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Chapter 1 : Introduction 

 

1-1  CELL SIGNALING AND PROTEIN PHOSPHORYLATION 

Cell signaling is a biological process in which information is transferred to cells 

via sequential protein-protein interactions and protein modifications (1-3). Of the 

numerous protein modification processes that occur within cells, the most well-studied is 

the process of phosphorylation, during which a protein kinase covalently attaches a 

phosphate group to a tyrosine, serine or threonine on a substrate protein (4). 

Phosphorylation serves multiple purposes. For example, a phosphorylated residue on one 

protein may serve as a docking site for other proteins via interaction with specific protein 

domains such as the phosphotyrosine binding (PTB) or Src-homology 2 (SH2) domains, 

in the case of tyrosine phosphorylation (5). Phosphorylation can also positively or 

negatively regulate a protein’s ability to mediate protein modifications. For example, the 

kinase activity of the protein tyrosine kinase Src is negatively or positively modulated by 

phosphorylation of distinct Src tyrosines (6). These interactions and modifications 

facilitate the sequential transfer of information from one protein to the next and represent 

a fundamental aspect of signaling networks, which are responsible for translating various 

cues into cellular outcomes such as survival, growth, motility, or differentiation (1). 

Cell signaling initiated by extracellular cues commonly involves receptors, which 

are proteins that span the plasma membrane and translate extracellular events into 

intracellular responses (3). Often, cues take the form of receptor-binding ligands, which 
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bind to the extracellular domains of receptors and promote receptor alterations that link 

the receptor to downstream cellular processes. For the receptors on which this thesis 

focuses, ligand-receptor binding promotes receptor oligomerization and activation of a 

cytoplasmic receptor kinase domain that mediates receptor phosphorylation, which links 

the receptor to various adapter proteins involved in initiating signaling processes and 

influencing cellular outcomes (1, 3).  

Considering the receptor phosphorylation requirement for receptor-mediated 

signaling by some receptors, it is not surprising that disregulated growth factor receptor 

phosphorylation is a key alteration in cancer (3), which is characterized by uncontrolled 

cell growth and invasion of surrounding tissue. For example, specific point mutations in 

the epidermal growth factor receptor (EGFR) that promote receptor phosphorylation in 

the absence of EGFR ligands are associated with non-small cell lung carcinoma 

(NSCLC) (7). Similarly, activated fibroblast growth factor receptor mutants, formed 

through chromosomal translocations, have been identified in multiple cancers, including 

lymphomas and chronic myelogenous leukemia (8). Also, activating mutations in the 

receptors KIT and platelet-derived growth factor receptor have been identified in 

gastrointestinal stromal tumors (9). Wild-type receptors can also mediate disregulated 

signaling via receptor overexpression. For example, overexpression of HER2 is 

associated with poor prognosis in breast cancer patients (10), while overexpression of 

wild-type EGFR is associated with some NSCLC patients (11). To interrupt aberrant 

signaling, receptor-targeted therapeutics (e.g., the EGFR kinase inhibitor gefitinib (12)) 

have been developed. These therapeutics generally function by impairing processes 
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required for receptor phosphorylation, leading to reduced receptor phosphorylation and 

downstream signaling. The relatively limited, yet promising, clinical success of some 

receptor-targeted cancer therapies (e.g., gefitinib in some NSCLC patients (13)) has 

inspired rigorous development of therapeutics designed interrupt processes required for 

receptor phosphorylation. 

The processes leading to receptor phosphorylation account for only some of the 

processes that influence receptor phosphorylation. Receptor phosphorylation, and indeed 

protein phosphorylation in general, is negatively regulated by proteins phosphatases, 

which mediate the removal of a phosphate group from a phosphorylated residue in the 

process of dephosphorylation (14). Given that the balance between phosphorylation and 

dephosphorylation dictates net levels of phosphorylated protein, it follows that 

phosphatases may be important regulators of receptor-mediated signaling in the context 

of receptors for which phosphorylation provides linkage to downstream signaling 

processes. Consistent with this, phosphatases have been shown to be altered in the 

context of multiple human cancers (15). Unfortunately, our quantitative understanding of 

the kinetics of dephosphorylation has lagged significantly behind our understanding of 

kinases and phosphorylation. Thus, it is unclear to what extent phosphatases control the 

many processes involved receptor-mediated signaling and to what extent phosphatase 

disregulation might contribute to disregulated receptor-mediated signaling. 
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1-2  EPIDERMAL GROWTH FACTOR RECEPTOR 

The receptor tyrosine kinases (RTKs) are a particularly important receptor super-

family due to their roles in human physiology and disease (3). Signaling mediated by 

these proteins influences a diverse set of cellular outcomes including cell growth, 

survival, motility, and differentiation via activation of many intracellular signaling 

pathways (1). In general, RTK-mediated signaling is initiated through the binding of 

extracellular ligands to the RTK extracellular domain, which promotes receptor 

oligomerization. RTK oligomerization activates the receptor kinase by relieving auto-

inhibition of the cytoplasmic kinase domain, which is a shared feature among all RTKs. 

Once the kinase is activated, it mediates trans-auto-phosphorylation of C-terminal 

receptor tyrosine residues (3, 16). RTK phosphotyrosines generated by this process serve 

as binding sites for SH2 and PTB domain-containing cytoplasmic adapter proteins, which 

link the receptor to a diverse set of downstream processes, including receptor-mediated 

signaling and internalization (3, 17, 18). 

The ErbB family of RTKs is composed of ErbB1 (EGFR), ErbB2 (HER2), ErbB3, 

and ErbB4 (19). The ErbB receptors have been particularly well-studied due to their roles 

in multiple areas of human health, including multiple human cancers (20) and cardiac 

health (21). Of the ErbBs, EGFR has been the focus of particularly intense study due to 

its role in human health and disease. EGFR functions through the binding of any of a 

family of ligands, including epidermal growth factor (EGF) and amphiregulin (AR), 

triggering EGFR-mediated signaling and internalization processes by promoting EGFR 

dimerization and phosphorylation (Figure 1-1) (22, 23). Given the central role of 
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phosphorylation in initiating multiple receptor-mediated processes, mechanistic studies of 

EGFR have generally focused on the ways in which EGFR becomes phosphorylated, 

including in-depth investigation of ligand-EGFR binding, EGFR dimerization, and 

regulation of EGFR kinase activity (e.g., (24-26)). However, EGFR phosphorylation 

levels are also controlled by protein tyrosine phosphatases (PTPs), which act in 

opposition to the EGFR kinase by dephosphorylating EGFR phosphotyrosines (27). 

Despite a potentially important role in controlling EGFR phosphorylation, and by 

extension EGFR-mediated cellular processes, the kinetics of EGFR dephosphorylation 

and how these kinetics might influence EGFR-mediated process have not been well-

studied. 

 

 

Figure 1-1: EGFR phosphorylation and EGFR-mediated signaling. 

