Boston Dialect Features in the Black/African American Community

Charlene Browne
Dartmouth Linguistics

James Stanford
Dartmouth Linguistics

Follow this and additional works at: https://repository.upenn.edu/pwpl

Recommended Citation

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/pwpl/vol24/iss2/4
For more information, please contact repository@pobox.upenn.edu.
Boston Dialect Features in the Black/African American Community

Abstract
Although dialectologists have studied Eastern New England (ENE) for generations, the dialect features of the Black/African American community are still understudied (Nagy and Irwin 2010:250). In this study, we conducted field interviews with 28 African American/Caribbean American (AA/CA) residents of Greater Boston. We compared our results with prior ENE fieldwork in nearby South Boston, a predominantly White community traditionally known for its strong "Boston accent." Results suggest that some ENE regional features are shared by both communities (MARY/MARRY/MERRY distinction, NORTH/FORCE distinction, nasal split short-a). However, other features show significant differences: the AA/CA speakers had non-fronted START/PALM, unmerged lot/thought (for older speakers), and rapidly receding r-lessness. This suggests that traditional notions about what constitutes a "Boston accent" need to be reconsidered in a more inclusive and nuanced way, following the dynamic social and ethnic patterns of the Boston area.
Boston Dialect Features in the Black/African American Community

Charlene Browne and James Stanford*

1 Introduction

The English dialect features of Eastern New England (ENE) have been studied for generations, but there has been a significant lack of research on Black/African American communities (Nagy and Irwin 2010:250). Do Black/African American speakers participate in the traditional ENE features? The present study helps answer this question by interviewing 28 African American/Caribbean American Boston residents and analyzing the recordings in terms of traditional ENE pronunciation features. Acoustic sociophonetic and statistical analysis suggests that vowel distinctions and nasal split short-a were the same as those discovered in South Boston while others, like vowel mergers, fronted-PALM vowel, and r-lessness were not present. Analysis both from linguistic and anthropological lenses reveals that the reasons for these differences are founded in ethnic diversity and the associated assumptions of cultural practices.

Nevertheless, certain Boston neighborhoods, especially those of the traditional working-class, maintain their status as a “hub” of ENE features. Sipple et al. (2015) conducted a study in South Boston, a historically working-class Irish neighborhood known for its distinctive dialect features. They found that although the traditional features like fronted-START and fronted-PALM are receding amongst younger populations in most of New England, their presence remains in speakers in South Boston. Other features as well, such as /r/-lessness, intrusive-r, the NORTH/FORCE and MARY/MARRY/MERRY distinctions, remain strong among speakers raised in this neighborhood. How long this will last is an open question given the high rate of gentrification and increasing new residents from other parts of the region and nation. Ethnographic interviews in these traditional Boston working-class neighborhoods (Sipple et al. 2015) suggest that social and cultural identity remains centralized, and they continue to maintain the longstanding “hub” ideology of Boston (Amory 1947:22, Gavin 2017). The continuing presence of traditional ENE features in this region is also confirmed in a large-scale acoustic sociophonetic study of 626 New England speakers using online recordings elicited via Amazon Mechanical Turk (Kim et al. forthcoming).

What is the status of these features in African American (AA) and Caribbean American (CA) communities of Greater Boston? Prior work includes Nagy & Irwin’s (2010) rhoticity study of 15 AA speakers. We take the next step by conducting acoustic sociophonetic research on ENE vowel features of 28 AA/CA speakers. We compare our results to 69 White speakers in nearby South Boston. US census maps show a large, relatively concentrated population of self-reported Black residents (e.g., Dorchester, Hyde Park, Roxbury) in close proximity to White neighborhoods like Charlene Browne, James Stanford

*Thank you to the Boston-area community members that we interviewed. Thank you also to Jianjun Hua, Daniel E. Johnson, Neukom Institute for Computational Science, Dartmouth Dean of the Faculty Innovation Award, Dartmouth undergraduate student researchers and assistants, and Dartmouth Research Computing.

1Wells’ (1982) lexical sets are used in this article where appropriate.
South Boston with similar socioeconomic standing. Our research question is: Do Boston-area African American and Caribbean American communities participate in the traditional ENE features?

2 Methods

Our subjects consisted of twenty-eight speakers (12 male, 16 female). Eighteen of these individuals self-reported as African American while 10 self-reported as Caribbean American. They were raised in Boston, primarily in the neighborhoods of Dorchester, Roslindale, Hyde Park, and Mattapan. The speakers were interviewed in 2016, and the majority of the interviews were conducted by the first author, who is a community member and long-time participant-observer in the community.

