
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

1-1-2010

Termination Casts: A Flexible Approach to Termination With Termination Casts: A Flexible Approach to Termination With

General Recursion (Technical Appendix) General Recursion (Technical Appendix)

Aaron Stump
University of Iowa

Vilhelm Sjoberg
University of Pennsylvania

Stephanie Weirich
University of Pennsylvania, sweirich@cis.upenn.edu

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Aaron Stump, Vilhelm Sjoberg, and Stephanie Weirich, "Termination Casts: A Flexible Approach to
Termination With General Recursion (Technical Appendix)", . January 2010.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-10-21.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/930
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F930&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/930
mailto:repository@pobox.upenn.edu

Termination Casts: A Flexible Approach to Termination With General Recursion Termination Casts: A Flexible Approach to Termination With General Recursion
(Technical Appendix) (Technical Appendix)

Abstract Abstract

This paper proposes a type-and-effect system called Teq↓, which distinguishes terminating terms and
total functions from possibly diverging terms and partial functions, for a lambda calculus with general
recursion and equality types. The central idea is to include a primitive type-form "Terminates t", expressing
that term t is terminating; and then allow terms t to be coerced from possibly diverging to total, using a
proof of Terminates t. We call such coercions termination casts, and show how to implement terminating

recursion using them. For the meta-theory of the system, we describe a translation from Teq↓ to a logical

theory of termination for general recursive, simply typed functions. Every typing judgment of Teq↓ is
translated to a theorem expressing the appropriate termination property of the computational part of the

Teq↓ term.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-10-21.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/930

https://repository.upenn.edu/cis_reports/930

Termination Casts: A Flexible Approach to Termination with

General Recursion (Technical Appendix)

Aaron Stump

Computer Science

The University of Iowa

astump@acm.org

Vilhelm Sjöberg

Computer and Information Science

University of Pennsylvania

vilhelm@cis.upenn.edu

Stephanie Weirich

Computer and Information Science

University of Pennsylvania

sweirich@cis.upenn.edu

Abstract

This paper proposes a type-and-effect system called Teq↓, which distinguishes terminating terms

and total functions from possibly diverging terms and partial functions, for a lambda calculus with

general recursion and equality types. The central idea is to include a primitive type-form “Terminates

t”, expressing that term t is terminating; and then allow terms t to be coerced from possibly diverging

to total, using a proof of Terminates t. We call such coercions termination casts, and show how

to implement terminating recursion using them. For the meta-theory of the system, we describe a

translation from Teq↓ to a logical theory of termination for general recursive, simply typed functions.

Every typing judgment of Teq↓ is translated to a theorem expressing the appropriate termination

property of the computational part of the Teq↓ term.

1 Introduction

Soundly combining general recursion and dependent types is a significant current challenge in the design

of dependently typed programming languages. The two main difficulties raised by this combination are

(1) type-equivalence checking with dependent types usually depends on term reduction, which may fail

to terminate in the presence of general recursion; and (2) under the Curry-Howard isomorphism, non-

terminating recursions are interpreted as unsound inductive proofs, and hence we lose soundness of the

type system as a logic.

Problem (1) can be addressed simply by bounding the number of steps of reduction that can be

performed in a single conversion. This solution may seem ad hoc, but it is less problematic if one works,

as we do here, with a primitive notion of propositional equality, and no automatic conversion. Explicit

casts with equality proofs are used to change the types of terms, and so with a bound on the number

of reduction steps allowed, one may simply chain together a sequence of conversions to accommodate

long-running terms in types. There are certainly some issues to be addressed in making such a solution

workable in practice, but it is not a fundamental problem.

Problem (2), on the other hand, cannot be so easily dealt with, since we must truly know that a

recursive function is total if we are to view it soundly as an inductive proof. One well-known approach

to this problem was proposed by Capretta [7]: extend a terminating type theory (that is, one for which

we have a sound static analysis for totality, which we use to require all functions to be total) with general

recursion via coinductive types. Corecursion is used to model general-recursive functions, without losing

logical soundness: productive corecursive functions correspond to sound coinductive arguments. The

type constructor (·)ν for possibly diverging computations, together with natural operations on it, is shown

to form a monad.

A separate problem related to (2) is extending the flexibility of totality checking for total type the-

ories. It is well-known that structural termination can become awkward for some functions like, for

1

Termination Casts Stump, Sjöberg, and Weirich

example, natural-number division, where a recursive call must be made on the result of another function

call. For this situation, methods like type-based termination have been proposed: see Barthe et al. [4]

and several subsequent works by those authors; also, Abel [1]. The idea in type-based termination is,

roughly, to associate sizes with data, and track sizes statically across function calls. Recursive calls

must be on data with smaller size. This method certainly increases the range of functions judged total

in their natural presentation. No static termination analysis will be complete, so there will always be

programs that type-based termination cannot judge terminating. When such analyses fail, programmers

must rewrite their code so that its termination behavior is more apparent to the analysis. What is required

is a flexible method for such explicit termination arguments.

This paper’s contribution This paper proposes a system called Teq↓ that can be seen as building on

both these lines of work. We develop a type-and-effect system where the effect distinguishes total from

possibly partial terms. The type assignment judgment Γ � t : T θ includes a termination effect θ , which

can be either ↓ (called “total”), for terms that are known to terminate, or ? (called “general”), for terms

whose termination behavior is unknown.

We can view this approach as building, at least in spirit, on Capretta’s approach with the par-

tiality monad, thanks to the close connection between monads and effects, as shown by Wadler and

Thiemann [18]. Of course, there are important differences between the monadic and effectful ap-

proaches, most notably that effects are hard-wired into the language definition, while monads are usually

programmer-defined. We adopt the effectful approach here, since we are particularly focused on these

two kinds of computation, terminating and possibly partial, as fundamental. We thus deem them appro-

priate for hard-wiring into the language itself. Exploring the tradeoffs more deeply between these two

approaches must remain to future work.

Importantly, Teq↓ provides a flexible approach to termination because the judgment of totality,

Γ � t : T ↓, is internalized into the type system. The type Terminates t expresses termination of term t.
The effect of a term can thus be changed from possibly partial to total by casting the term t with a proof

of Terminates t. These termination casts change the type checker’s view of the termination behavior

of a term, much as a (sound) type cast changes its view of the type of the term. Termination casts are

used with the terminating recursion operator: the body of the putatively terminating recursive function is

type-checked under the additional explicit assumption that calls with a structurally smaller argument are

terminating.

By reifying this basic view of structural termination as an explicit typing assumption, we follow

the spirit of type-based termination: our method eliminates the need for a separate structural check

(proposed as an important motivation for type-based termination [4]), and gives the programmer even

more flexibility in the kind of functions s/he can write. This is because instead of relying on a static

analysis to track sizes of datatypes, our approach allows the user (or an automated reasoning system)

to perform arbitrarily complex reasoning to show termination of the function. This reasoning can be

internal, using termination casts, or completely external: one can write a general-recursive function that

the type checker can only judge to be possibly partial, and later prove a theorem explicitly showing that

the function is terminating. Of course, one could also wish to support what we would see as a hybrid

approach, in the style of the PROGRAM tactic in Coq [16], but this is outside the scope of the present

paper.

Outline of the development In Section 2, we first present the syntax, reduction rules and type as-

signment system for Teq↓. Because type assignment is not algorithmic for Teq↓, we also develop an

annotated version of Teq↓ suitable for implementation, where terms are annotated to enable algorithmic

type checking. We follow this explanation with a number of examples of the use of termination casts, in

2

Termination Casts Stump, Sjöberg, and Weirich

effects θ ,ρ ::= ↓ | ?

types T ::= nat | Πθ x :T.T ′ | t = t′ | Terminates t
terms t ::= x | λ x . t | t t′ | 0 | Suc t

| rec f (x) = t | case t t′ t′′

| join | terminates | contra | abort
values v ::= x | 0 | Sucv | λ x . t | rec f (x) = t

| join | terminates | contra
contexts C ::= [] | SucC | C t | vC | caseC t t

Figure 1: Syntax of Teq↓

Section 3. Next, in Section 4 we develop our central meta-theoretic result, based on a translation of Teq↓

typing judgments to judgments about termination of the term in question, formulated in a first-order logi-

cal theory of general-recursive functions (called W ′). This system is similar in spirit to Feferman’s theory

W (see Chapter 13 of [10]), although with significant syntactic differences, and support for hypothetical

reasoning about termination. We show that Teq↓ is sound with respect to this translation. Also, we find

that constructive reasoning suffices for soundness of the translation, so we take W ′ to be intuitionistic

(whereas an important characteristic of W is that its logic is classical).

2 Definition of Teq↓

The language Teq↓ is a simple language with natural numbers and dependently-typed recursive functions.

The syntax of types T and terms t appears in Figure 1. The variable x is bound in t in the term λ x . t and in

T ′ in the type Πθ x :T.T ′. As explained below, θ for Π-types represents the latent effect of the function’s

computation (it does not describe the input argument). The variables f and x are bound in t in the term

rec f (x) = t. We use the notation [t′ /x]T and [t′ /x] t to denote the capture-avoiding substitution of t′

for x in types and terms respectively.

We deliberately omit from Teq↓ many important type-theoretic features which we believe to be or-

thogonal to the central ideas explored here. A full-fledged type theory based on these ideas would include

user-defined inductive types, type polymorphism, perhaps a universe hierarchy, large eliminations, im-

plicit products, and so forth. Some of these features, in particular large eliminations, raise serious tech-

nical challenges for this approach (and many others). For this paper we develop the core ideas needed

for distinguishing total and possibly partial computations with our effect system and using termination

casts to internalize termination, leaving other problems to future work.

2.1 Operational semantics

Reduction for Teq↓ is defined as a call-by-value small-step operational semantics. Figure 1 presents the

syntax of values and evaluation contexts and Figure 2 contains the two judgments that make up this

semantics. Values in Teq↓ include variables, natural numbers, functions and primitive proof terms for the

internalized judgments of equality and termination.

