodes N. Again, the dependencies
are roughly linear; this is because the corresponding MPC
circuits are fairly simple, so the number of gates depends
mostly on the number of inputs.

Message transfers: To quantify the cost of the message
transfer protocol from Section 3.5, we measured the time
needed to transfer a single 12-bit message between two
blocks of different sizes. We found that the end-to-end com-
pletion time was roughly proportional to k, from 285 ms with
an 8-node block to 610 ms with a 20-node block. This is ex-
pected because each node in the block must encrypt k + 1
subshares. There is a quadratic component as well because a
single node must combine the (k+ 1)2 encrypted subshares
using the additive homomorphism, but this involves simple
multiplications; the cost is dominated by the exponentia-
tions, which are far more expensive.

10

 0

 2

 4

 6

 8

 10

 12

 14

EN EGJ
8

EN EGJ
12

EN EGJ
16

EN EGJ
20

C
o
m

p
u
ta

ti
o
n
 t
im

e
 (

m
in

u
te

s
)

Block size

Aggregation & noising
Message transfers
Computation steps

Initialization

 0

 10

 20

 30

 40

 50

 60

 70

 80

8 12 16 20

T
o
ta

l
tr

a
ff
ic

 p
e
r

n
o
d
e
 (

M
B

)

Block size

EN
EGJ

Figure 5: Computation time (left) and per-node traffic (right) for an end-to-end run on N = 100 vertexes (with maximum degree
D = 10), while performing I = 7 iterations of Eisenberg-Noe (EN) and Elliot-Golub-Jackson (EGJ).

5.3 Microbenchmarks: Bandwidth
To quantify DStress’s bandwidth cost, we measured the av-
erage amount of traffic that each node generated during the
microbenchmarks from Section 5.2. As before, we examine
the MPC and message transfer steps separately.

MPC invocations: Figure 4 shows our results for each of
the five MPC circuits we have identified in Section 5.2. The
traffic per node is roughly proportional to the block size
k + 1. Again, this is expected: although the total amount
of traffic in GMW increases quadratically with the number
of participants, the load is shared by k+ 1 nodes. We note
that the absolute numbers are low and never exceed 6 MB
per node, even for the comparatively large noising circuit.
This is because Wysteria’s GMW implementation includes
oblivious transfer extensions [41, 46] as an optimization.

Message transfers: The amount of traffic for message trans-
fers varies with the roles of the nodes. When the protocol is
invoked for an edge (i, j), node i’s load is the highest, since it
receives (k+1)2 encrypted subshares from Bi. In our experi-
ments, this amounted to between 97 kB (with 8-node blocks)
and 595 kB (with 20-node blocks). The nodes in Bi each
send k+1 encrypted subshares, and j sends k+1 encrypted
shares; thus, their traffic is linear in k and never exceeded
29 kB per node in our experiments. The nodes in B j each re-
ceive a single encrypted share, regardless of the block size,
so they handle a constant amount of traffic, about 1.4 kB.

Since we ran our experiments on EC2, neither propaga-
tion delays nor bandwidth constraints were major factors.
This would be different in a wide-area deployment; however,
since both MPC and the message transfers use relatively lit-
tle bandwidth, we do not expect the network to become a
major bottleneck in a wide-area setting.

5.4 End-to-end cost
To get a sense of the total cost of a DStress execution, we
performed end-to-end runs with both EN and EGJ, using
a synthetic graph with N = 100 banks, a degree limit of
D = 10, and I = 7 iterations. As before, we varied the block
size, and we measured the completion time and the average
amount of traffic that was sent by each node.

Figure 5 shows our results. Although, as we have seen,
the runtime of the individual operations is linear in k, the
overall runtime varied roughly with O(k2); this is because, if
we keep the number of nodes N constant while increasing k,
each node must also participate in more blocks. (The actual
dependence is not perfectly quadratic because each node
handles multiple blocks in parallel, and the corresponding
computations can be overlapped when one of them blocks.)

5.5 Scalability
In 2015, there were roughly 1,750 large commercial banks
in the United States [54]. Due to our limited budget, we
were unable to perform experiments with that many nodes;
instead, we estimate the cost using results from our mi-
crobenchmarks.

Given values for the degree bound D, the number of nodes
N, the collusion bound k, and the number of iterations I, it is
easy to estimate the cost of the initialization, computation,
and communication steps. For aggregation, we assume a
two-level aggregation tree with degree 100 – that is, DStress
would first aggregate the values from groups of 100 nodes
(in parallel) and then further aggregate the results before the
final noising step. We conservatively use a degree bound of
D = 100 and a block size of k+1 = 20, and we assume that
nodes cannot overlap computations from different blocks.

Obtaining realistic values for I is nontrivial because the
exact structure of the banking network is not known, and
cannot be fully inferred from the public (aggregate) dis-
closures. However, work in theoretical economics [18] has
shown how to infer at least an approximate graph from pub-
lic data. We reconstructed graphs based on this work, and
found that I = log2 N is enough to allow the algorithm to
converge. We omit the details here, but they are available in
Appendix ??.

Figure 6 shows our estimates for different network sizes;
the red circles show the results from actual EC2 runs (N=20
and N=100) we performed for validation. (Recall that actual
runs tend to be a bit faster than predicted because of the over-
lap between different block computations.) Based on these
results, we estimate that an end-to-end run of Eisenberg-Noe
for the entire U.S. banking system (N = 1,750, D = 100)

11

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 500 1000 1500 2000

C
o
m

p
u
ta

ti
o
n
 t
im

e
(m

in
u
te

s
)

Number of nodes

D=10
D=40
D=70

D=100

 1

 10

 100

 1000

 0 500 1000 1500 2000

T
ra

ff
ic

 p
e
r

n
o
d
e
 (

M
B

)

Number of nodes

D=10
D=40
D=70

D=100

Figure 6: Projected computation cost (left) and per-node traffic (right) for end-to-end runs of EN on networks of different sizes.
The red circles are validation points from two actual runs on EC2, with N=20 and N=100 nodes, respectively, and with D=10.

would take about 4.8 hours and consume about 750 MB of
traffic. These costs seem low enough to be practical.

