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Inertial Velocity and Attitude Estimation for Quadrotors:
Supplementary Material

James Svacha1, Kartik Mohta1, Michael Watterson1, Giuseppe Loianno2, and Vijay Kumar1

I. PARALLEL TRANSPORT ON S2

We now demonstrate that the parallel transport on
S2 with the Levi-Civita connection corresponding to
the metric induced by R3 is equivalent to eq. (19) of
the parent document, assuming the vector is transported
along the geodesic from p to q. Without loss of gener-
ality, we will assume p is the north pole (i.e., the point[
0 0 1

]>
when the sphere is naturally embedded in

R3) of the 2-sphere, since this manifold is symmetric
under rotation.

Parallel transport is a linear operation on vectors
because the covariant derivative is linear [1]

∇X(Y + Z) = ∇XY +∇XZ, (1)

∇X(fY ) = f∇XY +∇fX · Y. (2)

If f is a constant, ∇fX = 0, and thus for constants a
and b:

∇X(aY + bZ) = a∇XY + b∇XZ. (3)

If we denote the parallel transport of a vector u = av+
bw from the tangent space at p to the tangent space at
q through the geodesic from p to q by τpq(u), we have

τpq(u) = aτpq(v) + bτpq(w), (4)

for a, b ∈ R and vectors v and w in the tangent space
at p.

Hence, if we can show that, for some basis vectors
v‖ and v⊥ in the tangent space TpS

2,

τpq(v‖) = Rqpv‖, τpq(v⊥) = Rqpv⊥, (5)

then we have shown that eq. (19) of the parent document
is true for any vector vp in the tangent space at p. We
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will show this by first constructing differential equations
from the parallel transport equation, then by showing
that they are satisfied by the components of tangent
vectors v‖ and v⊥ moving according to eq. (19) of
the parent document. We use stereographic coordinates
during this process.

First, the vectorial representation q of the point q on
the sphere is represented as a function of the stereo-
graphic coordinates

q(t) =
1

1 + s2
x(t) + s2

y(t)
·

 2sx(t)
2sy(t)

1− s2
x(t)− s2

y(t)

 . (6)

From now on, we suppress the dependence of sx(t) and
sy(t) on t unless necessary. Differentiating this with
respect to sx and sy gives us the tangent basis vectors,
denoted ex and ey

ex =
1

(1 + s2
x + s2

y)2
·

2(1− s2
x + s2

y)
−4sxsy
−4sx

 , (7)

ey =
1

(1 + s2
x + s2

y)2
·

 −4sxsy
2(1 + s2

x − s2
y)

−4sy

 (8)

By taking the dot products of these vectors, we obtain
the components of the induced metric tensor

gxx = gyy =
4

(1 + s2
x + s2

y)2
, (9)

gxy = gyx = 0. (10)

The Christoffel symbols can be computed using the
formula [2]

Γm
ij =

1

2

∑
k

{
∂

∂si
gjk +

∂

∂sj
gki −

∂

∂sk
gij

}
gkm,

(11)
where i, j, k,m ∈ {x, y} and gkm are the components
of the inverse of the metric tensor gkm. The Christoffel
symbols for the affine connection are

Γk
ij =

2

1 + s2
x + s2

y

·

{
sk i = j 6= k

−sk i 6= j or i = j = k.
(12)



Any vector v in the tangent space TpS
2 can be con-

structed
v = vxex + vyey. (13)

The parallel transport equations are obtained by setting
the covariant derivative of v to zero. This provides

dvk
dt

= −
∑
i,j

Γk
ijvj

dsi
dt
, k = 1, . . . , n (14)

or, after substituting the Christoffel Symbols,

v̇x =
2((sy ṡx − sxṡy)vy + (sxṡx + sy ṡy)vx)

1 + s2
x + s2

y

v̇y =
2((sxṡy − sy ṡx)vx + (sxṡx + sy ṡy)vy)

1 + s2
x + s2

y

.

(15)

Now, we construct v‖ and v⊥ and see that their compo-
nents, in terms of ex and ey , satisfy eq. (15). Let r(t)
be the time-parameterized path on the geodesic from p
to q. Define v‖ as

v‖ =
dr

dt
|t=0 = [ω]×p, (16)

where ω is an angular velocity vector that is orthogonal
to both p and q. If v‖ is transported according to eq.
(19) of the parent document, then

τpq(v‖) = Rqpv‖

= Rqp[ω]×p

= [ω]×Rqpp

= [ω]×q,

(17)

where we have used the fact that, since Rqp =
exp(θqp[ω]×), it commutes with [ω]×. We also define
v⊥

v⊥ = [p]×v‖ = [p]×[ω]×p. (18)

Then, as was the case with v‖, if the parallel transport
of v⊥ on the geodesic is described by eq. (19) of the
parent document

τpq(v⊥) = Rqpv⊥

= Rqp[p]×[ω]×p

= Rqp[p]×R
>
qpRqp[ω]×p

= Rqp[p]×R
>
qp[ω]×Rqp,p

= Rqp[p]×R
>
qp[ω]×q

= [Rqpp]×[ω]×q

= [q]×[ω]×q

, (19)

where we used the identity that, for any rotation matrix
R ∈ SO(3) and any vector v ∈ R3,

[Rv]× = R[v]×R
>, (20)

if ω =
[
ω1 ω2 0

]>
(the third component is zero

since ω is orthogonal to p, which is the north pole of
the sphere), then, from (6) and (17)

τpq(v‖) =
1

1 + s2
x + s2

y

·

−ω2(s2
x + s2

y − 1)
ω1(s2

x + s2
y − 1)

2(ω1sy − ω2sx)

 , (21)

and, if τpq(v‖) = v‖xex +v‖yey , then, from (8), we can
verify

v‖x =
1

2
ω2(1 + s2

x − s2
y)− ω1sxsy,

v‖y =
1

2
ω1(s2

x − s2
y − 1)− ω2sxsy.