Ligand binding to EGFR promotes EGFR dimerization, which activates the EGFR kinase 

(K) permitting trans-auto-phosphorylation of C-terminal tyrosines (Y). Once 

phosphorylated, tyrosines may bind adapter proteins involved in initiating downstream 

signaling cascades, which ultimately influence cellular outcomes by regulating 

transcription. 

 



6 

 

1-3  EGFR INTERNALIZATION 

In addition to downstream cell signaling, EGFR phosphorylation initiates at least 

one EGFR internalization mechanism through the binding of GRB2 (Figure 1-2), an SH2 

domain-containing adapter protein that binds phosphorylated EGFR (28). GRB2 mediates 

EGFR association with the E3 ubiquitin ligase CBL through its SH3 domains (29, 30). 

CBL may also associate with EGFR directly, however GRB2-mediated EGFR-CBL 

association was found to be more important for EGFR internalization (31). As an E3 

ubiquitin ligase, CBL mediates EGFR ubiquitination (32), during which the protein 

ubiquitin is covalently attached to EGFR lysines. Recent studies suggest that EGFR 

ubiquitination is required for EGFR internalization (33-35), however this requirement has 

been debated (36, 37). Presently, it is thought that EGFR ubiquitination promotes EGFR 

association with proteins, such as Epsin1 (33), in a process that is required for efficient 

translocation of EGFR to membrane structures called clathrin-coated pits (CCPs) (18, 

36). Once enough cargo (e.g., receptors) is bound to a particular CCP, the CCP forms a 

vesicles called an endosome, which is actively transported to the cell interior (38). While 

this mechanism is thought to represent the principle internalization mechanism in the 

presence of physiological ligand concentrations (39), other EGFR internalization 

mechanisms exist. For example, the protein MIG6 mediates internalization of EGFR by 

linking the receptor to AP-2 and intersectins (40, 41).  EGFR can also internalize via a 

mechanism dependent upon EGFR ubiquitination and lipid rafts or through basal 

turnover of the plasma membrane (18, 42). Experiments demonstrate that internalization 

of EGFR in absence of ligand is unaltered by deletion of the EGFR cytoplasmic domain 
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and that internalization rates of EGFR lacking the cytoplasmic domain are unaltered by 

EGF addition suggest that basal EGFR turnover does not require receptor 

phosphorylation or even specific intracellular interactions (43). 

During internalization the endosomal lumen becomes acidified, which promotes 

dissociation of ligand from endosome-associated receptors (44, 45). Ultimately, the 

internalization process results in lysosome-mediated degradation or recycling to the cell 

surface of endosome-localized receptors (18). Due to the endosome acidification and 

receptor degradation components, the internalization process has traditionally been 

considered a negative regulator of receptor-mediated signaling. However, multiple 

studies have demonstrated that EGFR internalization can positively regulate EGFR-

mediated signaling (18) through the MAP kinase pathway (46) or AKT pathway (34, 47). 

Furthermore, impaired EGFR internalization may promote cellular sensitivity to EGFR 

kinase inhibitors via sequestration of intracellular EGFR-binding proteins, which impairs 

EGFR-mediated activation of the ERK signaling pathway (48-50).  Thus, EGFR 

internalization, as EGFR-mediated signaling, is an important EGFR phosphorylation-

dependent regulatory process that influences multiple downstream signaling processes 

and cellular phenotypes (18). 

Given the EGFR phosphorylation requirement for its internalization, it is feasible 

that PTPs could regulate EGFR internalization (Figure 1-2). Indeed, one previous study 

suggests that the receptor-like PTP DEP1 may control EGFR internalization rates by 

dephosphorylating EGFR prior to internalization (51). The general notion that PTPs 

could potentially regulate EGFR internalization is supported by numerous mechanistic 
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studies, which almost universally support a role for EGFR phosphorylation in 

internalization (18, 36). For example, deletion of the cytoplasmic domain removed the 

ability of exogenous ligand to induce EGFR internalization (43). Also, mutation of EGFR 

tyrosines that are targets for EGFR autophosphorylation reduced ligand-mediated EGFR 

internalization rates in porcine aortic endothelial (PAE) (28). Finally, pretreatment of 

PAE cells with EGFR kinase inhibitors significantly slowed EGFR internalization (52). 

In the same study, cells treated with EGF at 4°C, which promotes recruitment of EGFR to 

CCPs but very little EGFR internalization, and then treated with EGFR kinase inhibitors 

were characterized by normal EGFR internalization rates upon warming cells to 37°C, 

despite a significant reduction in EGFR phosphorylation following inhibitor treatment 

(52). Thus, EGFR phosphorylation appears to be required for initiation of EGFR 

internalization, but may become dispensable once EGFR is localized to CCPs. Given the 

finding that EGFR ubiquitination is important for EGFR association with coated pits 

(36), one hypothesis is that EGFR ubiquitination replaces EGFR phosphorylation as the 

internalization driving force at some point during the internalization process. If this were 

true, EGFR PTPs could regulate EGFR internalization provided that they 

dephosphorylate EGFR prior to EGFR ubiquitination (Figure 1-2). While the study by 

Tarcic and coworkers (51) suggests that PTPs are capable of regulating EGFR 

internalization, they based their conclusion on a flow cytometry-based measurement of 

the effect of DEP1 knockdown and expression on EGFR surface localization for a single 

time point after EGF stimulation (51). More extensive study is required not only to 
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understand the role of DEP1 in regulating EGFR internalization, but also to understand 

the general role of EGFR dephosphorylation in regulating EGFR internalization. 

 

 

Figure 1-2: EGFR dephosphorylation and EGFR-mediated internalization and 

signaling. 

Ligand-initiated EGFR tyrosine (Y) phosphorylation by the EGFR kinase (K) promotes 

EGFR-mediated signaling and internalization. EGFR internalization is initiated by 

EGFR-GRB2 binding, which mediates EGFR association with CBL. CBL mediates 

EGFR ubiqutination which promotes EGFR interaction with clathrin-coated pit (CCP) 

proteins, which is required for recruitment of EGFR to CCPs. Once enough cargo 

(EGFR) is bound, CCPs form endosomes which are transported to the cell interior in a 

process that influences EGFR-mediated signaling. Ultimately, EGFR localized to 

endosomes is either recycled back to the cell surface or degraded. 
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63), LAR (64, 65), SHP1 (66, 67), TCPTP (68, 69), CDC25A (70), DEP1 (51, 71), LRP 

(64), and PTP-PEST (72). PTPRS, PTPRK, LAR, DEP1, and LRP have extracellular 

domains and transmembrane regions anchoring them to the cell surface (73). SHP1 (74) 

and PTP-PEST (75) are present in the cytoplasm. PTP1B is localized to the ER (56), but 

this localization may not limit the ability of PTP1B to interact with proteins localized to 

the cell surface (76). TCPTP is localized to the nucleus (77), ER (77) and cytoplasm (78). 