We did not compare DStress to prior work because we are
not aware of any other system that efficiently offers guaran-
tees that are comparable to those of DStress. However, one
plausible baseline approach is to naı̈vely perform the entire
computation as a single, monolithic MPC. If we ignore the
details (such as the prorating, the comparisons, and the final
matrix inversion), the closed form of an algorithm like EN
essentially raises an N×N matrix to the I.th power. To esti-
mate how long this would take, we wrote a simple Wysteria
program that multiplies two square matrices, and we ran it
for different values of N. As expected, the end-to-end com-
pletion time rose quickly, from 1.8 minutes for N = 10 to
40 minutes for N = 25. This is expected because the asymp-
totic complexity of matrix multiplication is O(N3). (Note
that data-dependent optimizations cannot be applied because
the data in the matrix is private.) We were unable to run the
experiment for N > 25 because Wysteria ran out of memory,
but we extrapolate that raising a 1750x1750 matrix to the
I − 1 = 11th power would take (1750/25)3 ∗ 40 ∗ 11 min-
utes, or about 287 years. This suggests that systemic risk
detection using plain MPC would be infeasible in practice.

6. Related work
Differential privacy: There is a rich body of work on differ-
entially private analytics for relational data [22], but there are
much fewer results for graph data. [42] presents some pri-
vate algorithms that offer edge-differential privacy, includ-
ing k−triangle counting and k−star counting, but it is often
difficult to give good accuracy with this approach because
many algorithms have a high sensitivity to edge changes.
Restricted sensitivity [10] takes advantage of the queriers’
prior beliefs about the data to achieve higher accuracy. Our
systemic-risk case study uses a slightly different guaran-
tee, dollar-differential privacy, which was first proposed by
Flood et al. [30, §4.3].

Distributed query processors: The first differentially pri-
vate query processors, such as PINQ [49], Fuzz [38], and
Airavat [61] assumed a centralized setting in which the an-

alyst has access to all the private data. Later systems added
support for distributed data, but they typically focus on a spe-
cific class of queries: for instance, PDDP [16] can build his-
tograms, and DJoin [51] can process certain types of joins.
Narayan et al. [52] sketched a system that can run iterative
graph algorithms but offers weaker privacy guarantees than
DStress – for instance, it leaks the some information about
the structure of the graph. To our knowledge, DStress is the
first practical system to support iterative graph algorithms
with strong differential privacy guarantees.

Secure Multiparty Computation: Most practical MPC im-
plementations are either based on the GMW protocol [34],
which expresses computations as boolean circuits [7, 17],
or based on the BGW protocol [8], which expresses com-
putations as arithmetic circuits [15, 20, 65]. A direct com-
parison between protocols of the two main strands is not
straightforward. In general, systems that use BGW, such as
PICCO [65] or SEPIA [15], can offer better performance
for applications that mostly use arithmetic operations. How-
ever, not all applications are of this type: for instance, Choi
et. al. [17] showed that boolean-circuit systems outperform
arithmetic-circuit systems for a specific class of matching al-
gorithms. The best appropriate choice of MPC protocol for
systemic risk algorithms is an open question; we selected
GMW and [17] because both EGJ and EN can be expressed
as graph computations, which seem to be a closer match to
the algorithms described in [17]. In principle, our approach
– breaking up a large MPC computation into smaller compu-
tations – should be applicable to the BGW protocol as well.

Recently, work on two-party secure computation (2PC)
has started considering graph computations as well [55, 56].
Nayak et al. [55] identifies two key challenges in extend-
ing secure computation to graphs: one needs to protect the
privacy of data as well as the graph topology. The solution
described in [55] achieves the goals by obliviously sorting a
combined list of all graph vertices and edges using garbled
circuits. Unfortunately, full MPC is several orders of magni-
tude slower than 2PC; hence, this approach would face the
same efficiency challenges that we detailed in 2.2.

We emphasize that we are not the first to consider the
use of MPC for differentially private computations (see, e.g.,

12

[5, 23]). Our contribution is an efficient, scalable protocol for
executing graph algorithms in a distributed setting without
revealing the structure of the graph.
Message transfer protocol: Using ElGamal for its key ran-
domization property has been considered in the literature
before [21, 32, 37]. In fact, work concurrent to ours [21]
presents an ElGamal-based construction which is similar to
our message transfer protocol. Unfortunately, that solution is
not additively homomorphic and cannot be directly used in
DStress.

7. Conclusion
In this paper, we have presented DStress, a system that can
efficiently analyze large, distributed graphs with confidential
information. DStress’s programming model resembles that
of other frameworks for graph analytics; however, DStress
executes programs in a distributed fashion, using a combina-
tion of secret sharing, small multi-party computations, and a
special protocol for transferring messages without revealing
the structure of the graph. As a result, DStress only needs
a few hours to run computations with hundreds of partici-
pants, whereas a naı̈ve application of multi-party computa-
tion would take many years.

We have also studied one concrete use case of DStress
that we have taken from the economics literature: the compu-
tation of systemic risk in financial networks. We have shown
that DStress can implement two state-of-the-art models of
systemic risk; our experimental results suggest that these
models could be evaluated on all the large commercial banks
in the United States within about five hours, using only one
commodity machine at each bank.

Acknowledgments
We thank our shepherd, Raluca Popa, and the anonymous re-
viewers for their thoughtful comments and suggestions. Ben-
jamin Pierce, Justin Hsu, Brett Hemenway, Nishanth Chan-
dran, Frank McSherry, and Aaron Roth provided helpful
feedback on earlier versions of this paper. We are grateful
to Aseem Rastogi, Matthew Hammer, and Michael Hicks for
their extensive support in using the Wysteria circuit compiler
and MPC implementation. This work was supported in part
by NSF grants CNS-1054229 and CNS-1513694, as well as
the Intel-NSF Partnership for Cyber-Physical Systems Secu-
rity and Privacy (CNS-1505799).