We define the reduction rules with two relations: the primitive β rules, written t �β t′ describe

reduction when a value is in an active position. This relation is used by the main reduction relation

t � t′, which lifts beta reduction through evaluation contexts C and terminates computation for abort,
representing finite failure. Other proof forms, including contra, are considered values. We cannot, in

fact, obtain a contradiction in the empty context (assuming our theory W ′ is consistent), but at this point

in the development that cannot be shown.

3

Termination Casts Stump, Sjöberg, and Weirich

t �β t′

(λ x . t)v �β [v/x] t
BETA APPABS

case 0 t t′ �β t
BETA CASEZERO

case (Sucv) t t′ �β t′ v
BETA CASESUC

(rec f (x) = t)v �β [v/x] [rec f (x) = t/ f] t
BETA APPREC

t � t′

t �β t′

C [t] � C [t′]
RED CTXT

C [abort] � abort
RED ABORT

Figure 2: Call-by-value small-step operational semantics

2.2 Type assignment

Figure 3 defines the type-assignment system. The judgment Γ � t : T θ states that the term t can be

assigned type T in the context Γ with effect θ . (The other two judgments, Γ � Ok and Γ � T , are used

by this one to check that contexts and types are well formed.) We define the system such that θ is an

approximation of the termination behavior of the system. If we can derive a judgment Γ � t : T ↓, then

this means that for any assignment of values to the variables in Γ, reduction of t must terminate. (If

the context is inconsistent, t might not terminate even if the type system judges it to do so, since an

inconsistent context can make unsatisfiable assertions about termination, which may pollute the type

system’s judgments.) In contrast, the judgment Γ � t : T ? places no restrictions on the termination

behavior of t. We view θ is as a capability on termination behavior [9]. A term with capability ? is

allowed to diverge, but terms with capability ↓ cannot. As a result, any term that typechecks with ↓ will

also typecheck with ?. Thus ? is more permissive than ↓, and we order them as ↓≤?.

Such reasoning is reflected in the type system. Teq↓ has a call-by-value operational semantics, so

variables stand for values. Therefore, a variable is known to terminate, so we can type variables with any

effect in rule T VAR. This pattern occurs often; all terms that are known to terminate have unconstrained

effects in the conclusion of their typing rules. In this way, we build subeffecting into the type system and

do not need an additional rule to coerce total terms to general ones. Because of this subeffecting, when

a premise of a rule uses the general effect, such as K EQ, it places no restriction on the term.

As is standard in type-and-effect systems, function types are annotated with a latent effect. This effect

records the termination effect for the body of the function, in rule T ABS. Likewise, in an application

(rule T APP), the latent effect of the function must be equal or less than the current termination effect.

Note that, although the system supports subeffecting, it does not support subtyping. In an application,

the type of the argument must exactly match that expected by the function. Although there is a natural

extension of subeffecting to subtyping, for simplicity we have not included it in this system.

Teq↓ types include two propositions. The type t = t′ states that two terms are equal and the type

Terminates t declares that term t is terminating. The introduction form for the equality proposition

(rule T JOIN) requires both terms to be well typed and evaluate to a common reduct. For flexibility,

these terms need not be judged terminating nor have the same type. The elimination form (T CONV)

uses a total proof of equality to convert between equivalent types. Likewise, the introduction form for

the Terminates t proposition (T REIFY) requires showing that the term terminates. Analogously, the

elimination form (T REFLECT) uses a total proof of termination to change the effect of t. Teq↓ also

internalizes an admissible property of the judgment with the empty context—if a term terminates, then

4

Termination Casts Stump, Sjöberg, and Weirich

Γ � T

Γ � Ok
Γ � nat

K NAT
Γ , x : T � T ′

Γ � Πθ x :T.T ′ K PI

Γ � t : T ? Γ � t′ : T ′ ?

Γ � t = t′
K EQ

Γ � t : T ?

Γ � Terminates t
K TERM

Γ � Ok

· � Ok
OK EMPTY

Γ � Ok Γ � T
Γ , x : T � Ok

OK CONS

Γ � t : T θ

t �∗ t0 t′ �∗ t0
Γ � t : T ? Γ � t′ : T ′ ?

Γ � join : t = t′ θ
T JOIN

Γ � t : [t2 /x]T θ
Γ � t′ : t1 = t2 ↓ Γ � [t1 /x]T

Γ � t : [t1 /x]T θ
T CONV

Γ � t : T ↓
Γ � terminates : Terminates t θ

T REIFY

Γ � t : T ?

Γ � t′ : Terminates t ↓
Γ � t : T θ

T REFLECT

Γ � t : Terminates C [t′] θ
Γ � t : Terminates t′ θ

T CTXTERM
Γ(x) = T Γ � Ok

Γ � x : T θ
T VAR

Γ , x : T ′ � t : T ρ Γ � Πρx :T ′.T
Γ � λ x . t : Πρx :T ′.T θ

T ABS
Γ � t : Πρx :T ′.T θ Γ � t′ : T ′ θ ρ ≤ θ

Γ � t t′ : [t′ /x]T θ
T APP

Γ � Ok
Γ � 0 : nat θ

T ZERO
Γ � t : nat θ

Γ � Suc t : nat θ
T SUC

Γ � t : 0 = Suc t′ ↓
Γ � contra : T θ

T CONTRA
Γ � Ok

Γ � abort : T ?
T ABORT

Γ , f : Π?x :T ′.T , x : T ′ � t : T ?

Γ � rec f (x) = t : Π?x :T ′.T θ
T REC

Γ � t : nat θ Γ � t′ : [0/x]T θ
Γ � t′′ : Πρx′ :nat.[Sucx′ /x]T θ ρ ≤ θ

Γ � case t t′ t′′ : [t/x]T θ
T CASENAT

p �∈ fv t
Γ , f : Π?x :nat.T , x : nat , p : Π↓x1 :nat.Π↓p′ :x = Sucx1.Terminates (f x1) � t : T ↓

Γ � rec f (x) = t : Π↓x :nat.T θ
T RECNAT

Figure 3: Type assignment system

5

Termination Casts Stump, Sjöberg, and Weirich

annot. types S ::= nat | Πθ x :S.S′ | a = a′ | Terminates a
annot. terms a ::= x | aa′ | λ θ x:S.a | 0 | Suca

| recnat f (x p): S = a | rec f (x:S): S′ = a | case x.S a a′ a′′

| join a a′ | conv x.S a′ a | terminates a | reflect a a′

| inv a a′ | contra S a | abort S

Figure 4: Syntax of annotated Teq↓

the subterm in the active position of the term terminates (T CTXTERM). This property does not (appear

to) follow constructively from the others.

Recursive functions can be typed with either general or total latent effects. In the latter case, the

T RECNAT rule introduces a new hypothesis into the context that may be used to show that the body of

the function is total. The assumption p : Π↓x1 : nat.Π↓p′ : x = Sucx1.Terminates (f x1) is an assertion

that for any number x1 that is one less than x, the recursive call (f x1) terminates. Even though the type

of f has a ? latent effect, recursive calls on the immediate predecessor can be cast to be total using this

assumption.

The rule T RECNAT includes a restriction that p �∈ fv t. This means that the only places that p can

occur in a typing derivation is in the proof-premises of T CONV, T REFLECT, and T CONTRA. The

advantage of setting up the system this way is that we can define the operational semantics without any

reference to proofs: the rule BETA APPREC does not have to specify a proof term to substitute for free

occurrences of p in t. In other words the T RECNAT rule bakes in a form of proof erasure [12, 3, 11].

We may worry that this restriction limits the expressiveness of the language because the variable p
can not be used in every context. However, that is not the case as our system satisfies a form of proof
irrelevance. No matter what proof we have of termination, we can always use the rules T REIFY and

T REFLECT to replace it by the (computationally) uninformative proof terminates. We give an example

of this behavior in the next section. Thus, we do not lose anything by making the proof variable p
second-class, since we can always replace it with a proof that does not mention p. (Likewise, equality

proofs are irrelevant, as we can use T JOIN followed by T CONV to show that Γ � u : t = t′ ↓ implies

Γ � join : t = t′ ↓.)

2.3 Annotated language

The previous two subsections provide a complete specification of the Teq↓ language. However, in Teq↓,

type inference is not algorithmic. Given a context Γ, a term t and effect θ , it is not clear how to determine

if there is some T such that Γ � t : T θ holds. The terms do not contain enough information to indicate

how to construct a typing derivation.

Fortunately, it is straightforward to produce an annotated version of Teq↓ where the type checking

algorithm is fully determined. Below we give the syntax of the annotated terms. The full typing rules for

the annotated system appear in Figure 6. The judgment form is Γ � a : S θ , where algorithmically, Γ, a,

and θ are inputs to the type checker and type S is the output.

Most annotated term forms have direct correspondence to the unannotated terms. Figure 5 defines

the operation | · | that erases annotations. Notably, there are two different forms of recursion, based

on which typing rule should be used. Furthermore, the syntax includes terms (conv x.S a′ a, inv a a′,
and reflect a a′) that mark where type conversions, termination inversions and termination casts should

occur—these are implicit in the unannotated system.

The annotated system uses types S that are exactly like types T except that they contain annotated

terms. However, because there is no operational semantics defined for annotated terms, the join rule

6

Termination Casts Stump, Sjöberg, and Weirich

Types
|nat | = nat
Πθ x :S.S′	= Πθ x :	S	.	S′
a = a′	=	a	=	a′
Terminates a	= Terminates	a		

Terms
|x | = x
|aa′ | = |a | |a′ |
|λ θ x:S.a | = λ x . |a |
|0 | = 0

Suca	= Suc	a				
case x.S a a′ a′′	= case	a		a′		a′′
recnat f (x p): S = a	= rec f (x) =	a				
rec f (x:S): S′ = a	= rec f (x) =	a				

| join a a′ | = join
| terminates a | = terminates
|contra S a | = contra
|abort S | = abort
conv x.S a a′	=	a
reflect a a′	=	a
inv a a′	=	a

Figure 5: Annotation erasure

(shown below) first erases the annotations before determining if there is some common reduct. Likewise,

the inversion rule uses erasure to find the evaluation context.