The recorded interview activities were based on field materials from other Dartmouth-based projects in New England, including the nearby South Boston work in Sipple et al. 2015. The interviews included a list of words, a few sentences to read, a reading passage (based on Nagy 2010), and then a series of questions to elicit more natural speech. These written materials were designed to elicit the ENE variables discussed above. After each speaker completed the reading tasks, they also responded to free-response questions: What are some things that you notice about the way people speak in Boston? Do you think you have one of those ways of speaking? Why or why not? These questions were formulated with the intention of garnering insiders’ perspectives on their own dialect features and attitudes. Toward the end of the interview, speakers were asked basic demographic questions about their occupation, ethnicity, level of education, and age. The speakers had an age range of 18–61. We hope that future studies can engage with older speakers in this community beyond age 61.

The vowel formants were aligned and extracted with DARLA (Reddy and Stanford 2015) which is an online web interface that uses FAVE-Extract (Rosenfelder et al. 2014) Prosodylab-Aligner² (Gorman et al. 2011), and the Vowels R package (Kendall & Thomas 2010). This online vowel analysis tool takes manual transcriptions of chunks of speech and then aligns and extracts the vowels. We then normalized the vowels using the Lobanov method (Kendall & Thomas 2010). There were 9,562 tokens of stressed vowels in this dataset of 28 speakers. We coded rhoticity auditorily. For multivariate analyses, we used Rbrul linear mixed effects modeling (Johnson 2009) on age, sex, ethnicity, education, occupation, phonetic environment, with speaker and word as random effects. For this initial study, we included all speech styles together. The AA/CA dataset was then compared to recent data from White speakers in South Boston recorded and analyzed with the same materials and methods (Sipple et al. 2015).

3 Results

Among African American/Caribbean American speakers (AA/CA speakers), there is evidence for the following ENE features: the MARY/MARRY/MERRY distinction, nasal split short-a, and NORTH/FORCE distinction. These features are stable in apparent time. Notably, other traditional ENE features, were much less evident: For the AA/CA speakers, we do not find fronted PALM, the LOT/THOUGHT merger is only present in younger speakers, and r-less is receding sharply in apparent time. In the following, we outline the results for rhoticity, PALM/START, LOT/THOUGHT, MARY/MARRY/MERRY, nasal split short-a, and NORTH/FORCE.

3.1 Rhoticity

As shown in Figure 1, most of the younger AA/CA speakers were almost fully r-ful. Multivariate result: Age is significant, with 1.18% more r-fulness per each year younger (p = 0.0034, R = 0.273). Note that r-less is also a commonly attested feature in descriptions of African American English (AAE) (Rickford 1999).

2 DARLA has been recently upgraded to use the Montreal Aligner. See darla.dartmouth.edu.
3.2 PALM/START

Figure 2 shows a comparison of mean PALM F2 for AA/CA speakers (shown in yellow) and White speakers (in blue) from the South Boston study (Sipple et al. 2015). Notice that the White speakers are trending toward less PALM-fronting in apparent time, whereas the AA/CA speakers have less fronting across all ages, although our dataset lacks AA/CA speakers older than 61 years of age, as mentioned above. In Table 1, we ran mixed-effects modeling for both PALM and START in order to compare these two vowel subclasses and also examine age and ethnicity. Table 1 confirms our graphical analysis by showing how AA/CA speakers are modeled as 36.1 Hz less fronted than White speakers. We also find that age is significant as younger speakers are less fronted in PALM/START. The results in Table 1 also suggest that PALM is less fronted than START, which is an example of the “over-the-radar effect”: As many younger ENE speakers are avoiding older traditional regional forms, START-class words are predicted to have slightly more fronting than PALM words, because START words contain two socially marked variables, i.e., the vowel variable and postvocalic r. For such words, some young speakers in this region are careful to avoid stereotypically “dropping their r’s” yet the fronted vowel remains unchanged, being overshadowed by the postvocalic-r variable (see Stanford, Severance, and Baclawski 2014:120–25). Figure 3 shows an apparent-time plot of START and PALM for all speakers in the AA/CA dataset and the South Boston dataset.