References
[1] E. A. Abbe, A. E. Khandani, and A. W. Lo. Privacy-preserving

methods for sharing financial risk exposures. The American
Economic Review, 102(3):65–70, 2012.

[2] Bank for International Settlements. International regulatory
framework for banks (Basel III) website. http://www.bis.
org/bcbs/basel3.htm.

[3] M. Barbaro, T. Zeller, and S. Hansell. A face is exposed for
AOL searcher No. 4417749. New York Times, Aug 9, 2006.

[4] G. Barthe, B. Köpf, F. Olmedo, and S. Zanella-Béguelin.
Probabilistic relational reasoning for differential privacy. In
Proc. POPL, 2013.

[5] A. Beimel, K. Nissim, and E. Omri. Distributed private data
analysis: Simultaneously solving how and what. In Proc.
CRYPTO, 2008.

[6] R. M. Bell and Y. Koren. Lessons from the Netflix prize
challenge. ACM SIGKDD Explorations Newsletter, 9(2):75–
79, 2007.

[7] A. Ben-David, N. Nisan, and B. Pinkas. FairplayMP: A
system for secure multi-party computation. In Proc. ACM
CCS, 2008.

[8] M. Ben-Or, S. Goldwasser, and A. Wigderson. Complete-
ness theorems for non-cryptographic fault-tolerant distributed
computation. In Proc. STOC, 1988.

[9] D. Bisias, M. Flood, A. W. Lo, and S. Valavanis. A survey of
systemic risk analytics. Annu. Rev. Financ. Econ., 4(1):255–
296, 2012.

[10] J. Blocki, A. Blum, A. Datta, and O. Sheffet. Differentially
private data analysis of social networks via restricted sensitiv-
ity. In Proc. ITCS, 2013.

[11] Board of Governors of the Federal Reserve System. Dodd-
Frank Act Stress Test 2015: Supervisory stress test methodol-
ogy and results, Mar. 2015. http://www.federalreserve.
gov/newsevents/press/bcreg/bcreg20150305a1.pdf.

[12] D. Bogdanov, S. Laur, and J. Willemson. Sharemind: A
framework for fast privacy-preserving computations. In Proc.
ESORICS, 2008.

[13] R. Bookstaber, J. Cetina, G. Feldberg, M. Flood, and
P. Glasserman. Stress tests to promote financial stability: As-
sessing progress and looking to the future. Journal of Risk
Management in Financial Institutions, 7(1):16–25, 2014.

[14] S. P. Borgatti, A. Mehra, D. J. Brass, and G. Labianca. Net-
work analysis in the social sciences. Science, 323(5916):892–
895, 2009.

[15] M. Burkhart, M. Strasser, D. Many, and X. Dimitropoulos.
SEPIA: Privacy-preserving aggregation of multi-domain net-
work events and statistics. In Proc. USENIX Security, 2010.

[16] R. Chen, A. Reznichenko, P. Francis, and J. Gehrke. Towards
statistical queries over distributed private user data. In Proc.
NSDI, 2012.

[17] S. G. Choi, K.-W. Hwang, J. Katz, T. Malkin, and D. Ruben-
stein. Secure multi-party computation of boolean circuits with
applications to privacy in on-line marketplaces. In Proc. CT-
RSA. Springer, 2012.

[18] J. F. Cocco, F. J. Gomes, and N. C. Martins. Lending relation-
ships in the interbank market. Journal of Financial Interme-
diation, 18(1):24–48, 2009.

[19] R. Cramer, R. Gennaro, and B. Schoenmakers. A se-
cure and optimally efficient multi-authority election scheme.
Transactions on Emerging Telecommunications Technologies,
8(5):481–490, 1997.

[20] I. Damgård, M. Geisler, M. Krøigaard, and J. B. Nielsen.
Asynchronous multiparty computation: Theory and imple-
mentation. In PKC, 2009.

13

http://www.bis.org/bcbs/basel3.htm
http://www.bis.org/bcbs/basel3.htm
http://www.federalreserve.gov/newsevents/press/bcreg/bcreg20150305a1.pdf
http://www.federalreserve.gov/newsevents/press/bcreg/bcreg20150305a1.pdf

[21] Y. Dodis, I. Mironov, and N. Stephens-Davidowitz. Mes-
sage transmission with reverse firewalls—secure communi-
cation on corrupted machines. Technical report, Cryptol-
ogy ePrint Archive, Report 2015/548, 2015. http://eprint. iacr.
org/2015/548, 2015.

[22] C. Dwork. Differential privacy: A survey of results. In Proc.
TAMC, 2008.

[23] C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and
M. Naor. Our data, ourselves: Privacy via distributed noise
generation. In Proc. EUROCRYPT, 2006.

[24] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating
noise to sensitivity in private data analysis. In Theory of
Cryptography Conference (TCC), 2006.

[25] L. Eisenberg and T. H. Noe. Systemic risk in financial sys-
tems. Management Science, 47(2):236–249, 2001.

[26] T. ElGamal. A public key cryptosystem and a signature
scheme based on discrete logarithms. IEEE transactions on
information theory, 31(4):469–472, 1985.

[27] M. Elliott, B. Golub, and M. O. Jackson. Financial net-
works and contagion. The American economic review,
104(10):3115–3153, 2014.

[28] J. Fantuzzo and D. P. Culhane. Actionable intelligence: Using
integrated data systems to achieve a more effective, efficient,
and ethical government. Palgrave Macmillan, 2015.

[29] Federal Deposit Insurance Corporation (FDIC). Dodd-Frank
Act Stress Test. February 17, 2017; https://www.fdic.
gov/regulations/reform/dfast/index.html.

[30] M. Flood, J. Katz, S. Ong, and A. Smith. Cryptography and
the economics of supervisory information: Balancing trans-
parency and confidentiality. U.S. Department of Treasury Of-
fice of Financial Research Working Paper Series, 1(11), 2013.

[31] M. Gaboardi, A. Haeberlen, J. Hsu, A. Narayan, and B. C.
Pierce. Linear dependent types for differential privacy. In
Proc. POPL, 2013.