Simple comparison of the typing rules of the two systems in a straightforward inductive proof shows

that the annotated system is sound and complete with respect to the implicit system.

Proposition 1 (Soundness of annotated system). If Γ � a : S θ then Γ � |a | : |S | θ .

Proposition 2 (Completeness of annotated system). If Γ � t : T θ then there exists an a and S, such that
|a | = t and |S | = T and Γ � a : S θ .

Note that although type inference is syntax-directed, it is only decidable in the annotated system

if there is some cut-off in normalization in the join rule. Even if we were to require a and a′ to have

the total effect in this rule, this restriction would not ensure decidability. An inconsistent context could

type a looping term with a total effect. It would be reasonable to make the cutoff part of the annotated

join-term itself, although here we use a global cut-off. Note that imposing a cutoff in the join rule in

the annotated system does not jeopardize completeness as a single join in the implicit system can be

translated to several joins in the annotated system.

Finally, we are not considering the problem of annotation inference for this system. This is an

important problem to ease the burden of programming with termination casts. We conjecture that in many

simple cases like structural decrease of a single parameter to the function, the appropriate termination

casts can be added completely automatically. But working this process out is beyond the scope of this

paper.

3 Examples

Natural number addition: internal verification Our first example shows how simple structurally re-

cursive functions can be shown terminating at their definition time using the T RECNAT rule. We define

natural number addition with the following term, showing first its implicit then annotated versions:

7

Termination Casts Stump, Sjöberg, and Weirich

Γ � S

Γ � Ok
Γ � nat

S NAT
Γ � S Γ , x : S � S′

Γ � Πθ x :S.S′
S PI

Γ � a : S ? Γ � a′ : S′ ?

Γ � S Γ � S′

Γ � a = a′
S EQ

Γ � a : S ?

Γ � Terminates a
S TERM

Γ � Ok

· � Ok
OKA EMPTY

Γ � Ok Γ � S
Γ , x : S � Ok

OKA CONS

Γ � a : S θ

|a | �N t |a′ | �N t
Γ � a : S ? Γ � a′ : S′ ?

Γ � join a a′ : a = a′ θ
AT JOIN

Γ � a : [a2 /x]S θ
Γ � a′ : a1 = a2 ↓ Γ � [a1 /x]S

Γ � conv x.S a a′ : [a1 /x]S θ
AT CONV

Γ � a : S ↓
Γ � terminates a : Terminates a θ

AT REIFY
Γ � a : S ? Γ � a′ : Terminates a ↓

Γ � reflect a a′ : S θ
AT REFLECT

Γ � a : Terminates a′′ θ
|a′′ | = C [|a′ |]

Γ � inv a a′ : Terminates a′ θ
AT CTXTERM

Γ(x) = T Γ � Ok
Γ � x : S θ

AT VAR

Γ , x : S′ � a : S ρ Γ � Πρx :S′.S
Γ � λ ρx:S′.a : Πρx :S′.S θ

AT ABS
Γ � a : Πρx :S′.S θ Γ � a′ : S′ θ ρ ≤ θ

Γ � aa′ : [a′ /x]S θ
AT APP

Γ � Ok
Γ � 0 : nat θ

AT ZERO
Γ � a : nat θ

Γ � Suca : nat θ
AT SUC

Γ � a : 0 = Suca′ ↓
Γ � contra S a : S θ

AT CONTRA
Γ � Ok

Γ � abort S : S ?
AT ABORT

Γ , f : Π?x :S′.S , x : S′ � a : S ?

Γ � rec f (x:S′): S = a : Π?x :S′.S θ
AT REC

Γ � a : nat θ Γ � a′ : [0/x]S θ
Γ � a′′ : Πρx′ :nat.[Sucx′ /x]S θ
ρ ≤ θ

Γ � case x.S a a′ a′′ : [a/x]S θ
AT CASENAT

p �∈ fva
Γ , f : Π?x :nat.S , x : nat , p : Π↓x1 :nat.Π↓p′ :x = Sucx1.Terminates (f x1) � a : S ↓

Γ � recnat f (x p): S = a : Π↓x :nat.S θ
AT RECNAT

Figure 6: Annotated type checking system

8

Termination Casts Stump, Sjöberg, and Weirich

implicit plus def= λ x2 .rec f (x1) = (case x1 (λ q .x2) (λ x′ .λ q .Suc(f x′))) join
annotated plus def= λ ↓x2:nat. recnat f (x1 p): nat =

(case x.(Π↓q :x1 = x.nat) x1

(λ ↓q:x1 = 0.x2)
(λ ↓x′:nat.λ ↓q:x1 = Sucx′. Suc(reflect (f x′) (px′ q))))

(join x1 x1)

In this example, we must abstract over equality types that are then applied to join. This standard trick,

used frequently in COQ and similar dependent type theories, introduces different assumptions of equal-

ities into the context, depending on the case branch. As remarked above, we have deliberately omitted

from Teq↓ a number of features that would improve some of these examples, notably implicit products

(as proposed by Miquel [11]) for equality proofs in case-terms.

The typing rules verify that plus is a total operation. For example, in the annotated system we can

show:

· � plus : Π↓x1 :nat.Π↓x2 :nat.nat ↓
To see why this is so, consider the context that we use to type check the body of the recursive function:

Γ def= x1 : nat , x2 : nat , f : Π?x1 :nat.nat , p : Π↓x′ :nat.Π↓q :x1 = Sucx′.Terminates (f x′) , ·

In this context, we would like to show that the case expression has type (Π↓q : x1 = x1.nat). Note that

the abstraction of q must be ↓ so that when we apply the case expression to join the entire expression

will have the ↓ effect. In the zero case, we use rules TA ABS and TA VAR to show that the abstraction

has the desired total function type.

In the successor case, we use a termination cast to show that the recursive call is total. Without this

cast, we would be unable to use the latent effect ↓ in the abstraction of q. Using the rules for variables

and application we can show that the recursive call has a general effect, but by itself, this will not let us

define a total function.

Γ , x′ : nat , q : x1 = Sucx′ � f x′ : nat ?

However, given the extra argument from recursive function, we can produce a proof that the recursive

call terminates.

Γ , x′ : nat , q : x1 = Sucx′ � px′ q : Terminates (f x′) ↓
From these two, we can use a termination cast to change the effect of the recursive call.

Γ , x′ : nat , q : x1 = Sucx′ � reflect (f x′) (px′ q) : nat ↓
Finally, we can use the rules for successor and abstraction to conclude that the successor case has the

desired type.

Natural number addition: external verification An advantage of this system is that we do not need

to prove that plus is total when we define it. We could also define plus using general recursion:

plus def= λ x2 .rec f (x1) = case x1 x2 (λ z .Suc(f z))

But note, the best typing derivation will assign a ? latent effect to this function. (For brevity, this and

further examples will be presented in the implicit language.)

· � plus : Π↓x2 :nat.Π?x1 :nat.nat ↓

9

Termination Casts Stump, Sjöberg, and Weirich

However, all is not lost. We can still prove the following theorem and use it in a termination cast to show

that a particular application of plus terminates. The proof term (below) uses recursion to construct a total

witness for this theorem.

plustotal : Π↓x2 :nat.Π↓x1 :nat.Terminates (plusx2 x1)

plustotal def= λ x2 .(rec f (x1) = (case x1 (λ q . terminates) (λ z .λ q . terminates)) join)

To understand this proof term, we look at the typing derivation in each branch of the case term. Let Γ be

the context that rule T RECNAT uses to check the body of the recursive definition, shown below.

Γ def= x2 : nat,
x1 : nat,
f : Π?z :nat.Terminates (plusx2 z),
p : Π↓z :nat.Π↓q :x1 = Sucz.Terminates (f z)

Then in the zero case, because plusx2 0 evaluates to x2 and variables terminate, we can use rule T CONV

to show that case total.

Γ , q : x1 = 0 � x2 : nat ↓
Γ , q : x1 = 0 � terminates : Terminates x2 ↓

...

Γ � join : plusx2 0 = x2 ↓
Γ , q : x1 = 0 � terminates : Terminates (plusx2 0) ↓

Γ � λ q . terminates : Π↓q :x1 = 0.Terminates (plusx2 0) ↓
For the successor case, we need to make a recursive call to the theorem to show that the recursive call to

the function terminates. Below, let Γ′ be the extended environment Γ , z : nat , q : x1 = Sucz and (∗) be

the derivation of Γ′ � join : plusx2 (Sucz) = Suc(plusx2 z) ↓. Then, the derivation looks like:

...

Γ′ � plusx2 z : nat ?

...

Γ′ � f z : Terminates (plusx2 z) ↓
Γ′ � plusx2 z : nat ↓

Γ′ � Suc(plusx2 z) : nat ↓
Γ′ � terminates : Terminates (Suc(plusx2 z)) ↓ (∗)

Γ′ � terminates : Terminates (plusx2 (Sucz)) ↓

First-class termination proofs Recursive functions can also call helper functions in their definitions,

passing off the recursive term and a proof that the recursive call will terminate. For example, suppose

there is some function h that takes a an argument, a (general) function to call on that argument, and a

proof that the call terminates.

h : Π↓x :nat.Π↓f :Π?x :nat.nat.Π↓p :Terminates (f x).nat

For example, h may just apply f to x and use a termination cast to show the effect total. We can use h
in the definition of a total recursive function, even if we do not know its definition. (Let Γ be a context

which contains the above binding for h.)