And, lastly, CDC25A is present in both the nucleus and the cytoplasm (79). The notion 

that EGFR regulation by PTPs may not be restricted to the cell interior is suggested by 

the identification of multiple cell surface-localized PTPs that are capable of 

dephosphorylating EGFR but is also supported by other studies. Offterdinger and 

coworkers used a FRET construct to visualize EGFR phosphorylation dynamics in living 

MCF7 and COS7 cells and noted that EGFR phosphorylation was reduced to basal levels 

after roughly 2 min of treatment with an EGFR tyrosine kinase inhibitor (TKI) regardless 

of EGFR cellular localization (80). The same study demonstrated that EGFR could 

become phosphorylated at the cell surface in the absence of stimulatory ligand if cells 

were treated with pervanadate (80), a potent and irreversible inhibitor of PTPs (81). 

These data led the authors to hypothesize that EGFR phosphotyrosines are under control 

by PTPs regardless of EGFR cellular localization. In aggregate, these studies support the 

hypothesis that EGFR phosphorylation levels are in fact controlled by PTPs at the cell 

surface, contrary to the classic view of EGFR dephosphorylation. These data also support 

the possibility that PTPs are important controllers of EGFR-mediated signaling and 
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Figure 5-4: Transient peak formation in receptor phosphorylation with the ligand-

mediated dimerization (LMD) model. 

(A) A schematic is shown to demonstrate the kinetic processes which lead to the non-

monotonic receptor phosphorylation dynamics predicted by the LMD model.  Ligand 

binding initially promotes receptor phosphorylation by promoting dimer formation and 

receptor phosphorylation that is fast enough to overcome receptor dephosphorylation.  As 

empty receptor monomers become scarce, the rate of phosphorylation slows and is 

balanced by the rate of dephosphorylation, forming a maximum in the percent of total 

receptors that are phosphorylated (pR).  At this point, ligand continues to bind receptors 

that uncouple from receptor dimers, reducing the number of free receptor available to 

participate in dimer formation and allowing dephosphorylation to reduce pR.  (B-D) pR 

was calculated with the LMD model as a function of time after introduction of 10
-1

 μM 

ligand and for specific alterations to parameters relative to the base values (Table 1; 

“base” curve).  In panel (B), curves are shown for: a decrease in the rate constant for 
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ligand-receptor association (kL,f) of 10
2
-fold (blue); an increase of kL,f of 10

5
-fold and 

decrease of the rate constant for ligand-receptor dissociation (kL,r) of 10
5
-fold (red); 

increases of 10
5
-fold for kL,f and kL,r (green).  In panel (C), curves are shown for: an 

increase in the rate constant for receptor dimerization (kd,f) of 10
5
-fold and decrease of the 

rate constant for dimer uncoupling (kd,r) of 10
5
-fold (blue); and decreases in kd,f and kd,r of 

10
2
-fold (red).  In panel (D), curves are shown for: a decrease in the rate constant for 

receptor dephosphorylation (kdp) of 10
2
-fold (blue); and decreases in kdp and the rate 

constant for receptor phosphorylation (kcat) of 10
1
-fold (red). 

 

To test our proposed model, we explored a number of changes to model 

parameters versus the values given in Table 1 for an L well in excess of the base value of 

KD.  As shown in Figure 5-4B, a number of different changes to the kinetics of ligand 

binding can eliminate non-monotonic phosphorylation dynamics.  A sufficient reduction 

in the rate constant for ligand binding to receptor (kL,f) eliminates peak formation for the 

simple reason that free receptors can no longer become limiting (i.e., KD is increased 

above L).  Increasing kL,f and decreasing the rate constant for ligand dissociation (kL,r) 

results in receptors becoming virtually instantaneously and irreversibly bound by ligands, 

which eliminates the ability for phosphorylation to occur at all.  As a final example of 

ligand-associated changes, we note that sufficient increases in both kL,f and kL,r without 

changing KD can also eliminate peak formation because the time scale for receptor 

equilibration with ligand becomes smaller than that for dimerization.  Thus, even with L 

in excess of KD, it is possible for peaks not to arise.  As shown in Figure 5-4C, sufficient 

and similar reductions of kd,f and kd,r (i.e., without changing the affinity of dimerization) 

eliminate peak formation by slowing dimerization relative to ligand binding.  Increasing 
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kd,f and reducing kd,r also results in a high level of phosphorylation with monotonic 

dynamics since this parametric change makes dimer formation less reversible.  Finally, in 

Figure 5-4D, we show that sufficient reduction of kdp, either with or without a similar 

fold-change in kcat, results in monotonic phosphorylation dynamics as the time scale for 

dephosphorylation becomes large compared to that for dimers to reform.  

 Sensitivity of steady-state phosphorylation to changes in receptor expression.  

We next explored the sensitivity of steady receptor phosphorylation to changes in 

receptor expression for the two dimerization topologies.  For calculations at a particular 

L, steady-state receptor phosphorylation was normalized to the maximum receptor 

phosphorylation value, which occurs at the highest receptor expression level and changes 

with L.  For both models, increased receptor expression promotes phosphorylation due to 

the second-order dependence of dimerization rate on receptor monomer concentration 

(Figure 5-5A and 5-5B).  For RMD (Figure 5-5A), increasing L sensitizes receptor 

phosphorylation to increased receptor expression by increasing the fraction of receptors 

bound by ligand.  Sensitivity to changes in L vanishes roughly when L becomes > KD and 

receptors are saturated with ligand.  For LMD (Figure 5-5B), steady receptor 

phosphorylation is also sensitized to increased receptor expression for an increase from 

low to medium L (for the same reason as the RMD model), but is desensitized to 

increased receptor expression by further increases to high L as the limited availability of 

empty receptors antagonizes phosphorylation rates. 
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Figure 5-7: Sensitivity analysis. 

(A and B) Model-predicted sensitivity of phosphorylated receptor levels over a 10 min 

ligand treatment to perturbations of 10-fold in the indicated model parameters (see Table 

1 for definitions) and the receptor expression level (R0) was calculated for ligand 

concentrations of (A) 10
-5

 μM or (B) 10
-1

 μM using the receptor-mediated dimerization 

(RMD) and ligand-mediated dimerization (LMD) models. 

 

At high L (Figure 5-7B), ligand saturation of receptors leads to reduced sensitivity 

of the RMD model to changes in ligand binding and dimerization parameters relative to 

what was observed at low L. For high L and RMD, receptor phosphorylation remains 

fairly sensitive to perturbations in kcat and kdp since ligand saturation has no effect on 

these processes, both of which directly influence receptor phosphorylation many times 

within the 10 min time scale of our sensitivity calculations. For LMD, receptor 

phosphorylation is relatively sensitive to perturbations in all parameters, consistent with 

our previous observations that ligand binding, dimerization, phosphorylation and 

dephosphorylation time scales influence peak formation in receptor phosphorylation in 

response to high L in the LMD model. 
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5-5  DISCUSSION 

Receptor dimerization is an important step in the activation of downstream 

signaling processes for RTKs such as EGFR, TrkA, and FGFR (3).  While the structural 

basis for dimerization has been well-studied for some receptors, the implications of 

different topological dimerization schemes for receptor phosphorylation dynamics have 

not been thoroughly explored.  Here, we developed two mechanistic models to explore 

the effects of an RMD versus LMD topology on receptor phosphorylation, motivated by 

EGFR and TrkA as examples of these different mechanisms, respectively.  We find that 

RMD and LMD are generally characterized by very different steady and time-dependent 

phosphorylation profiles in response to ligand, resulting mainly from an intrinsic 

antagonistic effect of ligand at sufficiently high L that free receptors become limiting and 

from altered competition between process time scales that arise for the different 

dimerization topologies.  Our models utilize a common set of parameters, based upon 

studies of EGFR.  Our results thus delineate possibilities for how differences in 

dimerization may enable important differential control over receptor-mediated signaling, 

without any definitive comparative implications for specific RTKs versus EGFR. 