[32] C. Gentry, S. Halevi, and V. Vaikuntanathan. i-hop homomor-
phic encryption and rerandomizable yao circuits. In CRYPTO,
2010.

[33] A. Ghosh, T. Roughgarden, and M. Sundararajan. Universally
utility-maximizing privacy mechanisms. SIAM Journal on
Computing, 41(6):1673–1693, 2012.

[34] O. Goldreich, S. Micali, and A. Wigderson. How to play any
mental game. In Proc. STOC, 1987.

[35] J. E. Gonzalez, Y. Low, H. Gu, D. Bickso, and C. Guestrin.
PowerGraph: Distributed graph-parallel computation on natu-
ral graphs. In Proc. OSDI, 2012.

[36] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J.
Franklin, and I. Stoica. GraphX: Graph processing in a dis-
tributed dataflow framework. In Proc. OSDI, 2014.

[37] J. Groth. Rerandomizable and replayable adaptive chosen ci-
phertext attack secure cryptosystems. In Theory of Cryptog-
raphy, 2004.

[38] A. Haeberlen, B. C. Pierce, and A. Narayan. Differential
privacy under fire. In Proc. USENIX Security, 2011.

[39] B. Hemenway and S. Khanna. Sensitivity and computa-
tional complexity in financial networks. In submission;

manuscript available from http://www.cis.upenn.edu/

~sanjeev/papers/financial_network.pdf, 2015.

[40] J. Hsu, M. Gaboardi, A. Haeberlen, S. Khanna, A. Narayan,
B. C. Pierce, and A. Roth. Differential privacy: An economic
method for choosing epsilon. In Proc. IEEE CSF, 2014.

[41] Y. Ishai, J. Kilian, K. Nissim, and E. Petrank. Extending
oblivious transfers efficiently. In Proc. CRYPTO, 2003.

[42] V. Karwa, S. Raskhodnikova, A. Smith, and G. Yaroslavtsev.
Private analysis of graph structure. Proc. VLDB Endowment,
4(11):1146–1157, 2011.

[43] V. E. Krebs. Mapping networks of terrorist cells. Connections,
24(3):43–52, 2002.

[44] K. Kurosawa. Multi-recipient public-key encryption with
shortened ciphertext. In PKC, 2002.

[45] D. Lazer, A. Pentland, L. Adamic, S. Aral, A.-L. Barabási,
D. Brewer, N. Christakis, N. Contractor, J. Fowler, M. Gut-
mann, T. Jebara, G. King, M. Macy, D. Roy, and M. Van Al-
styne. Computational social science. Science, 323(5915):721–
723, 2009.

[46] B. Li, H. Li, G. Xu, and H. Xu. Efficient reduction of 1 out of n
oblivious transfers in random oracle model. IACR Cryptology
ePrint Archive, 2005:279, 2005.

[47] Y. Low, J. E. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin,
and J. M. Hellerstein. GraphLab: A new framework for
parallel machine learning. In Proc. UAI, 2010.

[48] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski. Pregel: A system for large-scale
graph processing. In Proc. SIGMOD, 2010.

[49] F. McSherry. Privacy integrated queries. In Proc. SIGMOD,
2009.

[50] I. Mironov, O. Pandey, O. Reingold, and S. Vadhan. Compu-
tational differential privacy. In Proc. CRYPTO, 2009.

[51] A. Narayan and A. Haeberlen. DJoin: Differentially private
join queries over distributed databases. In Proc. OSDI, 2012.

[52] A. Narayan, A. Papadimitriou, and A. Haeberlen. Compute
globally, act locally: Protecting federated systems from sys-
temic threats. In Proc. HotDep, 2014.

[53] A. Narayanan and V. Shmatikov. Robust de-anonymization of
large sparse datasets. In Proc. IEEE S&P, 2008.

[54] National Information Center of the Federal Reserve Sys-
tem. Insured U.S. chartered commercial banks that
have consolidated assets of $300 million or more.
http://www.federalreserve.gov/releases/lbr/

current/default.htm, 2014.

[55] K. Nayak, X. S. Wang, S. Ioannidis, U. Weinsberg, N. Taft,
and E. Shi. GraphSC: Parallel secure computation made easy.
In Proc. IEEE S&P, 2015.

[56] V. Nikolaenko, S. Ioannidis, U. Weinsberg, M. Joye, N. Taft,
and D. Boneh. Privacy-preserving matrix factorization. In
Proc. ACM CCS, 2013.

[57] A. Papadimitriou, A. Narayan, and A. Haeberlen. DStress: Ef-
ficient differentially private computations on distributed data.
Technical Report MS-CIS-17-03, University of Pennsylvania,
2017.

14

https://www.fdic.gov/regulations/reform/dfast/index.html
https://www.fdic.gov/regulations/reform/dfast/index.html
http://www.cis.upenn.edu/~sanjeev/papers/financial_network.pdf
http://www.cis.upenn.edu/~sanjeev/papers/financial_network.pdf
http://www.federalreserve.gov/releases/lbr/current/default.htm
http://www.federalreserve.gov/releases/lbr/current/default.htm

[58] D. Proserpio, S. Goldberg, and F. McSherry. Calibrating
data to sensitivity in private data analysis: A platform for
differentially-private analysis of weighted datasets. In Proc.
VLDB, 2014.

[59] A. Rastogi, M. A. Hammer, and M. Hicks. Wysteria: A
programming language for generic, mixed-mode multiparty
computations. In Proc. IEEE S&P, 2014.

[60] N. Raymond and A. Viswanatha. U.S. regulator sues
16 banks for rigging Libor rate. Reuters, March 14,
2014; http://www.reuters.com/article/2014/03/14/
us-fdic-libor-idUSBREA2D1KR20140314.

[61] I. Roy, S. Setty, A. Kilzer, V. Shmatikov, and E. Witchel.
Airavat: Security and privacy for MapReduce. In Proc. NSDI,
2010.