Γ � rec f (x) = (case x (λ q .0) (λ z .λ q .hz f terminates)) join : Π↓x :nat.nat ↓
Note that in this example, we use terminates as the proof that f z terminates. Although T RECNAT

introduces the variable p, of type Π↓z :nat.Π↓q :z = Sucz.Terminates (f z), we cannot pass pzq as the

10

Termination Casts Stump, Sjöberg, and Weirich

termination proof to h because p cannot be mentioned in the term. However, the proof term terminates
works instead, as shown by the following derivation. (Let Γ′ be the context in the successor case, i.e. Γ
extended with bindings for x, f , p, z and q.)

...

Γ′ � pzq : Terminates (f z) ↓

...

Γ′ � f z : nat ?
T REFLECT

Γ′ � f z : nat ↓
T REIFY

Γ′ � terminates : Terminates (f z) ↓

Natural number division Finally, we demonstrate a function that requires a course-of-values argument

to show termination: natural number division. The general problem is that division calls itself recursively

on a number that is smaller, but is not the direct predecessor of the argument. To show that this function

terminates, we do structural recursion on an upper bound of the dividend instead of the dividend itself.

(Note that we could also define division as a possibly partial function, without this extra upper-bound

argument, and separately write a proof that states that division is a total function.) The type we use for

division is:

div : Π↓z :nat.Π↓x :nat.Π↓x′ :nat.Π↓u :(ltex′ x) = true.nat

where z is the divisor, x′ is the dividend, x is an upper bound of the dividend, and lte is a function that

determines if the first number is “less-than-or-equal” the second. We have been parsimonious in omitting

a boolean type, so we use 0 and Suc0 for false and true, respectively in the result of lte. Therefore, we

define

lte def= rec f (x) = λ u .case x (Suc0) (λ x′ .case u 0 (f x′))

and show

· � lte : Π?x :nat.Π?x′ :nat.nat ↓
Note that we are considering lte as a possibly partial function; nothing is harmed by not requiring it to be

total. We also define cut-off subtraction as a total function minus of type Π↓x :nat.Π↓x′ :nat.nat (details

omitted). The code for division is then:

div def= λ z.((case z
(λ q .λ x .λ x′ .λ u .0)
(λ z′ .λ q .rec f (x) = λ x′ .λ u .((case (lte(Sucx)z) t1 (λ z′′ .λ q′ .0)) join)))

join)

We handle the case of division by 0 up front, obtaining an assumption q : z = Sucz′ when the divisor is

not zero. Next, we case split on whether or not the bound x is strictly less than z; that is, lte(Sucx)z. If

so, we use the term λ z′′ .λ q′ .0 of type

Π↓z′′ :nat.Π↓q′ : lte(Sucx)z = (Sucz′′).nat

Then the quotient is 0. If not, we use the term t1, of type Π↓q′ :(lte(Sucx)z = 0).nat, which is (with t2
discussed below):

t1
def= λ q′ .(Suc(f (pred x)(minusx′ z) t2))

In this case, we are decreasing our bound on the dividend by one, and then using a termination cast to

show that f (pred x) is terminating. Here, we define pred as just λ x .case x 0 λ x′ .x′. Of course, since this

is the implicit language, the termination cast does not appear in the term itself. To apply the termination

11

Termination Casts Stump, Sjöberg, and Weirich

cast, we must use the implicit assumption p telling us that f terminates on the predecessor of x. We can

prove that case x 0 λ x′ .x′ is the predecessor of x in this case, because the assumptions q : z = (Sucz′)
and q′ : lte(Sucx)z = false show that x is non-zero: Intuitively, q′ implies that x is greater than or equal

to z, which we know is non-zero by q. The term t2 is a proof that minusx′ z is less than or equal to the

predecessor of the bound, case x 0 λ x′ .x′. In fact, join will serve for t2 because the desired equation is

provable from the assumptions.

4 A Logical Semantics for Teq↓

In this section, we give a semantics for Teq↓ in terms of a simple constructive logic called W ′. This

semantics informs our design of Teq↓ and can potentially be used as part of a consistency proof for Teq↓.

The theory W ′ is reminiscent of Feferman’s theory W (see, for example, Chapter 13 of [10]). W is a

classical second-order theory of general-recursive functions, classified by class terms which correspond

to simple types. W supports quantification over class terms, and quantification over defined individual

terms. It is defined in Beeson’s Logic of Partial Terms, a logic designed for reasoning about definedness

in the presence of partial functions [5]. W includes a relatively weak form of natural-number induction.

Indeed, W is conservative over Peano Arithmetic.

4.1 The theory W ′

Figure 7 gives the syntax for sorts A (which are just simple types) and formulas F for the theory W ′; as

well as typing contexts Σ and contexts H for logical assumptions. Terms t are just as for (implicit) Teq↓,

except without contra, terminates, and join. Figure 8 gives the proof rules for the theory W ′. The form

of judgments is Σ ; H � F. This expresses that formula F holds under the assumed formulas in H. Σ is a

typing context declaring free term-level variables occurring in H and F.

W ′ is similar in spirit to Feferman’s W , but differs in a number of details. First, W is a two-sorted

theory: there is a sort for individual terms, and one for class terms. To express that term t is in class C,

theory W uses an atomic formula t ∈C. Our theory W ′, in contrast, is a multi-sorted first-order logic, with

one sort for every simple type. So W ′ does not make use of a predicate symbol to express that a term has

a sort. We only insist that terms are well-sorted when instantiating quantifiers. This is apparent in the rule

PV ALLE, which depends on a simple typing judgment for W ′. The rules for this typing judgment may

be found in the appendix (Section C). Well-formedness of equations does not require well-sortedness

of the terms in W ′ (as also in W). Also, we have no reason at the moment to include non-constructive

reasoning in W ′, so we define it using principles of intuitionistic logic only.

A few more words on the proof principles of W ′ are warranted. The PV OPSEM equates terms t and

t ′ iff t �∗ t ′. Thanks to the PV SUBST rule, symmetry and transitivity of equality can be derived in a

standard way. We do not require quantifiers to be instantiated by only terminating terms. This means that

for induction principles, we must state explicitly that the terms in question are terminating. We include a

principle PV COMPIND of computational induction, on the structure of a terminating computation. That

is, if we know that an application of a recursive function is terminating, we can prove a property of such

an application by assuming it is true for recursive calls, and showing it is true for an outer arbitrary call

of the function. Note that the assumption of termination of the application of the recursive function is es-

sential: without it, we could prove diverging terms terminate. We also include a principle PV TERMINV

of computational inversion, which allows us to conclude Terminates t from Terminates C [t]. Inter-

estingly, even without the inversion rule of Teq↓, the theorem we prove below would make heavy use of

computational inversion. In a classical theory like W , this principle may well be derivable from the other

axioms. Here, it does not seem to be.

12

Termination Casts Stump, Sjöberg, and Weirich

A ::= nat | A → A′

F ::= True | ∀x : A.F | F ⇒ F′ | F∧F′ | Terminates t | t = t′

Σ ::= · | Σ , x : A
H ::= · | H , F

Figure 7: Simple types, formulas, typing contexts, and assumption contexts of W ′

F ∈ H
Σ ; H � F

PV ASSUME
Σ , x : A ; H � F x �∈ fvH

Σ ; H � ∀x : A.F
PV ALLI

Σ ; H � ∀x : A.F Σ � t : A
Σ ; H � [t/x]F

PV ALLE
Σ ; H , F � F′

Σ ; H � F ⇒ F′ PV IMPI

Σ ; H � F ⇒ F′ Σ ; H � F
Σ ; H � F′ PV IMPE

Σ ; H � F Σ ; H � F′

Σ ; H � F∧F′ PV ANDI

Σ ; H � F∧F′

Σ ; H � F
PV ANDE1

Σ ; H � F∧F′

Σ ; H � F′ PV ANDE2

Σ ; H � True
PV TRUEI

Σ ; H � 0 = Suc t
Σ ; H � F

PV CONTRA

t �∗ t′

Σ ; H � t = t′
PV OPSEM

Σ ; H � t = t′ Σ ; H � [t/x]F
Σ ; H � [t′ /x]F

PV SUBST

Σ ; H � Terminates 0
PV TERM0

Σ ; H � Terminates t
Σ ; H � Terminates Suc t

PV TERMS

Σ ; H � Terminates λ x . t
PV TERMABS

Σ ; H � Terminates rec f (x) = t
PV TERMREC

Σ ; H � Terminates C [t]
Σ ; H � Terminates t

PV TERMINV
Σ ; H � Terminates abort

Σ ; H � F
PV NOTTERMABORT

Σ ; H � [0/x]F Σ , x′ : nat ; H , Terminates x′ , [x′ /x]F � [Sucx′ /x]F
Σ ; H � ∀x : nat.Terminates x ⇒ F

PV IND

Σ , f : A′ → A ; H , ∀x : A′.[f x/z]F � ∀x : A′.[t/z]F Σ � rec f (x) = t : A′ → A
Σ ; H � ∀x : A′.Terminates (rec f (x) = t)x ⇒ [(rec f (x) = t)x/z]F

PV COMPIND

Figure 8: Theory W ′

13

Termination Casts Stump, Sjöberg, and Weirich

[[x]]C = x [[t t′]]C = [[t]]C [[t′]]C

[[λ x . t]]C = λx. [[t]]C [[0]]C = 0

[[Suc t]]C = S [[t]]C [[join]]C = 0

[[terminates]]C = 0 [[contra]]C = 0

[[abort]]C = abort [[rec f (x) = t]]C = rec f (x).[[t]]C

[[case t t′ t′′]]C = C [[t]]C [[t′]]C [[t′′]]C

Figure 9: Computational translation of terms

[[nat]]C = nat
[[Πθ x :T.T ′]]C = [[T]] → [[T ′]]

[[t = t′]]C = nat
[[Terminates t]]C = nat

[[nat]]L t = True
[[Πθ x :T.T ′]]L t = ∀x : [[T]]C.[[T]]L↓ x ⇒ [[T ′]]Lθ (t x)

[[t1 = t2]]L t = [[t1]]C = [[t2]]C

[[Terminates t′]]L t = Terminates [[t′]]C

[[T]]L↓ t = Terminates t ∧ [[T]]L t

[[T]]L? t = Terminates t ⇒ [[T]]L t

Figure 10: Interpretation of types

Computational translation of terms Figure 9 defines what we will refer to as the computational

translation of Teq↓ terms (the “C” is for computational). This translation, which is almost trivial, just

maps logical terms join, terminates, and contra to 0.