Importantly, both models assume that receptors undergo dephosphorylation with a 

time scale of less than one minute, based upon our previous experimental observations 

and modeling work for EGFR in HeLa cells (89).  While the smallness of this time scale 

is not widely appreciated, it is important to comment on here because its size relative to 

other process time scales is strongly determinative of receptor phosphorylation dynamics 

predicted by our models.  Indeed, both amplification (Figure 5-3) and non-monotonic 
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receptor phosphorylation dynamics for LMD (Figure 5-4) exhibited significant sensitivity 

to perturbations in kdp. Thus, our study also explores the differential role that relatively 

rapid dephosphorylation might play in the context of ligand-initiated phosphorylation of 

RTKs characterized by different dimerization schemes.  Of course, it remains an open 

question whether or not the kinetics we previously determined for EGFR 

dephosphorylation apply to other RTKs, including those that utilize an LMD mechanism 

such as TrkA.  Answering this question for particular RTKs, with either dimerization 

topology, will be an important component of utilizing these models in a predictive 

capacity. 

Our consideration of realistic rates of receptor dephosphorylation also enabled the 

simulation of antagonism of receptor phosphorylation at saturating ligand concentrations 

with the LMD model.  Antagonistic effects of various kinds have been noted in previous 

computational and experimental studies involving bivalent ligands.  For example, the 

binding of bivalent haptens to bivalent IgEs was computationally predicted to produce 

non-monotonic oligomer formation as a function of ligand concentration through 

competition between hapten-IgE binding and hapten-mediated IgE chain formation in a 

process analogous to our predictions with the LMD model (180).  Another study 

demonstrated experimentally that treatment of human basophils with bivalent hapten 

resulted in non-monotonic histamine release consistent with their model, which 

considered ligand-receptor binding and receptor complex formation (180, 181).  These 

findings may provide experimental support for the general notion that saturating 

concentrations of a bivalent ligand could mediate a reduction in an output of receptor 
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activation.  However, it is important to recognize that such results could also be explained 

by a number of other possibilities, including the increased expression or activity of 

negative regulators of histamine release at high hapten concentrations.   

In previous experimental studies, TrkA phosphorylation in PC12 cells was found 

to increase monotonically with ligand concentration for 20 min treatments with  0.5, 5, or 

50 ng/mL NGF (182), which corresponds to 0.02, 0.2, or 2 nM NGF, respectively 

(assuming wild-type dimeric β-NGF with a molecular weight of 26 kDa (183)).  Values 

of KD,NGF from multiple studies range from 10
-10

 - 10
-11

 M (0.1 - 0.01 nM) (183-186).  To 

compare our model to these experimental results, we set kL,f = 5×10
1
 μM

-1
min

-1
, 

consistent with measurements of NGF-TrkA binding (187), and kL,r such that KD,NGF = 

10
-10

 M and used the LMD model to calculate receptor phosphorylation as a function of 

time for L = 0.02, 0.2, or 2 nM.  Interestingly, the LMD model predicts that, for these 

parameters, receptor phosphorylation increases monotonically with L for t = 20 min 

(Figure S5-9).  Non-monotonic variation in receptor phosphorylation with L was only 

observed for t > 50 min, which is outside the times for which TrkA phosphorylation was 

reported in the study by Chang et al. (182)  Thus, these published experimental results are 

qualitatively consistent with our model predictions.  However, even with the relatively 

simple accounting of receptor processes in our models, our calculations suggest the 

possibility that this monotonic response to increasing L may not have been observed for 

longer times after ligand addition. 

In another study, ligand-mediated EGFR and TrkA phosphorylation in PC12 cells 

were compared as a function of time for EGF and NGF concentrations ranging from 0.5 - 
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50 ng/mL, which correspond to 0.08 - 8 nM for EGF or 0.02 - 2 nM for NGF (178).  Both 

ligand concentration ranges spanned the KD values for the respective receptors, but peaks 

were formed in both EGFR and TrkA phosphorylation after less than 10 min of treatment 

with L ≥ KD.  Our relatively simple models would predict peak formation for TrkA 

(LMD) with sufficiently high L only, but not for EGFR (RMD).  A potential explanation 

for this inconsistency is that processes not included in our models, but that reduce EGFR 

phosphorylation (and possibly that of TrkA as well), such as ligand-mediated receptor 

internalization (3, 188), receptor degradation (39, 189), or induction of receptor 

phosphatase activity, might significantly influence receptor phosphorylation dynamics.  

Receptor internalization might contribute to peaks in phosphorylation response due to 

translocation of receptors to the endosome, where ligand binding is generally less favored 

due to a more acidic environment (44, 45).  Peaks in EGFR and TrkA phosphorylation 

could also potentially result from ligand-mediated receptor degradation, but the time 

scale for that process for both receptors is probably too large for this effect to account for 

peaks observed less than 10 min after the addition of ligand (39, 189).  Finally, ligand-

mediated induction of phosphatase activity downstream of each receptor would result, in 

the context of our models, in an increased kdp as a function of time, which could also 

clearly contribute to peaks in receptor phosphorylation.  Interestingly, ligand-mediated 

activation of EGFR and TrkA has been shown to induce activity of the phosphatases 

SHP2 and PTP1B, respectively (115, 190).  However, relatively little is known about 

these processes and how they might affect receptor phosphorylation.   
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Overall, our results suggest that differences in dimerization mechanisms among 

RTKs could account for significant diversity in receptor phosphorylation response to 

ligand.  In living cells, the ligand concentration regimes over which the phenomena 

discussed here (e.g., amplification, formation of peaks in receptor phosphorylation as a 

function of time) would be observed would be a function of multiple variables, including 

the rate constants in Table 1.  These are likely to be quite different for different 

receptor/ligand pairs and across different cell types.  These issues notwithstanding, the 

results of our relatively simple models point to the general conclusion that, compared to 

RMD, the LMD topology enables a greater degree of complexity in the regulation of 

receptor phosphorylation in response to ligand binding and a greater degree of sensitivity 

to changes in kinetic parameters. 
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5-7  SUPPLEMENTAL MATERIAL 

 

 

Figure S5-8: Amplification and dimer uncoupling. 

(A and B) The steady-state ratio of the number of phosphorylated receptors to the number 

of bound ligands (pR/Lb) was calculated as a function of ligand concentration (L) for the 

indicated values of the dephosphorylation rate constant (kdp) with the (A) ligand-mediated 

dimerization (LMD) and (B) receptor-mediated dimerization (RMD) models. These 

calculations were made with a receptor dimer uncoupling rate constant 10
5
-fold lower 

than the base value. 
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Figure S5-9: Qualitative comparison of model to published data. 