[62] M. K. Sparrow. The application of network analysis to crim-
inal intelligence: An assessment of the prospects. Social net-
works, 13(3):251–274, 1991.

[63] A. Yao. Protocols for secure computations. In Proc. FOCS,
1982.

[64] E. Zhai, R. Chen, D. I. Wolinsky, and B. Ford. Heading
off correlated failures through independence-as-a-service. In
Proc. OSDI, 2014.

[65] Y. Zhang, A. Steele, and M. Blanton. Picco: A general-
purpose compiler for private distributed computation. In Proc.
ACM CCS, 2013.

A. Proof of Message Privacy
In this section we prove the message privacy property of our
share transfer protocol. Before we do so, we define what a
share transfer scheme is and what it means for a transfer
scheme to provide message privacy.

A.1 Definitions
Share transfer scheme: Suppose we are given two blocks
Bu and Bv with k+1 nodes each. Also, suppose a secret value
V is secret shared among the nodes in Bu. A share transfer
scheme Π is specified by the following randomized algo-
rithms Setup, Encrypt, Aggregate, RandomizeKey, Adjust,
Decrypt, Recover:

Setup: takes a security parameter l, a block Bv and a block
size k + 1. It returns a list of k + 1 private and public key
pairs {(SK0,PK0), . . . ,(SKk,PKk)}, one for each node in Bv.

RandomizeKeys: takes a set of k+1 public keys {PK0, . . . ,PKk}
and randomness r, and returns a set of re-randomized public
keys {PKr

0, . . . ,PKr
k}.

Encrypt: takes as input k+ 1 single bit shares {bu
0, . . . ,b

u
k}

from block Bu and a set of k+1 re-randomized public keys
{PKr

0, . . . ,PKr
k} from block Bv. It returns (k+1)2 ciphertext

values {cr
i, j} for i ∈ Bu and j ∈ Bv.

Aggregate: takes as input an aggregation function f and
(k+1)2 ciphertexts {cr

i, j}, corresponding to plaintexts {bu
i, j},

for i ∈ Bu and j ∈ Bv . It returns (k+1) ciphertexts cr
j, each

corresponding to the aggregation f (br
i, j),∀i ∈ Bu.

Adjust: takes as input randomness r and a set of k+ 1 ci-
phertexts {cr

0, . . . ,c
r
k} encrypted using re-randomized public

keys {PKr
0, . . . ,PKr

k}. It returns a set of k + 1 adjusted ci-
phertexts {c0, . . . ,ck} which is can be decrypted using the
original secret keys {SK0, . . . ,SKk}.

Decrypt: takes as input (k + 1) ciphertexts {c0, . . . ,ck}
and (k + 1) secret keys {SK0, . . . ,SKk}. It returns (k + 1)
messages {m j = f (br

i, j)}.

Recover: takes as input (k+1) messages {m j = f (br
i, j)} and

a block Bv. It sets Bv’s (k+ 1) bit shares bv
j to zero or one,

based on the actual value of message m j.

Correctness: A transfer scheme Π is correct if it the value
secret shared in block Bv at the end of the protocol is equal
to the value secret shared in block Bu in the beginning of the
protocol. More concretely, suppose block Bu initially holds
shares {bu

i } such that V = ⊕i∈Bubu
i . If {PK0, . . . ,PKk} and

{SK0, . . . ,SKk} are the public and private keys returned by
Setup, then we say that Π is correct if the following is true:

{PKr
j}= RandomizeKey(r,{PK j})

{cr
i, j}= Encrypt({bu

i },{PKr
j})

{cr
j}= Aggregate(f ,{cr

i, j})

{c j}= Ad just(r,{cr
j})

{m j}= Decrypt({c j},{SK j})

{bv
j}= Recover({m j})

⊕ j∈Bvbv
j =V

Defining the power of the adversary: We consider honest-
but-curious (HbC), probabilistic polynomial time (PPT) ad-
versaries, that can corrupt a set A of up to k members from
each block Bu and Bv. We denote such adversaries as Advk.

Message privacy definition: Informally, a share transfer
scheme provides message privacy if it is infeasible for an
adversary to learn information about the transferred secret
shares by participating in the transfer.

More formally, we say that a share transfer scheme
Π produces indistinguishable message transcripts in the
presence of an eavesdropper, if no Advk adversary has
a non-negligible advantage against the challenger in the
TransferAdvk,Π(l,Bu,Bv,A,Advk,keys): game described be-
low. Suppose Advk,keys = {(SK j,PK j)| j ∈ A∩ Bv} are the
key pairs of nodes in Bv that are controlled by the adversary.
Then:

TransferAdvk,Π(l,Bu,Bv,A,Advk,keys):
Challenger: The challenger generates the remaining key

pairs {(SK j,PK j)| j ∈ Bv−A} and gives the adversary the
private keys in Advk,keys and all the public keys.

Adversary: Advk selects bit shares {bu
i |i ∈ A∩Bu} for

the nodes it controls in Bu and sends them to challenger.

15

http://www.reuters.com/article/2014/03/14/us-fdic-libor-idUSBREA2D1KR20140314
http://www.reuters.com/article/2014/03/14/us-fdic-libor-idUSBREA2D1KR20140314

Challenger: The challenger picks a random bit b and
sets the secret transferred value V to b. It then applies all
the functions of Π and records all intermediate outputs.
At the end, the challenger gives Advk all the ciphertexts
{cr

i, j|i ∈ Bu, j ∈ Bv}, {ci, j|i ∈ Bu, j ∈ Bv} and {c j| j ∈ Bv}.
Adversary: Advk inspects the ciphertexts and outputs a

decision bit b′. We say that the adversary succeeds if b′ is
equal to b.

The fact that the keys of the adversary’s nodes in Bv are
an input to the above game reflects our HbC assumption; all
keys are selected according to the prescribed protocol. Also,
the game gives Advk access to all the information (transcript
of messages) it can observe by participating in a transfer.