Translation of types Next, given Teq↓ type T , we define [[T]]C and [[T]]L. The “L” is for logical

translation. This [[T]]C is a sort A, and [[T]]L is a predicate on translated terms. Recall that the syntax for

such types and for the formulas F used in such predicates is defined in Figure 7 above. The definition

of the interpretations is then given in Figure 10. Note that one can confirm the well-foundedness of this

definition by expanding the definition of [[T]]Lθ , a convenient abbreviation, wherever it is used.

4.2 Examples

Example 1. If we consider the type Π↓x1 : nat.Π↓x2 : nat.nat, we will get the following. Note that the

assumptions below that variables terminate reflect the call-by-value nature of the language. A translation

for a call-by-name language would presumably not include such assumptions.

[[Π↓x1 :nat.Π↓x2 :nat.nat]]C = nat → (nat → nat)
[[Π↓x1 :nat.Π↓x2 :nat.nat]]L plus = ∀x1 : nat.Terminates x1 ∧True ⇒ Terminates (plus x1) ∧

∀x2 : nat.Terminates x2 ∧True ⇒ Terminates (plus x1 x2)
∧ True

Example 2 (higher-order, total). If we wanted to type a function iter which iterates a terminating func-

tion x1, starting from x2, and does this iteration x3 times, we might use the type: Π↓x1 :Π↓x:nat.nat.Π↓x2 :

14

Termination Casts Stump, Sjöberg, and Weirich

[[·]]C = ·
[[Γ , x : T]]C = [[Γ]],x : [[T]]C

[[·]]L = ·
[[Γ , x : T]]L = [[Γ]], [[T]]L↓ x

Figure 11: Interpretation of contexts

nat.Π↓x3 :nat.nat. For this type (call it T for brevity), we will get the following translations:

[[T]]C = (nat → nat) → (nat → (nat → nat))
[[T]]L iter = ∀x1 : nat → nat.Terminates x1 ∧

(∀x : nat.Terminates x ∧ True ⇒ Terminates (x1 x) ∧ True) ⇒
Terminates (iter x1) ∧

∀x2 : nat.Terminates x2 ∧True ⇒ Terminates (iter x1 x2) ∧
∀x3 : nat.Terminates x3 ∧True ⇒ Terminates (iter x1 x2 x3) ∧ True

Notice that in this case, the logical interpretation [[T]]L includes a hypothesis that the function x1 is

terminating. This corresponds to the fact that x1 has type Π↓x :nat.nat in the original Teq↓ type.

Example 3 (higher-order, partial). If we wanted to type a different version of iter which, when given

a general-recursive function x1 and a starting value x2, returns a general-recursive function taking input

x3 and iterating x1 x3 times starting from x2, we might use the type: Π↓x1 :Π?x :nat.nat.Π↓x2 :nat.Π?x3 :

nat.nat. For this type (call it T), we will get the following logical translation:

[[T]]L iter = ∀x1 : nat → nat.Terminates x1 ∧
(∀x : nat.Terminates x ∧ True ⇒ Terminates (x1 x) ⇒ True) ⇒

Terminates (iter x1) ∧
∀x2 : nat.Terminates x2 ∧True ⇒ Terminates (iter x1 x2) ∧
∀x3 : nat.Terminates x3 ∧True ⇒ Terminates (iter x1 x2 x3) ⇒ True

4.3 Translation of contexts

Figure 11 gives a similar 2-part translation of typing contexts. The translation [[·]]C produces a simple-

typing context Σ, while the translation [[·]]L produces a logical context H, which asserts, for each variable

x, that x terminates and has the property given by the [[·]]L translation of its type.

4.4 Translation of typing judgments

We are now in a position to state the main theorems of this paper. The proofs are given in the Appendix.

Theorem 4 shows that the logical translation of types is sound: the property expressed by [[T]]Lθ can

indeed be proved to hold for the translation [[t]]C of terms of type T .

Theorem 3 (Soundness of Computational Translation). If Γ � t : T θ , then [[Γ]]C � [[t]]C : [[T]]C.

Theorem 4 (Soundness of Logical Translation). If Γ � t : T θ , then [[Γ]]C; [[Γ]]L � [[T]]Lθ [[t]]C.

15

Termination Casts Stump, Sjöberg, and Weirich

5 Related Work

Capretta’s Partiality Monad Capretta [7] gives an account of general recursion in terms of a coinduc-

tive type constructor (·)ν , and many Teq↓ programs can be fairly mechanically translated into programs

using (·)ν by a translation similar to the the one described by Wadler and Thiemann [18]. However,

one interesting difference is that Teq↓ functions can have a return type which depends on a potentially

nonterminating argument. It is not clear how to represent this in a monadic framework.

For example, if we imagine a version of Teq↓ extended with option types, and suppose we are given

a decision procedure for equality of nats and a partial function which computes the minimum zero of a

function:
eqDec : Π↓x :nat.Π↓x′ :nat.Maybe(x = x′)
minZero : Π?f :(Π↓x :nat.nat).nat

Then we can easily compose these to make a function to test if two functions have the same least zero:

λ f .λ f ′ .eqDec(minZerof)(minZerof ′)
: Π↓f :(Π↓x :nat.nat).Π?f ′ :(Π↓x :nat.nat).Maybe(minZerof = minZerof ′)

However the naive translation of this into monadic form,

λ f .λ f ′.(minZero f) >>= (λm.(minZero f ′) >>= (λm′.return (eqDec m m′))),

is not well typed, since the monadic bind >>= : ∀A B.Aν → (A → Bν) → Bν does not have a way to

propagate the type dependency.

Other Another approach, not depending on coinductive types, is explored by Capretta and Bove, who

define a special-purpose accessibility predicate for each general-recursive function, and then define the

function by structural recursion on the proof of accessibility for the function’s input [6]. ATS and

GURU both separate the domains of proofs and programs, and can thus allow general recursion without

endangering logical soundness [17, 8]. Systems like Cayenne [2], ΩMEGA [15]. and CONCOQTION [13]

support dependent types and general recursion, but do not seek to identify a fragment of the term language

which is sound as a proof system (although CONCOQTION uses COQ proofs for reasoning about type

indices).

6 Conclusion

Teq↓ combines equality types and general recursion, using an effect system to distinguish total from

possibly partial terms. Termination casts are used to change the type system’s view of the termination

behavior of a term. Like other casts, termination casts have no computational relevance and are erased

in passing from the annotated to the implicit type system. We have given a logical semantics for Teq↓

in terms of a multi-sorted first-order theory of general-recursive functions. Future work includes further

meta-theory, including type soundness for Teq↓ and further analysis of the proposed theory W ′; as well

as incorporation of other typing features, in particular polymorphism and large eliminations. An impor-

tant further challenge is devising algorithms to reconstruct annotations in simple cases or for common

programming idioms.

Acknowledgments. Many thanks to the PAR 2010 reviewers for an exceptionally close reading and

many constructive criticisms. All syntax definitions in this paper were typeset and type-checked with

the OTT tool [14]. Thanks also to other members of the TRELLYS project, especially Tim Sheard, for

helpful conversations on these ideas. This work was partially supported by the U.S. National Science

Foundation under grants 0702545, 0910510 and 0910786.

16

Termination Casts Stump, Sjöberg, and Weirich

References

[1] Andreas Abel. A Polymorphic Lambda-Calculus with Sized Higher-Order Types. PhD thesis, Ludwig-

Maximilians-Universität München, 2006.

[2] Lennart Augustsson. Cayenne–a language with dependent types. In Proc. 3rd ACM International Conference
on Functional Programming (ICFP), pages 239–250, 1998.

[3] B. Barras and B. Bernardo. The Implicit Calculus of Constructions as a Programming Language with Depen-

dent Types. In Roberto M. Amadio, editor, Foundations of Software Science and Computational Structures,
11th International Conference, FOSSACS 2008, volume 4962 of Lecture Notes in Computer Science, pages

365–379. Springer, 2008.

[4] G. Barthe, M. Frade, E. Giménez, L. Pinto, and T. Uustalu. Type-based termination of recursive definitions.

Mathematical Structures in Computer Science, 14(1):97–141, 2004.

[5] M. Beeson. Foundations of Constructive Mathematics: Metamathematical Studies. Springer, 1985.

[6] A. Bove and V. Capretta. Modelling general recursion in type theory. Mathematical Structures in Computer
Science, 15:671–708, February 2005. Cambridge University Press.

[7] V. Capretta. General Recursion via Coinductive Types. Logical Methods in Computer Science, 1(2):1–28,

2005.

[8] C. Chen and H. Xi. Combining Programming with Theorem Proving. In Proceedings of the 10th International
Conference on Functional Programming (ICFP05), Tallinn, Estonia, September 2005.

[9] K. Crary, D. Walker, and G. Morrisett. Typed Memory Management in a Calculus of Capabilities. In POPL
’99: Proceedings of the 26th ACM SIGPLAN-SIGACT symposium on Principles of programming languages,

pages 262–275. ACM, 1999.

[10] S. Feferman. In the Light of Logic. Oxford University Press, 1998.

[11] A. Miquel. The Implicit Calculus of Constructions. In Typed Lambda Calculi and Applications, pages

344–359, 2001.

[12] N. Mishra-Linger and T. Sheard. Erasure and Polymorphism in Pure Type Systems. In Roberto M. Ama-

dio, editor, Foundations of Software Science and Computational Structures, 11th International Conference
(FOSSACS), pages 350–364. Springer, 2008.