The percent of total receptor that is phosphorylated (pR) was calculated as a function of 

time for the indicated ligand concentrations (L) with the ligand-mediated dimerization 

(LMD) model. To match the experimental conditions described in the Discussion section, 

we set kL,f = 5×10
1
 μM

-1
min

-1
, an experimentally measured value, and kL,r such that 

KD,NGF was equal to the experimentally measured value of 10
-10

 M. The 20 min time point 

from the experiment is indicated by the dashed vertical line. 
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Chapter 6 : Implications and Conclusions   

 

6-1  INTRODUCTION 

One of the most important findings of this thesis is that, at least in some cells, 

EGFR dephosphorylation can occur with a timescale of ~10 s regardless of EGFR 

cellular localization (Chapters 2 and 3).  This dephosphorylation process represents one 

step of a relatively rapid cycling process of regulatory receptor tyrosines between 

phosphorylated and unphosphorylated states (“phosphate cycling”; see Chapter 2). The 

computational and experimental approaches used to measure EGFR phosphate cycling 

also constitute a general framework with which phosphate cycling of other proteins can 

be quantified. Our quantification of dephosphorylation kinetics has significant 

consequences even for processes that were thought to be relatively well understood. For 

example, for protein tyrosine phosphatases (PTPs) to access phosphotyrosines on the 

relatively small time scales we identify, adapter proteins that bind EGFR 

phosphotyrosines, and consequently protect them from dephosphorylation (191), must 

also cycle relatively rapidly between bound and unbound states (“association cycling”; 

see Chapter 3). Importantly, association cycling with a relatively small timescale was 

recently demonstrated for the adapter protein GRB2 binding to phosphorylated EGFR 

(123). The notion of association cycling directly contradicts the common view that 

EGFR-adapter protein complexes formed by interactions between adapter SH2/PTB 

domains and EGFR phosphotyrosines persist for relatively long time scales. Instead, our 
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data are consistent with the hypothesis that protein complexes involving EGFR 

phosphotyrosines are cycling between different conformations with relatively small 

timescales (< 1 s for GRB2; Chapter 3). This update to the textbook understanding of a 

“signaling complex” is supported by another recent study (192), and has significant 

implications (193). Here, we discuss implications of some of our findings and suggest 

directions for future studies. 

 

6-2  POST TRANSLATIONAL MODIFICATION CYCLING 

While our data clearly support the notion of cycling of EGFR phosphotyrosines 

multiple times each minute after the addition of exogenous ligand, the rate to which 

phosphoresidues on other proteins cycle between phosphorylated and unphosphorylated 

states is unknown. Interestingly, a study by Pan and coworkers (194) used a mass 

spectrometry-based phosphoproteomic approach to quantify phosphorylation of proteins 

in mouse hepatoma cells after a 10 min treatment with pervanadate (to reduce PTP 

activity) and calyculin A and deltamethrin (to reduce serine/threonine phosphatase 

activity). The study found that phosphorylation of 70% of tyrosines predicted to be 

phosphorylation sites were increased at least two-fold by treatment with these inhibitors, 

compared to only 41% and 26% of predicted threonine and serine phosphorylation sites, 

respectively. The study by Pan and coworkers supports the hypothesis that 

phosphorylation of most tyrosines is basally suppressed by the action of PTPs. However, 

a phosphorylation site is identified by this analysis only if processes that mediate this 

sites phosphorylation in the presence of the phosphatase inhibitor cocktail are fast enough 
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to promote phosphorylation within the 10 min timeframe of the experiment. Thus, 

phosphorylation sites might only be revealed by this type of analysis in the presence of a 

specific stimulus. Based on this observation, a similar approach involving treatment of 

cells with stimulatory ligand either with or without the phosphatase inhibitor cocktail for 

a relatively short (e.g., 1 min) period of time would be more appropriate for identification 

of proteins that are characterized by relatively rapid ligand-mediated tyrosine phosphate 

cycling. Even for this redesigned approach, careful follow-up experiments should be 

performed to rule out false positives, which would most likely be due to proteins whose 

increased phosphorylation compared to control was due to increased activation of 

upstream kinases by the phosphatase inhibitor treatment.  

The finding by Pan and coworkers that serine and threonine residues become 

phosphorylated in the presence of serine/threonine phosphatase inhibitors may also 

support the hypothesis that a smaller fraction of serine/threonine residues compared to 

tyrosine residues may also undergo relatively rapid phosphate cycling (194). In addition 

to performing a nearly identical study to that described above for tyrosine phosphate 

cycling, we also propose a study very similar to our work in Chapters 2 and 3 to quantify 

serine/threonine phosphate cycling of a candidate protein. For this study, we suggest the 

transforming growth factor beta (TGFβ) receptor as a model system due to its similarities 

to EGFR. For example, TGFβ receptor undergoes ligand-mediated oligomerization that 

results in phosphorylation of intracellular serine residues, linking the receptor to 

downstream signaling (195) and internalization (196).  Also, TGFβ receptor-mediated 

signaling plays an important role in multiple areas of human health through its mediation 



171 

 

of the epithelial to mesenchymal transition, which is a differentiation program that plays 

a key role in cancer metastasis (197) and cellular sensitivity to EGFR-targeted therapy 

(198). As with EGFR, pharmacological inhibitors of the TGFβ receptor kinase have been 

developed and characterized (e.g., SB-431542 (199)), which are useful tools for the study 

of receptor phosphate cycling (Chapter 2). Finally, significant study has led to multiple 

estimates of the kinetics for processes involved in TGFβ-mediated signaling (200), 

enabling mechanistic modeling of this system. The study should follow the approaches 

outlined in Chapters 2 and 3 to first quantify the rate of TGFβ receptor dephosphorylation 

in different cellular compartments and then explore how this dephosphorylation affects 

downstream receptor phosphorylation-dependent processes.  

Our findings in Chapters 2 and 3 support a critical role for PTPs in regulating 

some EGFR-mediated processes via dephosphorylation of the receptor. However, 

determining the identities of the PTPs responsible for this regulation remains an 

important area of investigation. Specifically, it is important to identify the PTPs that 

regulate EGFR in the context of EGFR mutations that promote ligand-independent EGFR 

phosphorylation (e.g., EGFR
L858R

). It is unknown if the same subset of PTPs regulate the 

wild-type and mutant receptor. While aberrant EGFR phosphorylation is commonly 

attributed to increased kinase activity in the context of EGFR mutants (201), the 

possibility that disregulated PTP activity contributes in this context has not been directly 

addressed. One possible though technically challenging way to identify the subset of 

PTPs that regulates a given tyrosine substrate would involve first generating a library of 

substrate trapping PTP mutants, which lack intrinsic catalytic activity but retain an ability 
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to bind their substrates (202, 203).  Instead of highly transient, PTP-substrate interactions, 

substrate-trapping PTPs form stable association with their substrates. Using a display 

technique, such as ribosome display (204), to link the DNA to the protein it encodes, 

libraries of substrate-trapping PTPs could be screened for interaction with an 

immobilized substrate of interest, such as a peptide corresponding to an EGFR 

phosphorylation site. A screen performed in this way would suggest candidates for the 

subset of PTPs that dephosphorylate a given substrate. Follow up experiments would then 

determine if the set of candidate PTPs corresponded to the PTPs responsible for 

regulating that substrate in cells. Unfortunately, a library of substrate-trapping PTPs has 

not yet been created, to our knowledge, and generation of such a library would be 

technically intensive. 