A.2 Construction
At this point we present DStress’s message transfer protocol
as a share transfer scheme. We denote the construction we
use in 3.5 as DStressTransfer and we list its functions in
accordance to the definitions of the previous section. For
a more detailed description of how DStressTransfer works,
please refer to section 3.5. Let g be a generator of a cyclic
group G of prime order q. Then DStressTransfer is defined
by the following functions:

Setup(l,k+1)→{(x j,gx j)| j ∈ Bv,x j ∈ Zq}

RandomizeKey(r,{gx j | j ∈ Bv})→{grx j | j ∈ Bv,r ∈ Zq}

Encrypt({bu
i |i ∈ Bu},{grx j | j ∈ Bv})→
{(gyi, j ,gbu

i grx jyi, j)|i ∈ Bu, j ∈ Bv,yi, j ∈ Zq}

Aggregate(sum,{(gyi, j ,gbu
i grx jyi, j)|i ∈ Bu, j ∈ Bv})→

{(g∑i∈Bu yi, j ,g∑i∈Bu bu
i +R j grx j ∑i∈Bu yi, j)| j ∈ Bv,R j ∈ [R1,R2]}

Ad just(r,{(g∑i∈Bu yi, j ,g∑i∈Bu bu
i +R j grx j ∑i∈Bu yi, j)| j ∈ Bv})→

{(gr ∑i∈Bu yi, j ,g∑i∈Bu bu
i +R j grx j ∑i∈Bu yi, j)| j ∈ Bv}

Decrypt({(gr ∑i∈Bu yi, j ,g∑i∈Bu bu
i +R j grx j ∑i∈Bu yi, j)| j ∈ Bv},

{x j| j ∈ Bv})→{∑
i∈Bu

bu
i +R j| j ∈ Bv}

Recover({∑
i∈Bu

bu
i +R j| j ∈ Bv})→

{i f (∑
i∈Bu

bu
i +R j) mod 2 = 0,

then bv
j = 0, else bv

j = 1| j ∈ Bv}

A.3 Correctness and security proofs
Theorem 1: DStressTransfer is a correct share transfer
scheme.

Proof: We will prove that DStressTransfer is correct by
showing that the secret value shared at the beginning of the
protocol in block Bu is equal to the one shared in block Bv at
the end of the protocol, i.e. Vu =Vv.

Initially, we know that Vu is equal to the XOR of all
shares {bu

i }, i.e. Vu = ⊕ibu
i . Because of the way subshares

are created in Encrypt, the same holds for the subshares
bi =⊕ jbi, j. Additionally, from the Encrypt, Aggregate and
Decrypt functions of the DStressTransfer protocol, we know
that the value arriving at each member j of Bv is equal to
∑i bu

i, j +R j. Since R j is chosen to be even, this value is even
if and only if ∑i bu

i, j is even. But in Recover, the shares {bv
j}

in block Bv are set to 0 if and only if the received value is
even. Hence, {bv

j} = 0 if and only if ∑i bu
i, j is even. This

means that {bv
j} takes the same value as ⊕ibu

i, j. By defini-
tion, Vv =⊕ jbv

j, i.e. Vv =⊕ j⊕i bu
i, j. But the XOR operation

is associative and commutative, and Vv can be written as
Vv =⊕i⊕ j bu

i, j or equivalently Vv =⊕ibu
i =Vu.

Theorem 2: If the decisional Diffie-Hellman (DDH) prob-
lem is hard, then DStressTransfer provides message privacy
under the definition of the previous section.

Proof: We assume there is an algorithm A that has a non-
negligible advantage in the TransferAdvk,Π game. We will
construct an algorithm B which uses A to gain a non-
negligible advantage in solving the DDH problem.

To solve the DDH problem, B takes as input (g,ga,gb,T)
and tries to guess whether T = gab or T = gc, for some
random c ∈ Zq. Upon receipt of (g,ga,gb,T), B invokes
A as a challenger in a TransferAdvk,Π game, with security
parameter l, blocks Bu = {ui|i = 0 . . .k} and Bv = {v j| j =
0 . . .k}, and a set A of nodes controlled by the adversary.
Without loss of generality, assume that nodes k1 ∈ Bu and
k2 ∈ Bv are not controlled by the adversary. In the first step
of the game, B chooses key pairs as prescribed, with the
exception that it sets k2’s public key to be ga. In the next
step, A picks its bit shares and sends them to challenger B.
Then B picks random bit b and sets V = b. Moreover, it sets
all the remaining bit shares in a way that makes V = b if and
only if share bk1,k2 = b. (One way to achieve this is to set all
shares randomly and the final one to be the value required
so that ⊕i, jbi, j = V .) Finally, B sets all the ciphertexts as
prescribed in the game, apart from ciphertext cr

k1,k2
, which

is set to (gb,gV T r). After that, A outputs its decision bit b′

and B guesses T = gab iff A succeeds, i.e. b = b′.
We will show that B has a non-negligible advantage in

guessing T . Since k1 and k2 are not controlled by the adver-
sary, A never gets to see plaintext bk1,k2 = V . So the only
way to find V is from either cr

k1,k2
, cr

k2
or ck2 . If T = gab, then

cr
k1,k2

= (gb,gV gabr) is a valid ciphertext of TransferAdvk,Π

16

and so are cr
k2

and ck2). Because the ciphertexts are valid,
A can guess V with non-negligible probability 1/2+ ε . If
T = gc, then we will argue that cr

k1,k2
= (gb,gV gcr) cannot

possibly reveal anything about V , so A can only guess with
probability 1/2. This is indeed true, because there exist ex-
actly two elements c1 and c2 for which g0gc1r = g1gc2r. Since
c is randomly chosen from Zq, c1 and c2 are equally likely to
be chosen as c, with probability 1/2. With a similar reason-
ing, we can show the same about cr

k2
and ck2 . So, given A

that has non-negligible advantage in game TransferAdvk,Π, B
has non-negligible probability

P(B : succeeds) = P(T = gab)P(B : succeeds|T = gab)+

P(T = gc)P(B : succeeds|T = gc) =

=1/2 · (1/2+ ε)+1/2 ·1/2 = 1/2+ ε/2

to succeed in guessing whether T = gab or T = gc, which is
a contradiction because we have assumed that DDH is hard.