We also tested statistical subgroups of Caribbean American versus African American for PALM/START and the other variables in this study. The results did not show a significant difference here, but obviously this is an area for future research. We recognize that there are important cultural and sociolinguistic distinctions among these ethnic identities.

Figure 1: Percentage of r-lessness as a function of birthyear.

Figure 2: PALM F2 as a function of birthyear. CA/AA speakers (yellow) and White speakers from South Boston (blue).
Figure 3: Mean F2 for START and PALM in apparent time for the AA/CA speakers in the present study combined with the White South Boston speakers in Sipple et al. 2015.

<table>
<thead>
<tr>
<th>Mixed effects</th>
<th></th>
<th>Coefficient</th>
<th>p-value</th>
<th>AIC change if this predictor is removed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed</td>
<td>Birthyear, Sex, Ethnicity, Education, Occupation, Speech Style, Vowel Class, and interactions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Random</td>
<td>Speaker (N=97, std dev=36.1), Word (N=73, std dev=31.3)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Predictors in best-fit model (Rbrul 3.1, Johnson 2017, 2009)</th>
<th>Coefficient</th>
<th>p-value</th>
<th>AIC change if this predictor is removed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethnicity***</td>
<td>Black: -36.1 Hz White: +36.1 Hz</td>
<td>p<0.0001</td>
<td>+31.7</td>
</tr>
<tr>
<td>Vowel Class***</td>
<td>START: +21.5 Hz PALM: -21.5 Hz</td>
<td>p<0.0001</td>
<td>+11.3</td>
</tr>
<tr>
<td>Birthyear**</td>
<td>-0.26 Hz per year younger</td>
<td>p=0.0018</td>
<td>+7.7</td>
</tr>
<tr>
<td>Birthyear:Ethnicity**</td>
<td>1 yr younger+Black: +0.89 Hz 1 yr younger+White: -0.89 Hz</td>
<td>p=0.0031</td>
<td>+6.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Speakers</th>
<th>Tokens</th>
<th>Grand Mean</th>
<th>Intercept</th>
<th>Deviance</th>
<th>AIC</th>
<th>R² fixed</th>
<th>R² random</th>
</tr>
</thead>
<tbody>
<tr>
<td>97</td>
<td>4572</td>
<td>1261.8</td>
<td>1243.5</td>
<td>51774.8</td>
<td>51777.0</td>
<td>0.220</td>
<td>0.264</td>
</tr>
</tbody>
</table>

Table 1: Rbrul mixed-effects results for START and PALM.
3.3 LOT/THOUGHT

These two vowels are merged in most prior work on Boston (e.g., Labov, Ash, and Bober 2006, Johnson 2010). Figure 4 plots our results for LOT/THOUGHT as speakers’ Euclidean F1/F2 distance between the two vowels. The plot shows how most AA/CA speakers (shown in yellow) have greater LOT/THOUGHT distance than the White South Boston speakers (shown in blue), although both groups appear to be merged among the youngest speakers. The Rbrul mixed-modeling results in Table 2 support these findings about ethnicity and age, but note again that the AA/CA speaker group lacks speakers older than 61 years of age. In addition, in this initial study we are examining only F1/F2 space, not vowel duration or other factors.

Figure 4: LOT/THOUGHT Euclidean distances by speaker. AA/CA speakers in yellow, White speakers in blue.

Table 2: Rbrul mixed-modeling results for LOT/THOUGHT Euclidean F1/F2 distance.
3.4 MARY/MARRY/MERRY

For this variable, we find that both the AA/CA speakers and the White speakers from South Boston speakers show evidence of distinctions among two or three of these vowels. Figure 5 shows mean tridirectional Euclidean distances across MARY, MARRY, and MERRY for each of the AA/CA speakers.

![Figure 5: MARY/MARRY/MERRY Euclidean distances (tridirectional) for each AA/CA speaker.](image)

3.5 Nasal split short-a

Nasal split short-a has been reported as an ENE feature in Labov et al. (2006), i.e., BAN is higher than BAT. This feature is also present among the White South Boston speakers in Sipple et al. (2015), and we find it among the AA/CA speakers as well. Figure 6 shows the stable contrast between BAT and BAN for the AA/CA dataset, as speaker F1 means arranged by birth year.

![Figure 6: Mean F1 for BAN versus BAT in the AA/CA dataset, gray=BAT, dark=BAN.](image)
3.6 NORTH/FORCE

Labov et al. (2006) observe a contrast in NORTH/FORCE (HORSE/HOARSE) in the ENE region. This contrast is evident both in the South Boston data (Sipple et al. 2015) and in the AA/CA community of the present study (Figure 7).