While experimental evidence supports the notion of that phosphorylated residues 

cycle between phosphorylated and unphosphorylated states, the rate of cycling of other 

post-translational modifications (PTMs) has not be measured. In the context of EGFR, we 

would argue that the highest priority for a quantitative study of the cycling of a PTM 

other than phosphorylation is ubiquitination due to its importance in regulating EGFR 

internalization (33, 132, 205), which influences receptor-mediated signaling (34, 46, 47) 

and the cellular response to EGFR inhibitors (48-50, 145). If receptor deubiquitination 

were found to occur at the cell surface with a time scale that is small relative to the time 

scale for EGFR internalization, this would suggest that deubiquitinases might exert 

control over receptor internalization. A similar regulatory relationship between a 

modification required for internalization and a negative regulator of that modification 
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was argued for phosphorylation and PTPs (51). However, our study described in Chapter 

3 clearly argues against this finding. Thus, a study that examines ubiquitin cycling and 

control of internalization by deubiquitination should consider the possibility that 

deubiquitinases may not act rapidly enough to slow EGFR internalization, as we found 

for PTPs (Chapter 3). However, some of the protein-protein associations between 

activated EGFR and coated pit proteins are mediated by ubiquitination (e.g., Epsin1 (33)) 

suggesting that ubiquitination, unlike phosphorylation, may remain important for EGFR 

internalization after EGFR becomes recruited to a clathrin-coated pit. This suggests that 

the time scale over which deubiquitination is able to slow EGFR internalization may be 

significantly larger than our estimate of the time scale over which PTPs are able to slow 

EGFR internalization. In general, these observations support a study focused on 

quantifying the rate at which deubiquitinases deubiquitinate a particular substrate, which 

could be determined using a quantitative framework similar to that present in Chapter 3.  

However, it is important to note that assessing the importance of ubiquitination in 

processes such as EGFR internalization has been particularly difficult due to technical 

limitations in detecting ubiquitination (34, 36). 

 

6-3  DYNAMICS OF PROTEIN-PROTEIN ASSOCIATION 

One implication of relatively rapid EGFR phosphate cycling is that association 

between EGFR and proteins that bind EGFR phosphotyrosines (referred to here as 

binding partners) must also cycle between associated and unassociated states relatively 

rapidly for PTPs to access EGFR phosphotyrosines with the necessary time scales. This 
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implication is supported by measurements of the kinetics of EGFR-GRB2 binding (123), 

which suggest that, for a specified GRB2 cellular concentration (85), EGFR cycles 

between GRB2-bound and -unbound states in less than 1 s (Chapter 3). A recent study 

demonstrated that, as a consequence, the time scale with which GRB2 diffuses away 

from membranes containing phosphorylated EGFR is significantly larger than the time 

scale for GRB2-EGFR dissociation (192). This is explained by the finding that once 

GRB2 dissociates from a particular phosphorylated EGFR it then preferentially rebinds to 

an adjacent phosphorylated EGFR ~20 times before diffusing away into the cytosol. 

Thus, phosphorylated receptors may be able to maintain an increased concentration of 

SH2- or PTB-domain containing proteins in a boundary layer near the plasma membrane. 

This hypothesis is generally supported by a study from our lab by Furcht and coworkers 

(49) which demonstrated that impaired internalization of phosphorylated EGFR can 

sequester activated SHP2 at the plasma membrane (49).  

Together, these findings suggest that the relationship between protein diffusion 

and protein rebinding might have important consequences for cellular processes. 

Quantitatively, this relationship can be assessed by evaluating a ratio of the time scales 

for binding partner diffusion and receptor-binding partner association. Considering the 

similarity of this ratio to the well-known dimensionless Damköhler number (a ratio of 

reaction and diffusion rates) we refer to this ratio as Da. For Da << 1, where diffusion 

over a particular length scale is much more rapid than receptor-binding partner 

association, binding partner diffusion is not perturbed by association with a 

phosphorylated receptor. For Da >> 1, where diffusion is slow compared to receptor-
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binding partner association, the binding partner will preferentially associate with a 

receptor instead of diffusing away. Based on this and in cells, Da should increase with 

increasing exogenous ligand concentration or with activating receptor mutations since 

these changes promote receptor phosphorylation which would decrease the receptor-

binding partner time scale. Conversely, increased PTP activity, which would reduce 

phosphorylated receptor and increase the time scale for binding partner-receptor 

association, should decrease Da. 

The findings by Furcht and coworkers (49) raise an interesting question: When a 

receptor translocates, such as during EGFR internalization, do receptor-bound proteins 

also translocate? The answer to this question is related to the relative rates of the involved 

processes. Consider a single phosphorylated receptor and a single protein binding partner 

that interacts with the receptor via a phosphorylated receptor residue. At t = 0, the 

receptor and the binding partner are placed next to one another and the receptor begins 

translocating with constant velocity (vtrans). For this discussion, the relevant time scale 

(ttrans) is the time it takes the translocating receptor to move a distance equal to the 

interaction radius between the receptor and the binding partner (s), such that ttrans = 

s/vtrans. If the receptor is able to move s before the receptor and binding partner associate, 

then the receptor will leave the binding partner behind during translocation. However, if 

the binding partner is able to rebind before the receptor moves s the binding partner 

would be carried, at least briefly, by the translocating receptor. 

Some experimental studies suggest that receptors are indeed able to mediate 

translocation of binding partners. For example, the E3 ubiquitin ligase CBL, which 
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associates with EGFR directly via a PTB domain and indirectly via the adapter protein 

GRB2, was suggested to remain associated with EGFR during the internalization process 

(32). However, these data do not rule out the possibility that instead of remaining 

associated to the same CBL molecule, EGFR may unbind and bind many different CBL 

molecules throughout the trafficking process. Also, the hypothesis presented by Furcht 

and coworkers suggests that EGFR internalization is able to mediate the redistribution of 

activated SHP2 to the cell interior during receptor internalization (49). Lastly, EGFR 

internalization was shown to be required for STAT3 translocation to the nucleus and 

STAT3-mediated gene regulation (206). Assuming that binding partner association with 

the receptor is rapid such that a receptor can indeed mediate phosphorylation-dependent 

translocation of a binding partner, PTPs could potentially regulate this processes. For 

example, sufficiently rapid receptor dephosphorylation kinetics could result in receptor 

dephosphorylation before the binding partner was able to bind, allowing the receptor to 

move s without any association taking place. Thus, increased PTP activity would 

decrease the effective s or decrease the association time scale required for receptor-

mediated binding partner translocation. 