[13] E Pasalic, J. Siek, W. Taha, and S. Fogarty. Concoqtion: Indexed Types Now! In G. Ramalingam and

E. Visser, editors, ACM SIGPLAN 2007 Workshop on Partial Evaluation and Program Manipulation, 2007.

[14] P. Sewell, F. Nardelli, S. Owens, G. Peskine, T. Ridge, S. Sarkar, and R. Strnisa. Ott: Effective tool support

for the working semanticist. J. Funct. Program., 20(1):71–122, 2010.

[15] T. Sheard. Type-Level Computation Using Narrowing in Ωmega. In Programming Languages meets Program
Verification, 2006.

[16] M. Sozeau. Subset Coercions in Coq. In T. Altenkirch and C. McBride, editors, Types for Proofs and
Programs, International Workshop, TYPES 2006, Nottingham, UK, April 18-21, 2006, Revised Selected
Papers, pages 237–252, 2006.

[17] A. Stump, M. Deters, A. Petcher, T. Schiller, and T. Simpson. Verified Programming in Guru. In T. Altenkirch

and T. Millstein, editors, Programming Languges meets Program Verification (PLPV), 2009.

[18] P. Wadler and P. Thiemann. The marriage of effects and monads. ACM Trans. Comput. Logic, 4(1):1–32,

2003.

A Proof of Theorem 3 (Soundness of Computational Translation)

The proof is a routine induction on the assumed Teq↓ typing derivation, which we include here for

thoroughness:

17

Termination Casts Stump, Sjöberg, and Weirich

A.1 Case: T VAR

Γ(x) = T Γ � Ok
Γ � x : T θ

T VAR

This case follows directly from the easily proven fact that Γ(x) = T implies [[Γ]]C(x) = [[T]]C.

A.2 Case: T JOIN

t �∗ t0 t′ �∗ t0
Γ � t : T ? Γ � t′ : T ′ ?

Γ � join : t = t′ θ
T JOIN

The interpretation of the conclusion is just an instance of the STY VAR rule. This is also true for the

rules T REIFY, T INV, and T CONTRA, so we omit cases for those rules.

A.3 Case: T CONV

Γ � t : [t2 /x]T θ
Γ � t′ : t1 = t2 ↓ Γ � [t1 /x]T

Γ � t : [t1 /x]T θ
T CONV

By the IH we have [[Γ]]C � [[t]]C : [[[t2 /x]T]]C. We omit the straightforward proof that [[[t2 /x]T]]C =
[[T]]C = [[[t1 /x]T]]C, for any t1, t2, x, and T . So the fact we have from the first premise is what is required

for the conclusion. The case for T REFLECT is similar, and so is omitted.

A.4 Case: T ABS

Γ , x : T ′ � t : T ρ Γ � Πρx :T ′.T
Γ � λ x . t : Πρx :T ′.T θ

T ABS

By the IH we have [[Γ , x : T ′]]C � [[t]]C : [[T]]C. This is equivalent to [[Γ]]C,x : [[T ′]]C � [[t]]C : [[T]]C, to

which we can apply the simple typing rule STY ABS to obtain [[Γ]]C � λx. [[t]]C : [[T ′]]C → [[T]]C, which

suffices by the definition of [[·]]C.

A.5 Case: T APP

Γ � t : Πρx :T ′.T θ Γ � t′ : T ′ θ ρ ≤ θ
Γ � t t′ : [t′ /x]T θ

T APP

By the IH and the definition of [[·]]C, we have [[Γ]]C � [[t]]C : [[T ′]]C → [[T]]C and also [[Γ]]C � [[t′]]C : [[T ′]]C.

We may apply the simple typing rule STY APP to get [[Γ]]C � [[t]]C [[t′]]C : [[T]]C, which suffices, using

again the definition of [[·]]C, and also the fact used above that [[[t′ /x]T]]C = [[T]]C.

A.6 Case: T ZERO

Γ � Ok
Γ � 0 : nat θ

T ZERO

The desired conclusion is an instance of STY ZERO.

18

Termination Casts Stump, Sjöberg, and Weirich

A.7 Case: T SUC

Γ � t : nat θ
Γ � Suc t : nat θ

T SUC

This case follows from the IH and then applying STY SUC.

A.8 Case: T RECNAT

p �∈ fv t
Γ , f : Π?x :nat.T , x : nat , p : Π↓x1 :nat.Π↓p′ :x = Sucx1.Terminates (f x1) � t : T ↓

Γ � rec f (x) = t : Π↓x :nat.T θ
T RECNAT

By the IH, we have:

[[Γ , f : Π?x :nat.T , x : nat , p : Π↓x1 :nat.Π↓x2 :x = Sucx1.Terminates (f x1)]]C � [[t]]C : [[T]]C

This is equivalent to:

[[Γ]]C, f : nat → [[T]]C,x : nat, p : nat → nat → nat � [[t]]C : [[T]]C

We omit the straightforward proof that fv[[t]]C = fvt, which gives us p �∈ fv[[t]]C. We also omit the straight-

forward proof of Strengthening for our simply typed system, which says Σ , x : A � t : A′ implies Σ � t : A′

if x �∈ fv t. Using this Strengthening property for the simply typed system, we then have:

[[Γ]]C, f : nat → [[T]]C,x : nat � [[t]]C : [[T]]C

We may now just apply the rule STY REC, to conclude the desired [[Γ]]C � rec f (x) = [[t]]C : nat → [[T]]C.

The case for T REC is the same as the last part of this case, and so is omitted.

A.9 Case: T CASENAT

Γ � t : nat θ Γ � t′ : [0/x]T θ
Γ � t′′ : Πρx′ :nat.[Sucx′ /x]T θ ρ ≤ θ

Γ � case t t′ t′′ : [t/x]T θ
T CASENAT

By the IH and the definition of [[·]]C, we have:

• [[Γ]]C � [[t]]C : nat

• [[Γ]]C � [[t ′]]C : [[[0/x]T]]C

• [[Γ]]C � [[t ′′]]C : nat → [[[Sucx′/x]T]]C

Using again the property mentioned above, that [[[t/x]T]]C = [[T]]C, we may then apply the rule STY CASENAT

to obtain the desired conclusion.

A.10 Case: T ABORT

Γ � Ok
Γ � abort : T ?

T ABORT

The desired conclusion is just an instance of STY ABORT.

19

Termination Casts Stump, Sjöberg, and Weirich

B Proof of Theorem 4 (Soundness of Logical Translation)

We prove this by induction on the structure of the assumed derivation. Note first that if the interpretation

of a Teq↓ typing judgment with effect ↓ holds – that is, if we have [[Γ]]C; [[Γ]]L � Terminates [[t]]C ∧
[[T]]L[[t]]C – then we also have [[Γ]]C; [[Γ]]L � Terminates [[t]]C ⇒ [[T]]L[[t]]C, which is the interpretation of

the similar Teq↓ typing judgment with effect ?. So in cases where we can prove the interpretation of the

judgment with ↓, we can omit the proof of the interpretation of the judgment with ?.

B.1 Case: T VAR

Γ(x) = T Γ � Ok
Γ � x : T θ

T VAR

This case follows directly from the fact that the logical interpretation of the Teq↓ typing context Γ must

contain Terminates x and [[T]]L x, since Γ(x) = T .

B.2 Case: T JOIN

t �∗ t0 t′ �∗ t0
Γ � t : T ? Γ � t′ : T ′ ?

Γ � join : t = t′ θ
T JOIN

From the fact that t �∗ t0 implies [[t]]C �∗ [[t0]]C (we omit the easy proof), we have that [[t]]C and [[t′]]C are

joinable. Our equational theory allows us to prove that joinable terms are equal (regardless of whether

they are terminating or not). Hence, we can indeed prove the logical interpretation of the type in the

conclusion, namely [[t]]C = [[t′]]C.

B.3 Case: T CONV

Γ � t : [t2 /x]T θ
Γ � t′ : t1 = t2 ↓ Γ � [t1 /x]T

Γ � t : [t1 /x]T θ
T CONV

By the IH we have:

[[Γ]]C; [[Γ]]L � [[[t2 /x]T]]Lθ [[t]]C

We omit the straightforward proof that

[[[t2 /x]T]]Lθ [[t]]C = [[[t2]]C/x]([[T]]Lθ [[t]]C)

Using this fact, it suffices to prove the similar statement, except with [[t1]]C in place of [[t2]]C. But this

follows by PV SUBST, using the fact that [[Γ]]C; [[Γ]]L � [[t1]]C = [[t2]]C. We have this from the formula we

get by the IH for the second premise, noting that

[[t1 = t2]]L↓ [[t′]]C = Terminates [[t′]]C ∧ [[t1]]C = [[t2]]C

20

Termination Casts Stump, Sjöberg, and Weirich

B.4 Case: T REFLECT

Γ � t : T ?

Γ � t′ : Terminates t ↓
Γ � t : T θ

T REFLECT

If θ = θ ′, the desired result follows immediately from the IH applied to the first premise. If θ �= θ ′

but θ =↓, we have already observed above that we can obtain the logical translation of a Teq↓ typing

judgment with effect ? if we have the similar translation with effect ↓. So it suffices to consider just the

case where θ =? but θ ′ =↓. By the IH for the second premise, we have:

[[Γ]]C; [[Γ]]L � Terminates [[t′]]C ∧ Terminates [[t]]C

The second conjunct of this is exactly what we need to obtain the desired conclusion from what we get

from the IH applied to the first premise, which is:

[[Γ]]C; [[Γ]]L � Terminates [[t]]C ⇒ [[T]]L [[t]]C

B.5 Case: T REIFY

Γ � t : T ↓
Γ � terminates : Terminates t θ

T REIFY

The IH for the premise is:

[[Γ]]C; [[Γ]]L � Terminates [[t]]C ∧ [[T]]L [[t]]C

From this by PV ANDE1 we obtain the translation of the conclusion, using also the axiom PV TERMINATES0

(to show Terminates [[terminates]]C).