Figure 7: Mean F1/F2 of NORTH (blue) and FORCE (green) for each speaker in the AA/CA dataset.

4 Conclusion

The results analyzed here suggest that phonological features in the Boston-area Black/African American community differ significantly from other communities in Eastern New England. Some ENE regional features (MARY/MARRY/MERRY distinction, NORTH/FORCE distinction, nasal split short-a) are clearly present both among the AA/CA speakers in the present study and the White speakers from nearby South Boston. Other variables, however, show notable differences: Non-rhotic speech, which is also commonly reported in some African American varieties elsewhere (Rickford 1999), is strong in the South Boston dataset, but is receding rapidly in our AA/CA dataset. Likewise, we do not find significant START/PALM-fronting among the AA/CA speakers, unlike the White South Boston speakers. Our ethnographic interviews in this study and others across New England show that non-rhotic speech is highly stereotyped, along with START/PALM-fronting. Such features are present, for example, in the well-known regional stereotyped phrase Pahk your cah in Hahvahd Yahd and many other common expressions of ENE linguistic identity (see Stanford, Severance, and Baclawski 2014:133 for more examples).

We believe that it is not a coincidence that the most socially stereotyped Boston dialect features are the ones being rejected most strongly by the AA/CA speakers in our study. After all, there is ethnic divergence between White speakers in South Boston and the Black/African American communities in nearby neighborhoods. Ethnic groups differ from each other in many ways, not least in language. Like other communities across the country, the African American and Caribbean American community members in Greater Boston have constructed their own repertoires, and this may underlie the omission of traditional ENE features. Some speakers mentioned an awareness of these dialect differences and acknowledged that few people of color in the Boston area speak with features common to South Boston residents. Similarly, with the Caribbean American speakers, their cultural heritage involves languages like patois, creoles, and pidgins that they heard from parents and others.
while growing up in the local community. These experiences no doubt influence dialect features which they have developed in ways that would differ from the South Boston dataset.

The dichotomy between White speakers in South Boston and the Black/African American community in our study can also be attributed to the nature of South Boston as a neighborhood. The neighborhoods in the present study—Dorchester, Hyde Park, Roslindale and Mattapan—are less insular than South Boston, which is a historically tight-knit hub of Irish working-class people and others. Traditionally, communities in South Boston and other traditionally White working-class neighborhoods in the area tend to congregate mainly in their own neighborhoods, often having highly localized social networks. Therefore, even though South Boston is not geographically far from the AA/CA communities studied here, there is less interaction between the two groups (Black and White speakers), and also less mingling of dialect features. Because these two groups are from the same city, they do share some common ENE features, but the features that are most salient and most representative of White working-class Boston do not penetrate the other neighborhoods. Our quantitative results, combined with participant-observation, suggest these AA/CA communities may not be as sociolinguistically insular as nearby enclaves like South Boston, whose strong regional features are often viewed as representing the “Boston accent” even though they only represent one aspect of Boston.

In eastern Massachusetts, there is a commonly evoked notion of “quintessential Boston” and a “strong Boston accent” which in reality only represent certain types of communities. The use of these phrases generalizes these sociolinguistic traits to all groups of people in Boston. This can be a dangerous practice because it erases other speech patterns that belong to the multiple ethnic groups who share Boston and co-construct its cultures (Fought 2006). The Black/African American community has been marginalized throughout history. These attitudes that dictate which dialects qualify as a “Boston accent” may be another form of oppression and insistence that the “White way” is the “correct” way. This is important for issues of social justice as public discourse continues to confront vestigial features of colonialism in modern day society. We hope that future sociolinguistic research will examine more neighborhoods of Boston, interviewing members of other ethnic groups, and gaining a deeper understanding of this complex and multifaceted city.

References

Kim, Chaeyoon, Sravana Reddy, James Stanford, Ezra Wyschogrod & Jack Grieve (forthcoming). Bring on the crowd! Using online audio crowdsourcing for large-scale New England dialectology and
acoustic sociophonetics. *American Speech.*
Rosenfelder, Ingrid, Josef Fruehwald, Keelan Evanini, Scott Seyfarth, Kyle Gorman, Hilary Prichard, Jiahong Yuan. 2014. FAVE (Forced Alignment and Vowel Extraction) Program Suite v1.2.2.