Based on this discussion we suggest two hypotheses: 1. PTPs control the ability of 

phosphorylated receptors to sequester adapter proteins near the plasma membrane, and 2. 

PTPs control the ability of receptor internalization to mediate binding partner 

relocalization.  Testing the first hypothesis could utilize techniques such as those used to 

explore the kinetics of GRB2-EGFR association, specifically total internal reflection 

(TIR) microscopy (192).  We would recommend beginning with experiments in which 
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the time a protein spends near the plasma membrane (dwell time (192)) is measured with 

EGF alone, with inhibition of PTPs, or with overexpression of a cytoplasmic EGFR PTP.  

If PTPs control EGFR-mediated binding partner sequestration, we would hypothesize 

that PTP inhibition would increase binding partner dwell time, while PTP overexpression 

would reduce binding partner dwell time. To test the second hypothesis, we would build 

on the study by Bild and coworkers, which demonstrated that EGFR internalization was 

required for appearance of STAT3 in a nuclear fraction prepared from cell lysates (206). 

Repeating this measurement in the presence of PTP inhibitors or overexpression of an 

EGFR PTP would determine if PTPs are capable of regulating receptor-mediated 

translocation of STAT3 to the nucleus. If PTPs control this process, PTP inhibition would 

increase the amount of STAT3 appearing in a nuclear fraction, while inhibition of 

internalization should reduce nuclear STAT3 levels to baseline.  

 

6-4  RECEPTOR-MEDIATED REGULATION OF PTP ACTIVITY 

While our simulations assume that EGFR is regulated by PTP activity that does 

not vary with time, multiple previous studies support the possibility that treatment of cells 

with growth factors may increase the activity of cellular PTPs. For example, total PTP 

activity was found to increase in cells treated with insulin, EGF, or PDGF compared to 

BSA control (207). EGF treatment also resulted in an increase in serine/threonine 

phosphatase activity in cytosolic fractions from A431 cells (208). More recent studies 

have revealed that the activity of the PTPs SHP2 and PTP1B are increased by stimulation 

of cells with EGF and nerve growth factor, respectively (115, 190). Considering the 
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importance of PTP activity in regulating EGFR phosphorylation and therapeutic efficacy 

(Chapters 2-5), it is critical that receptor-mediated regulation of PTP activity be 

quantitatively addressed. A study of this nature could begin by measuring the activity of 

specific PTPs known to interact with EGFR (e.g., DEP1 (51), PTP1B (57) etc.) as a 

function of time after addition of different EGFR ligands. This study could also quantify 

general PTP activity of whole cell lysates, which has been done previously (207, 208). 

Use of multiple EGFR ligands would address the intriguing hypothesis that different 

EGFR ligands might mediate upregulation of PTP activity with different efficiencies. 

Pharmacological inhibitors or knockdown of proteins downstream of EGFR should then 

be used to explore the mechanistic details of the connectivity between EGFR 

phosphorylation and altered PTP activity. Finally, a mechanistic model should be used to 

determine if the growth factor-mediated increase in PTP activity is consistent with EGFR 

phosphorylation dynamics. 

Assuming that PTPs are found to increase in activity downstream of 

phosphorylated EGFR, it would be particularly important to determine if this regulatory 

relationship is intact in the context of EGFR mutants, such as EGFR
L858R

, which are 

characterized by increased receptor phosphorylation in the absence of ligand. Aberrant 

EGFR phosphorylation should lead to increased cellular PTP activity, which should at 

least partially negatively feedback and antagonize EGFR phosphorylation. The fact that 

EGFR
L858R

 is characterized by increased receptor phosphorylation suggests that negative 

feedback involving a receptor-mediated increase in PTP activity is not able to completely 

reduce aberrant EGFR phosphorylation. This might be because: 1. induced PTP activity 
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is not strong enough to oppose aberrant phosphorylation of the EGFR
L858R

 mutant, 2. the 

negative feedback mechanism is disrupted in this context, or 3. ligand binding is 

somehow required for this negative feedback. A relatively simple exploratory study 

would involve measuring PTP activity in whole cell lysates from cells expressing similar 

levels of exogenous WT EGFR or EGFR
L858R

 both in the presence and absence of EGFR 

ligands. The measurement of PTP activity could be done using 
32

P-based (207, 208) or 

absorbance-based (49) assays. An identical cellular background for expression of wild-

type EGFR and EGFR
L858R

 is necessary to control for possible baseline differences in 

PTP expression. If cellular PTP activity is shown to increase with ligand but not with 

expression of EGFR
L858R

 compared to wild-type without ligand, this would suggest that 

this negative feedback mechanism is disrupted in the context of EGFR
L858R

 which may 

contribute to its oncogenic potential. Though purely speculative, one interesting 

hypothesis is that internalization of EGFR, which is impaired in the context of 

EGFR
L858R

, is required for this negative feedback. 

 

6-5  IMMUNODETECTION OF EGFR 

One of the technical issues that hampered the completion of our experimental 

work was the reduced ability of some EGFR antibodies to bind in vitro to EGFR from 

HeLa cells treated with at least 1.6 nM (10 ng/mL) EGF for as little as 4 min (Chapters 2 

and 3). This disruption resulted in a reduced total EGFR signal by western blot for EGF-

treated conditions compared to control. Degradation of EGFR within 4 min of EGF 

treatment is inconsistent with 
35

S-based measurements, which do not rely on EGFR-
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antibody binding, of EGFR degradation in  SUM102 cells (209). Thus, a more likely 

explanation is that EGFR is altered by EGF treatment in a manner that impairs EGFR-

antibody binding. Consistent with this, treatment of cells with 4 μM of the EGFR tyrosine 

kinase inhibitor gefitinib for 45 min after a short EGF stimulation restored EGFR levels 

by western blot (89).  

We used several approaches to explore how exogenous EGF could impair EGFR 

detection by western blotting, leading to multiple findings. First, multiple EGFR 

antibodies, including some directed against extracellular EGFR epitopes, were 

characterized by this issue. Second, treatment of cells with matrix metalloprotease 

inhibitors had no effect on EGF-mediated reductions in EGFR levels, suggesting that 

protease-mediated cleavage of EGFR, which has been described previously (210), was 

not responsible for loss of EGFR signal from western blots. Third, treatment of cells with 

ubiquitin ligase inhibitors (to determine if EGFR ubiquitination disrupted EGFR antibody 

binding) did not reverse this effect. Fourth, treatment of cell lysates with deubiquitinases 

reduced the ubiquitin signal at high molecular weights by western blot but did not restore 

EGFR antibody binding. Thus, the data from our efforts to elucidate the mechanism for 

EGFR non-detection did not suggest a clear hypothesis for its occurrence. 