B. Edge privacy in DStress
In this section we show how our our message transfer proto-
col from section 3.5 preserves edge differential privacy. The
main idea is that we can treat the information leakage during
the protocol execution as the result of a query on the graph.
Since we add noise from the geometric distribution to the re-
vealed information, we can use differential privacy to track
the amount of leakage and make sure it does not exceed the
threshold defined by the privacy budget of the system. In
the following we prove that our protocol satisfies ε-DP, and
show how much privacy budget is used for a concrete instan-
tiation of DStress.
Treating message transfer as a query: Given a graph
G, there are many bit-share transfers during an iteration of
DStress. Each bit-share transfer from block Bi to B j has the
potential of revealing a small amount of information about
the existence of the underlying edge (i, j). This leakage
happens because members of B j receive the sum of the bit-
shares sent from Bi, instead of just the XOR of the shares.
We can treat every bit-share transfer as a query Q(i, j)(G) on
the graph G; the query is indexed by edge (i, j) because each
transfer reveals information about one edge only.
Sensitivity: Suppose we have two graphs G and G′ that
differ on at most one edge, say edge (i, j). The sensitivity
of Q(i, j) can be easily derived. Q(i, j) returns the sum of bit-
shares in Bi and all nodes in DStress are HbC (section 3.2).
This means their shares can be 0 or 1, so the global sensi-
tivity is ∆ = maxG,G′ |Q(i, j)(G)−Q(i, j)(G′)| = k+ 1, that is,
equal to the number of nodes in a single block.
Release mechanism: Remember from section 3.5 that, dur-
ing a bit transfer from Bi to B j, i homomorphically adds
noise to the transferred sum. We will denote this noising
mechanism as Mech(G,Q(i, j),α); the mechanism can be de-
scribed with the following equation:

Mech(G,Q(i, j),α) = Q(i, j)(G)+2 ·Y,

where Y ∼ Geo(α
2
∆), where Geo is the geometric distribu-

tion as described in [33].
Privacy guarantee: The above mechanism provides ε-
differential privacy. The geometric distribution has range
over all integers, and is described by the following proba-
bility density function:

Pr[Y = d] =
α−1
α +1

·α |d|,

where α is a parameter in (0,1). For discrete distribu-
tions, the traditional differential privacy definition (sec-
tion 3) is equivalent to proving that the ratio between
Pr[Mech(G,Q(i, j),α) = d] and Pr[Mech(G′,Q(i, j),α) = d]
lies in the interval [α,1/α] (see [33], section 2.1). Adding
geometric noise with parameter α to a query with sensi-
tivity 1 provides α-differential privacy [33]. Here, we will
show that release mechanism Mech provides α-differential
privacy when we sample Y from the geometric distribution
with parameter α

2
∆ . α corresponds to e−ε from the tradi-

tional definition of differential privacy, therefore ε =− lnα .
Consider any two graphs G and G′ that differ in at most

one edge, say (i, j), and any integer d from the output range
of Mech.

Pr[Mech(G,Q(i, j),α
2
∆) = d]

Pr[Mech(G′,Q(i, j),α
2
∆) = d]

=

=
Pr[Q(i, j)(G)+2 ·Y = d]
Pr[Q(i, j)(G′)+2 ·Y = d]

=
Pr[Y =

d−Q(i, j)(G)

2]

Pr[Y =
d−Q(i, j)(G′)

2]
=

=
α

2
∆
·
|d−Q(i, j)(G)|

2

α
2
∆
·
|d−Q(i, j)(G

′)|
2

= α

|d−Q(i, j)(G)|−|d−Q(i, j)(G
′)|

∆

which is in [α,1/α] for all integers d, and graphs G and G′,
such that |Q(i, j)(G)−Q(i, j)(G′)| ≤ ∆.
Utility: The sums revealed during DStress execution are not
intended to be outputs of the system – we just treat them as
such to keep track of information leakage. Hence, we don’t
care about the utility of the output; in fact we would like it to
be as inaccurate as possible to any eavesdropping adversary.
This suggests that we could add as much noise as possible.
However, there is a technical limitation regarding the amount
of noise we add: the total noised sum is transferred on the
exponent of an ElGamal ciphertext, and we cannot recover
exponents that are too large (section 3). But the geometric
distribution can return, albeit with exponentially small prob-
ability, arbitrarily large noise. Therefore, there is some prob-
ability that the system will not be able to recover the ElGa-
mal exponent – we call this the failure probability Pf ail of
the system. Suppose we define failure to be when the system
cannot decrypt an ElGamal ciphertext using a lookup table
of Nl entries (from−Nl

2 to Nl
2), then Pf ail is equal to the prob-

ability that the geometric distribution returns a value outside
those boundaries. We can compute this probability by using

17

the formula for the sum of the first Nl
2 terms of a geometric

series (scaled by two to account for both terms from 0 to Nl
2

and from 0 to −Nl
2):

Pf ail = 1−Psuccess = 1−2 · 1−α
Nl
2

1+α
=

2α
Nl
2 +α−1
1+α

So, if we want Pf ail to be less than once in Nq transfers, we
can compute the maximum αmax we can use by solving the
inequality:

2α
Nl
2 +α−1
1+α

≤ 1
Nq

(1)

Privacy budget: To determine exactly how much of the pri-
vacy budget is used with every iteration of DStress, we need
to figure out how many sums are revealed to the adversary
during that iteration. Even though a great number of message
transfers take place during DStress execution, an adversary,
who is trying to distinguish between two graphs G and G′

that differ in at most one edge (i, j), will only be able to
extract information from the transfers that happen over that
edge. Over the course of an iteration, each member of B j re-
ceives (k+1) ·L bit-share sums because each of the (k+1)
members of Bi sends one bit-share to each member in B j, for
every single bit of the L bits of the DStress datatype. Since
block B j can have at most k colluding nodes, the adversary
observes a total of k · (k+1) ·L sums. Therefore, each itera-
tion uses k · (k+1) ·L ·αmax of the α-privacy budget.