B.6 Case: T CTXTERM

Γ � t : Terminates C [t′] θ
Γ � t : Terminates t′ θ

T CTXTERM

It is sufficient to show Terminates [[C]]C[[[t′]]C] ⇒ Terminates [[t′]]C, where [[C]]C is the context de-

termined by the obvious extension of [[·]]C from terms to contexts. This formula easily follows using

PV TERMINV.

B.7 Case: T ABS

Γ , x : T ′ � t : T ρ Γ � Πρx :T ′.T
Γ � λ x . t : Πρx :T ′.T θ

T ABS

Applying the IH to the first premise gives us:

[[Γ]]C,x : [[T ′]]C; [[Γ]]L, [[T ′]]L↓ x � [[T]]Lθ [[t]]C

As remarked above, it suffices to prove the conclusion for when θ ′ =↓, since this implies the case when

θ ′ =?. So we must prove:

[[Γ]]C; [[Γ]]L � Terminates λ x . t∧∀x : [[T ′]]C. [[T ′]]L↓ x ⇒ [[T]]Lθ [[(λ x . t)x]]C

The first conjunct is provable by PV TERMABS. The second follows easily from the fact we obtained

from the IH, by applying PV SUBST with the equation t = (λ x . t)x, which holds by PV OPSEM (and

then using also PV ALLI and PV IMPI).

21

Termination Casts Stump, Sjöberg, and Weirich

B.8 Case: T APP

Γ � t : Πρx :T ′.T θ Γ � t′ : T ′ θ ρ ≤ θ
Γ � t t′ : [t′ /x]T θ

T APP

We first case-split on whether θ =? or θ =↓. If θ =?, then by the IH, we have:

• [[Γ]]C; [[Γ]]L � Terminates [[t]]C ⇒∀x : [[T ′]]C. [[T ′]]L↓ x ⇒ [[T]]Lρ [[t]]C x

• [[Γ]]C; [[Γ]]L � Terminates [[t′]]C ⇒ [[T ′]]L [[t′]]C

We must prove:

[[Γ]]C; [[Γ]]L � Terminates [[t t′]]C ⇒ [[[t′ /x]T]]L [[t t′]]C

So (using PV IMPI) assume Terminates [[t t′]]C, and prove [[[t′ /x]T]]L [[t t′]]C. By PV TERMINV, we have

Terminates [[t]]C and Terminates [[t′]]C. So from the facts we obtained above by the IH, we get (using

PV IMPE):

• [[Γ]]C; [[Γ]]L � ∀x : [[T ′]]C. [[T ′]]L↓ x ⇒ [[T]]Lρ [[t]]C x

• [[Γ]]C; [[Γ]]L � [[T ′]]L [[t′]]C

We can instantiate the quantifier in the first fact, using PV ALLE and Theorem 3 (to get [[Γ]]C � [[t′]]C :

[[T ′]]C). This gives us the following from the first fact:

[[Γ]]C; [[Γ]]L � [[T ′]]L↓ x ⇒ [[[t′]]C/x][[T]]Lρ [[t]]C [[t′]]C

The antecedent of this implication is provable from the second fact above and Terminates [[t′]]C, giving

us:

[[Γ]]C; [[Γ]]L � [[[t′]]C/x][[T]]Lρ [[t]]C [[t′]]C

Since we already have Terminates [[t]]C [[t′]]C, from this we obtain (no matter what the value of ρ is)

[[Γ]]C; [[Γ]]L � [[[t′]]C/x][[T]]L [[t]]C [[t′]]C

The desired conclusion then follows from the fact that [[[t′]]C/x][[T]]Lρ = [[[t′ /x]T]]Lρ . We omit the straight-

forward proof of this fact.

Now we must consider the case where θ =↓, and hence ρ =↓ (from the rule’s third premise). In this

case, the IH gives us:

• [[Γ]]C; [[Γ]]L � Terminates [[t]]C ∧∀x : [[T ′]]C. [[T ′]]L↓ x ⇒ [[T]]L↓ [[t]]C x

• [[Γ]]C; [[Γ]]L � Terminates [[t′]]C ∧ [[T ′]]L [[t′]]C

We must prove:

[[Γ]]C; [[Γ]]L � [[[t′ /x]T]]L↓ [[t t′]]C

By the same reasoning as in the previous case, we obtain:

[[Γ]]C; [[Γ]]L � [[[t′ /x]T]]Lρ [[t]]C [[t′]]C

But this is exactly what we must prove, since ρ =↓.

22

Termination Casts Stump, Sjöberg, and Weirich

B.9 Case: T ZERO

Γ � Ok
Γ � 0 : nat θ

T ZERO

It suffices to prove [[Γ]]C; [[Γ]]L � Terminates 0 ∧ True, which follows easily using PV TERM0 and

PV TRUEI .

B.10 Case: T SUC

Γ � t : nat θ
Γ � Suc t : nat θ

T SUC

We again case-split on whether θ =? or θ =↓. In the former case, the IH gives us:

[[Γ]]C; [[Γ]]L � Terminates [[t]]C ∧True

We must prove:

[[Γ]]C; [[Γ]]L � TerminatesS [[t]]C ∧True

This follows by PV TERMINATESS. If θ =↓, we must prove

[[Γ]]C; [[Γ]]L � TerminatesS [[t]]C ⇒ True

But this is holds just by PV IMPI and PV TRUEI.

B.11 Case: T REC

Γ , f : Π?x :T ′.T , x : T ′ � t : T ?

Γ � rec f (x) = t : Π?x :T ′.T θ
T REC

By the IH, we have:

[[Γ]]C, f : [[T ′]]C → [[T]]C,x : [[T ′]]C ; [[Γ]]L, ∀x : [[T ′]]C. [[T ′]]L↓ x ⇒ [[T]]L? (f x), [[T ′]]L↓x � [[T]]L? [[t]]C

Applying PV IMPI and PV ALLI, we get:

[[Γ]]C, f : [[T ′]]C → [[T]]C ; [[Γ]]L, ∀x : [[T ′]]C. [[T ′]]L↓ x ⇒ [[T]]L? (f x) � ∀x : [[T ′]]C. [[T ′]]L↓x ⇒ [[T]]L? [[t]]C

This exactly matches the logical premise of the PV COMPIND rule, with F taken to be ∀x : [[T ′]]C. [[T ′]]L↓x⇒
[[T]]L? z:

Σ , f : A′ → A ; H , ∀x : A′.[f x/z]F � ∀x : A′.[t/z]F Σ � rec f (x) = t : A′ → A
Σ ; H � ∀x : A′.Terminates (rec f (x) = t)x ⇒ [(rec f (x) = t)x/z]F

PV COMPIND

So applying PV COMPIND, we get the following fact (call it (J)):

[[Γ]]C ; [[Γ]]L � ∀x : [[T ′]]C. Terminates(rec f (x) = [[t]]C) x ⇒ [[T ′]]L↓x ⇒ [[T]]L? (rec f (x) = [[t]]C) x

Note that the consequent [[T]]L? (rec f (x) = [[t]]C) x of this implication is, by definition of [[·]]L? :

Terminates (rec f (x) = [[t]]C) x ⇒ [[T]]L (rec f (x) = [[t]]C) x

23

Termination Casts Stump, Sjöberg, and Weirich

So the premise of the implication in (J) is redundant, and we can deduce the following (J’):

[[Γ]]C ; [[Γ]]L � ∀x : [[T ′]]C. [[T ′]]L↓x ⇒ [[T]]L? (rec f (x) = [[t]]C) x

It suffices now to prove:

[[Γ]]C; [[Γ]]L � Terminates rec f (x) = [[t]]C ∧∀x : [[T ′]]C. [[T ′]]L↓ x ⇒ [[T]]L? (rec f (x) = [[t]]C) x

The first conjunct is provable by PV TERMREC. The second now follows directly by what we have just

deduced above.

B.12 Case: T RECNAT

p �∈ fv t
Γ , f : Π?x :nat.T , x : nat , p : Π↓x1 :nat.Π↓p′ :x = Sucx1.Terminates (f x1) � t : T ↓

Γ � rec f (x) = t : Π↓x :nat.T θ
T RECNAT

By the IH, we have

[[Γ]]C, f : nat → [[T]]C,x : nat, p : nat → (nat → nat) ;

[[Γ]]L,Terminates f ∧ F1,Terminates x ∧ True,Terminates p ∧ F2 � [[T]]L↓ [[t]]C

where:

F1 = ∀x1 : nat.Terminates x1 ∧ True ⇒ [[T]]L? (f x1)
F2 = ∀x1 : nat.Terminates x1 ∧ True ⇒ Terminates (px1) ∧

∀x2 : nat.Terminates x2 ∧ x = Sucx1 ⇒ Terminates ((px1)x2) ∧
Terminates (f x1)

We may easily show that we can replace F1 and F2 by the following simplified versions:

F′
1 = ∀x1 : nat.Terminates x1 ⇒ [[T]]L? (f x1)

F′
2 = ∀x1 : nat.Terminates x1 ⇒ x = Sucx1 ⇒ Terminates (f x1)

This (and similar simplifications), followed by some uses of PV ALLI and PV IMPI, and also supply-

ing an arbitrary lambda-abstraction of type nat → (nat → nat) for p gives us the following central

assumption (call it (J)) from the judgment above:

[[Γ]]C; [[Γ]]L � ∀x : nat.Terminates x ⇒ ∀ f : nat → [[T]]C. (Terminates f ∧ F′
1 ∧ F′

2) ⇒ [[T]]L↓ [[t]]C

It suffices to show:

[[Γ]]C; [[Γ]]L �Terminates rec f (x) = [[t]]C ∧ ∀x : nat.Terminates x ∧ True ⇒ [[T]]L↓ (rec f (x) = [[t]]C) x

We have the first conjunct by PV TERMREC. For the second, it suffices to show:

[[Γ]]C; [[Γ]]L � ∀x : nat.Terminates x ⇒ [[T]]L↓ (rec f (x) = [[t]]C) x

We do this by induction (using PV IND). First, though, we observe that the reasoning we used in the

previous case (for T REC) to prove what we called (J’) applies here (except that here we have some addi-

tional assumptions in the context). This lets us deduce the following, which we will call (J’) (essentially

the (J’) from the previous case, with T ′ replaced by nat):

∀x : nat.Terminates x ⇒ [[T]]L? (rec f (x) = [[t]]C) x

24

Termination Casts Stump, Sjöberg, and Weirich

So now for the base case, we must prove:

[[Γ]]C; [[Γ]]L � [[[0/x]T]]L↓ (rec f (x) = [[t]]C) 0

This follows easily using PV SUBST and PV OPSEM from:

[[Γ]]C; [[Γ]]L � [[[0/x]T]]L↓ ([0/x][rec f (x) = [[t]]C/ f][[t]]C

We obtain this by instantiating (J) above with 0 for x, and rec f (x) = [[t]]C for f . We have the required

proofs of termination by PV TERM0 and PV TERMREC. We have a proof of the appropriately instan-

tiated premise F′
1 of (J), since this is exactly (J’). We easily prove the instantiation of premise F′

2 of (J),

since this is:

∀x1 : nat.Terminates x1 ⇒ 0 = Sucx1 ⇒ Terminates ((rec f (x) = [[t]]C)x1)

This formula is easily proved using PV CONTRA with premise 0 = Sucx1. So from (J), with these

instantiations and proven premises, we obtain the following, which is exactly what we had to prove:

[[Γ]]C; [[Γ]]L � [[[0/x]T]]L↓ (rec f (x) = [[t]]C) 0

For the step case, we must now prove:

[[Γ]]C, x′ : nat; [[Γ]]L, Terminates x′, [[[x′ /x]T]]L↓ (rec f (x) = [[t]]C) x′ � [[[Sucx′ /x]T]]L↓ (rec f (x) = [[t]]C) (S x′)

Now we instantiate (J) above with Sucx′ for x, and again rec f (x) = [[t]]C for f . We easily obtain the

required proofs of termination. The instantiated F′
1 we again have by (J’). The instantiated premise F′

2 is:

∀x1 : nat.Terminates x1 ⇒ Sucx′ = Sucx1 ⇒ Terminates ((rec f (x) = [[t]]C)x1)

We can prove this premise as follows. Assume arbitrary terminating x1 of sort nat, and assume Sucx′ =
Sucx1. Using PV SUBST and PV OPSEM, we can derive x′ = x1 from this:

Sucx′ = Sucx1 case (Sucx′) 0 λ z .z = x′ PV OPSEM

case (Sucx1) 0 λ z .z = x′ PV SUBST case (Sucx1) 0 λ z .z = x1
PV OPSEM

x′ = x1
PV SUBST

So now to complete the proof of the instantiated premise F′
2, we need only prove

Terminates (rec f (x) = [[t]]C) x′

But this follows directly from the assumption we have in this step case of PV IND:

[[[x′ /x]T]]L↓ (rec f (x) = [[t]]C) x′

So we have all the premises required by (J), and we can prove the following (applying a derived weak-

ening rule, whose easy proof is omitted, to (J) to add our other assumptions to its contexts):

[[[Sucx′ /x]T]]L↓ [Sucx′/x][(rec f (x) = [[t]]C)/ f][[t]]C

This now easily implies the required conclusion, using PV SUBST with the following equation, which

holds by PV OPSEM:

[Sucx′/x][(rec f (x) = [[t]]C)/ f][[t]]C = (rec f (x) = [[t]]C)(Sucx′)

25

Termination Casts Stump, Sjöberg, and Weirich

B.13 Case: T CASENAT

Γ � t : nat θ Γ � t′ : [0/x]T θ
Γ � t′′ : Πρx′ :nat.[Sucx′ /x]T θ ρ ≤ θ

Γ � case t t′ t′′ : [t/x]T θ
T CASENAT

As for some cases above, we begin by case-splitting on whether θ =? or θ =↓. Suppose θ =?. Then

applying the IH to the second and third premises, and then a few basic logical simplifications, gives us:

1. [[Γ]]C; [[Γ]]L � Terminates [[t′]]C ⇒ [[[0/x]T]]L[[t′]]C

2. [[Γ]]C; [[Γ]]L � Terminates [[t′′]]C ⇒∀x′ : nat.Terminatesx′ ⇒ [[[Sucx′ /x]T]]Lρ ([[t′′]]C x′)

We must show:

[[Γ]]C; [[Γ]]L � Terminates [[case t t′ t′′]]C ⇒ [[[t/x]T]]L[[case t t′ t′′]]C

So assume Terminates [[case t t′ t′′]]C, and show [[[t/x]T]]L[[case t t′ t′′]]C. By PV TERMINV, this as-

sumption implies Terminates [[t]]C. Since [[Γ]]C � [[t]]C : nat by Theorem 3, we will now seek to prove the

following by PV IND:

[[Γ]]C; [[Γ]]L � ∀x : nat.Terminates x ⇒ Terminates [[case x t′ t′′]]C ⇒ [[T]]L[[case x t′ t′′]]C

If we can derive this judgment, then we can instantiate x with [[t]]C (for which we have Terminates [[t]]C)

to conclude the desired

[[Γ]]C; [[Γ]]L � Terminates [[case t t′ t′′]]C ⇒ [[[t/x]T]]L[[case t t′ t′′]]C

To apply PV IND as desired, we must prove the base case and step case of the induction:

• [[Γ]]C; [[Γ]]L � Terminates [[case 0 t′ t′′]]C ⇒ [[[0/x]T]]L[[case 0 t′ t′′]]C

• [[Γ]]C,x′ : nat; [[Γ]]L,Terminates x′ �Terminates [[case (Sucx′) t′ t′′]]C ⇒ [[[Sucx′ /x]T]]L[[case (Sucx′) t′ t′′]]C

This base case follows from fact (1) above, using the equation [[case 0 t′ t′′]]C = [[t′]]C. This equation is

easily shown by the definition of [[·]]C and PV OPSEM. So we now prove the step case. First, we simplify

the desired formula using the easily proved equation [[case (Sucx′) t′ t′′]]C = [[t′′ x′]]C. So our new goal

formula is

[[Γ]]C,x′ : nat; [[Γ]]L,Terminates x′ � Terminates [[t′′ x′]]C ⇒ [[[Sucx′ /x]T]]L[[t′′ x′]]C

So assume Terminates x′ and Terminates [[t′′ x′]]C, and show [[[Sucx′ /x]T]]L[[t′′ x′]]C. Instantiating fact

(2) above with x′ and these assumptions, we get:

[[[Sucx′ /x]T]]Lρ ([[t′′]]C x′)

This implies the desired formula in either possible case for ρ .

Now let us assume θ =↓. This case is similar to the above, so we give fewer details. The IH for the

three premises gives us:

1. [[Γ]]C; [[Γ]]L � Terminates [[t]]C ∧True

2. [[Γ]]C; [[Γ]]L � Terminates [[t′]]C ∧ [[[0/x]T]]L[[t′]]C

26

Termination Casts Stump, Sjöberg, and Weirich

3. [[Γ]]C; [[Γ]]L � Terminates [[t′′]]C ∧∀x′ : nat.Terminatesx′ ⇒ [[[Sucx′ /x]T]]Lρ ([[t′′]]C x′)

We must show

[[Γ]]C; [[Γ]]L � Terminates [[case t t′ t′′]]C ∧ [[[t/x]T]]L[[case t t′ t′′]]C

Since we have Terminates [[t]]C and [[Γ]]C � [[t]]C : nat, it suffices to prove the following more general

statement:

[[Γ]]C; [[Γ]]L � ∀x : nat.Terminates x ⇒ Terminates [[case x t′ t′′]]C ∧ [[T]]L[[case x t′ t′′]]C

We again apply PV IND. The base case is again immediate using [[case 0 t′ t′′]]C = [[t′]]C. Similarly

reasoning as for the step case above gives us:

[[[Sucx′ /x]T]]Lρ ([[t′′]]C x′)

Since ρ must be ↓ in this case, we obtain from this fact the desired Terminates ([[t′′]]C x′), as well as

[[[Sucx′ /x]T]]L ([[t′′]]C x′)

B.14 Case: T CONTRA

Γ � t : 0 = Suc t′ ↓
Γ � contra : T θ

T CONTRA

By the IH we have [[Γ]]C; [[Γ]]L � Terminates [[t]]C ∧ 0 = S [[t′]]C. We must show [[Γ]]C; [[Γ]]L � [[T]]Lθ 0.

But this fact follows directly from the second conjunct of the fact we have, using PV CONTRA.

B.15 Case: T ABORT

Γ � Ok
Γ � abort : T ?

T ABORT

We must prove [[Γ]]C; [[Γ]]L � Terminates abort ⇒ [[T]]L abort. But this follows directly by PV IMPI

from PV NOTTERMINATESABORT.

C Typing rules for system W ′

Σ � t : A Simple-type assignment

Σ(x) = A
Σ � x : A

STY VAR

Σ , x : A1 � t : A2

Σ � λ x . t : A1 → A2
STY ABS

Σ � t1 : A2 → A1 Σ � t2 : A2

Σ � t1 t2 : A1
STY APP

Σ � 0 : nat
STY ZERO

Σ � t : nat
Σ � Suc t : nat

STY SUC

27

Termination Casts Stump, Sjöberg, and Weirich

Σ , f : nat → A , x : nat � t : A
Σ � rec f (x) = t : nat → A

STY REC

Σ � t : nat Σ � t′ : A Σ � t′′ : nat → A
Σ � case t t′ t′′ : A

STY CASENAT

Σ � abort : A
STY ABORT

28

	Termination Casts: A Flexible Approach to Termination With General Recursion (Technical Appendix)
	Recommended Citation

	Termination Casts: A Flexible Approach to Termination With General Recursion (Technical Appendix)
	Abstract
	Comments

	http___repository.upenn.edu_c..._reports&_1274277770-text.pdf