Despite our lack of success testing this hypothesis, previous work suggests that 

EGFR ubiquitination results in EGFR antibody binding disruption (37). This is consistent 

with our finding that treatment with gefitinib, which promotes EGFR deubiquitination 

(112), reversed this effect. Understanding and correcting this technical issue should be a 

priority due to the false conclusions that could result. For example, one paper 
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demonstrated that the ubiquitin ligase inhibitor PYR-41 affected EGFR levels as 

measured by western blotting after only 5 min of 100 ng/mL EGF treatment (211). They 

concluded that PYR-41 inhibited EGFR degradation. However, this treatment condition 

is inconsistent with the EGFR degradation time scale, as described above. Interestingly, 

these data are consistent with the notion that EGFR ubiquitination disrupts EGFR-

antibody binding. Given the importance of accurate quantitative data in studies such as 

those presented in Chapters 2 and 3, this technical issue should be addressed or at least 

considered when interpreting data. 

 

6-6  EGFR INTERNALIZATION AND EGFR-TARGETED THERAPEUTICS 

In addition to the contribution of this thesis to our understanding of the EGFR 

internalization mechanism and its regulation by PTPs in the studies in Chapters 2 and 3, 

we also participated in a collaboration that elucidated a novel therapeutic resistance 

mechanism involving disregulated EGFR internalization (145). Previously, PC9 cells, 

which express the activated EGFR mutant EGFR
DelE746A750

 and are sensitive to treatment 

with gefitinib, were made gefinitib-resistant through long-term culture in the presence of 

gefitinib (212). The resulting cell line (referred to as PC9 GR) was shown to be sensitive 

to the novel, irreversible EGFR tyrosine kinase inhibitor WZ4002 (212). Our 

collaborative effort involved rendering PC9 GR cells resistant to WZ4002 through the 

same long-term culturing approach and analyzing the mechanism through which 

resistance to WZ4002 was conferred (145). The study found that PC9 GR cells rendered 

resistant to WZ4002 (PC9 WZR) were characterized by amplification of ERK2, a protein 
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involved in pro-survival cellular signaling. Consistent with this, inhibiting MEK, a kinase 

upstream of ERK, restored sensitivity of the PC9 WZR cells to WZ4002. Additionally, 

introduction of an activated MEK1 allele into the WZ4002-sensitivite PC9 GR cells 

conferred WZ4002 resistance. In addition to other functions, ERK can phosphorylate 

EGFR at T669 in a process that may affect EGFR turnover (213-215). Consistent with 

this, PC9 WZR cells, which are characterized by amplification of ERK2, were 

characterized by hyperphosphorylation of EGFR T669. Interestingly, we showed that the 

EGF-mediated EGFR internalization rate constant (ke) was elevated in the PC9 WZR 

cells compared to control (PC9 GR) cells. This increase in ke was partially rescued by 

inhibiting MEK, suggesting that feedback through the ERK pathway is able to increase 

EGF-mediated EGFR internalization rates. Previous studies have identified EGFR 

internalization as an important controller of EGF-mediated activation of the ERK 

signaling pathway (46). Thus, our study identified a novel EGFR kinase inhibitor 

resistance mechanism and strengthens the hypothesis that EGFR internalization is an 

important controller of the cellular response to EGFR inhibitor treatment.  

 

6-7  EGFR-TARGETED THERAPEUTICS  

Therapeutic-mediated reduction of phosphorylated EGFR is a treatment strategy 

for some cancers characterized by upregulation of EGFR-mediated signaling (e.g., some 

lung cancers (13, 216)). Our findings in Chapter 4 identify EGFR dephosphorylation as a 

key process in some contexts for therapeutic-mediated reduction in phosphorylated 

EGFR. Furthermore, a previous study by Sharma and coworkers (154) suggests that in 
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some cellular contexts, therapeutics trigger cell death by mediating a more rapid 

reduction in pro-survival signaling compared to pro-apoptotic signaling, triggering 

apoptosis (154, 155). Thus, the time scale with which therapeutics mediate a reduction in 

phosphorylated EGFR, which is controlled by PTPs (Chapter 4), may also be an 

important determinant of the ability of therapeutics to induce cell death. Sharma and 

coworkers partially explore this possibility by treating cells with the general phosphatase 

inhibitor okadaic acid (OA), which led to EGFR ligand independent phosphorylation of 

AKT, ERK and p38, which are each proteins involved in EGFR-mediated signaling. Co-

treatment of cells with gefitinib and OA eliminated phosphorylation of these proteins, 

suggesting that EGFR kinase activity is required for OA-mediated AKT, ERK, and p38 

phosphorylation. These data support an important role for phosphatases in regulating 

proteins that are downstream of EGFR.  

Consistent with this, a study by Morris and coworkers (82) involving the PTP 

PTPRS observed that PTPRS was deleted in 26% of patient tumor samples from a cohort 

of HNSCC patients. Compared to normal tissue, tumors with PTPRS deletion were 

characterized by elevated EGFR and AKT phosphorylation. In the same study, siRNA-

mediated knockdown of PTPRS promoted ligand-independent EGFR phosphorylation in 

MDA-584 and FaDu cells (HNSCC cell lines). PTPRS knockdown also increased cellular 

resistance to erlotinib (EGFR TKI) in HCC827 and H3255 cells (HNSCC and NSCLC 

cell lines, respectively). Lastly, cellular resistance of HNSCC cell lines to treatment with 

the EGFR antibody cetuximab and poor prognosis in lung adenocarcinoma patients with 

TKI-sensitizing EGFR mutations was predicted by low PTPRS expression. The findings 



184 

 

by Morris and coworkers are consistent with our findings in Chapter 2 and 4 for an 

important role of receptor dephosphorylation in EGFR-targeted therapeutic efficacy. 

Importantly, at least one previous study supports regulation of EGFR phosphorylation by 

PTPRS by demonstrating that overexpression of PTPRS in A431 cells reduced EGFR 

phosphorylation (62).  

Together the studies by Sharma and coworkers and Morris and coworkers support 

our prediction of an important role for PTPs in therapeutic efficacy. However, further 

work is required to determine if the effect of PTPs in these contexts occurs via 

dephosphorylation of EGFR or through direct dephosphorylation of proteins downstream 

of EGFR. We propose a study that directly addresses this question by focusing on 

PTPRS. Firstly, the proposed study should show that overexpression or knockdown of 

PTPRS shifts EGFR-targeted therapeutic dose-response curves for therapeutic-mediated 

reduction in EGFR phosphorylation and therapeutic-mediated cell death. If PTPRS-

mediated dephosphorylation of EGFR affects cellular sensitivity to EGFR-targeted 

therapeutics by reducing EGFR-mediated signaling through the AKT pathway, as the 

previous studies implies (82), expression of constitutively active PI3K, which is upstream 

of AKT, should rescue an increase in sensitivity of cells to therapeutic with PTPRS 

overexpression. The study by Morris and coworkers suggests that the EGFR-targeted 

therapeutics gefitinib, erlotinib and cetuximab could all be used to test these hypotheses 

(82). It would also be interesting to determine if expression of another receptor-like PTP 

that has been shown to regulate EGFR phosphorylation (e.g., DEP1 (51, 71)) has the 
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same qualitative effect on therapeutic-mediated cell death and reduction in 

phosphorylated EGFR.   
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