Concrete example: For a concrete instantiation of DStress
where each block consists of k+1= 20 nodes, the sensitivity
of each bit-share transfer will be ∆ = 20. Moreover, if we
have 8GB of RAM for decryption lookup tables (i.e., 8 ·
8589934592 bits) and 384-bit ciphertexts, then the lookup
table will have about Nl ' 230 million entries. The total
number of share transfers Nq in DStress is Y ·R · I ·N ·D ·
L · (k+ 1)2, where k is the collusion parameter, L is the bit-
length of transferred messages, D is the number of neighbors
of every node, N is the number of nodes in the network, I is
the number of iterations in a DStress run, R is the number
of DStress runs per year, and Y is the number of years of
DStress execution. Suppose we want DStress to fail once
every ten years (Y = 10). Then, for a setting of R= 3, I = 11,
N = 1750, D= 100, L= 16, and k= 19, we get that Nq' 370
billion.

With the parameters above and an ε equal to 2.34 ·10−7,
that is α = 0.999999766, every iteration would use k · (k+
1) · L · ε = 0.0014 of the privacy budget3. Since each year
has R · I = 33 iterations, DStress’s message transfer proto-
col would use 0.0469 of the privacy budget, before it gets
replenished (section 4.5).

3 Note that these values of α , Nl , and Nl satisfy the Pf ail inequality ?? above.

C. Evaluating Models of Contagion
Ideally, we would be able to test DStress on a dataset of fi-
nancial interlinkages between institutions. However, for the
exact privacy reasons that motivate the creation of DStress,
there are no publicly available datasets on interbank link-
ages.

This lack of data is reflected throughout the economics
literature on financial contagion. For instance, [27][§5] illus-
trate their model of contagion using nation-level debt cross-
holdings, consisting of just 7 Eurozone nations. In their own
words, “we include this as a proof of concept, and empha-
size that the crude estimates which we use for cross-holdings
make this noisy enough that we do not see the conclusions
as robust, but merely as illustrative of the methodology.” The
remaining economics literature follows one of two paths.
The first type, such as [? ?], use stylized examples to high-
light how their model of contagion behaves in that setting.
The second, and by far most common, use aggregate bank
liability data. Given the informational weakness of using ag-
gregate data, these models are less precise. [?][§2] provides
a comprehensive overview of the literature in this setting.

Other work, such as [?], takes as established that the
actual banking network is not fully connected, but instead
exhibits known properties consistent with two similar but
distinct models: a core-periphery model [?] and a scale-
free model. In the core-periphery model, there is a densely
connected but small core set of institutions that have large
aggregate assets and liabilities, surrounded by a larger set of
smaller institutions that are each individually linked to the
network through one or two core institutions. In the scale-
free model, banks closer to the “center” have exponentially
more linkages than banks farther away from the center.

The existing work shows strong evidence that there are
central institutions with dense interconnections, surrounded
by a large number of less institutions that are more loosely
connected. However, the exact topology is not readily infer-
able.

To estimate the number of iterations that our contagion
detection algorithms need to be run, we looked at some hy-
pothetical scenarios based on the empirical work we dis-
cussed above. Following [18] and [?], we performed ex-
periments to see how our algorithms performs on simulated
networks with a two-tiered structure. We created a synthetic
network comprising of 50 banks. The network was stylized,
with a central core of 10 banks that were densely intercon-
nected, with the remaining banks being regional banks that
were linked to one or two central banks, following the struc-
ture described in [18]. The network was designed to generate
two synthetic datasets: the first where a set of regional banks
failed, with the shock being absorbed by the core banks, and
the second, where it led to cascading failures taking down
the entire core. As with [27], we emphasize that these re-
sults should be taken as speculation based on the existing
economics literature, and not definitive evidence of the struc-

18

ture of real world banking networks. We used this network
solely to estimate the number of iterations we would need to
run our algorithms for.

The core-periphery structure of the banking network en-
sures that shocks are transmitted to the core quickly (as
all peripheral banks are within a few hops of some core
bank), and, due to the densely interconnected core means
that shocks that hit a single core bank transmit quickly to
all the core banks, and rapidly are absorbed or trigger siz-
able contagion effects. Since the core banks are almost fully
connected, any shortfalls spread faster than linearly within
the core. Since under the core-periphery model the periph-
eral banks are linked to some core bank within 1− 2 hops,
we only require a few additional hops for a shock to trans-
mit through the core itself. In our simulations, we found that
shocks either escalate rapidly or not at all, and are clearly
visible if the shock takes down a single core bank (because
a core bank’s assets and liabilities are so large). Conserva-
tively, we estimate a bound of log2 n in the worst case where
the periphery model has a binary tree form, giving us the
maximal path length before a shock reaches a core bank.

We reiterate that, due to the closed-form sensitivity proof
of [39], the number of iterations does not dictate the privacy
cost of the queries — only the running time of the algorithm.
Thus, if set conservatively, it should detect contagion scenar-
ios in all but the most contrived of network structures, which,
according to publicly available data, clearly do not exist in
practice.

19

	DStress: Efficient Differentially Private Computations on Distributed Data
	Recommended Citation (OVERRIDE)

	DStress: Efficient Differentially Private Computations on Distributed Data
	Abstract
	Disciplines
	Comments

	Introduction
	Overview
	Background: Systemic risk
	Strawman solutions
	Our approach

	The DStress system
	Programming model
	Threat model and assumptions
	Basic operation
	One-time setup step
	Message transfer protocol
	Executing a program
	Limitations

	Case studies
	Metrics and Privacy Guarantees
	The Eisenberg-Noe Model
	The Elliott-Golub-Jackson Model
	Sensitivity bounds
	Utility
	Threat model

	Evaluation
	Prototype and experimental setup
	Microbenchmarks: Computation
	Microbenchmarks: Bandwidth
	End-to-end cost
	Scalability

	Related work
	Conclusion