(22)

If we substitute (22) into (15) and simplify, we obtain

(ω1sx + ω2sy)ṡy
1 + s2

x + s2
y

= 0,

(ω1sx + ω2sy)ṡx
1 + s2

x + s2
y

= 0.

(23)

But we know that ω is orthogonal to q. Hence, from (6),
we have ω1sx + ω2sy = 0. Thus, eq.s 15 are satisfied
by (22).

Now, consider v⊥. We have from (6) and (19)

τpq(v⊥) =


ω1 − 4sx(ω1sx+ω2sy)

(1+s2x+s2y)2

ω2 − 4sy(ω1sx+ω2sy)
(1+s2x+s2y)2

2(ω1sx+ω2sy)(s2x+s2y−1)

(1+s2x+s2y)2

 . (24)

Again, one can verify that, if τpq(v⊥) = v⊥xex+v⊥yey ,
then we have

v⊥x =
1

2
ω1(1− s2

x + s2
y)− ω2sxsy,

v⊥y =
1

2
ω2(1 + s2

x − s2
y)− ω1sxsy.

(25)

Substituting (25) into (15) and simplifying yields

(ω1sx + ω2sy)ṡx
1 + s2

x + s2
y

= 0,

(ω1sx + ω2sy)ṡy
1 + s2

x + s2
y

= 0.

(26)

Again, since ω is orthogonal to q, then ω1sx+ω2sy = 0
and these equations are satisfied.

Now, we have shown that eq. (19) of the parent
document satisfies eq. (15) for the basis vectors of the
tangent space at p, v‖ and v⊥. Hence, this is how we
parallel transport any vector on the 2-sphere.
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Algorithm 1 Riemannian UKF on S2

procedure UKF(x̂k−1, P̂k−1,uk−1,yk, Tk−1)
ŝk−1 ← x̂k−1[0 : 1]
ŝ′k−1 ← x̂k−1[2 : 10]

Lk−1 ←
√

(n+ λ)P̂k−1

X0,k−1 ← x̂k−1

for i = 1, . . . , n do
δi,k−1 ← Lk−1[0 : 1, i]
δ′i,k−1 ← Lk−1[2 : 10, i]

Xi,k−1 ←
[
expŝk−1

(Tδi,k−1)

ŝi,k−1 + δ′i,k−1

]
Xn+i,k−1 ←

[
expŝk−1

(−Tδi,k−1)

ŝi,k−1 − δ′i,k−1

]
end for
for i = 0, . . . , 2n do
X−i,k ← f(Xi,k−1,uk−1)

Si,k ← X−i,k[0 : 1, i]

S ′i,k ← X
−
i,k[2 : 10, i]

end for
ŝ−k ← WEIGHTEDAVGSPHERE(S0,k, . . . ,S2n,k)
ŝ′−k ←

∑2n
i=0 wiS ′i,k

x̂−k ←
[
ŝ−>k ŝ′−>k

]>
T−k ← PARALLELTRANSPORT(Tk−1, ŝk−1, ŝ

−
k )

for i = 0, . . . , 2n do
δ−i,k ← T−>k logŝ−k

Si,k
δ′−i,k ← S ′i,k − ŝ′−k

end for
P̂−k ←

∑2n
i=0 wi

[
δ−i,k
δ′−i,k

] [
δ−>i,k δ′−>i,k

]
+Q

for i = 0, . . . , 2n do
Yi,k ← h(X−i,k)

end for
ŷk ←

∑2n
i=0 wiYi,k

P̂yy,k ←
∑2n

i=0 wi(Yi,k − ŷk)(Yi,k − ŷk)> +R

P̂xy,k ←
∑2n

i=0 wi

[
δ−i,k
δ′−i,k

]
(Yi,k − ŷk)>

Kk ← P̂xy,kP̂
−1
yy,k

∆x,k ← Kk(yk − ŷk)
∆s,k ← ∆x,k[0 : 1]
∆s′,k ← ∆x,k[2 : 10]
ŝk ← expŝ−k

(T−k ∆s,k)

ŝ′k ← ŝ′−k + ∆s′,k

x̂k ←
[
ŝ>k ŝ′>k

]>
P̂k ← P̂−k −KkPyy,kK

>
k

Tk ← PARALLELTRANSPORT(T−k , ŝ
−
k , ŝk)

end procedure

II. ALGORITHMS

The following algorithms summarize the implemen-
tation of the UKF on the sphere.

Algorithm 2 Weighted average of points p1, . . . , pn on
a sphere

procedure WEIGHTEDAVGSPHERE(p1, . . . , pn)
p̄←

∑n
i=1 wi · POINTTOVECTOR(pi)

p̄← VECTORTOPOINT(p̄)
∆p ←

∑n
i=1 wi logp̄ pi

while ‖∆p‖ > ε do
p̄← expp̄ ∆p

∆p ←
∑n

i=1 wi logp̄ pi
end while
p̄← expp̄ ∆p

return p̄
end procedure

Algorithm 3 Parallel transport of the tangent basis T
on the sphere from point p1 to point p2

procedure PARALLELTRANSPORT(T, p1, p2)
p1 ← POINTTOVECTOR(p1)
p2 ← POINTTOVECTOR(p2)
θ ← cos−1(p1 · p2)
u← (p1 × p2)/‖p1 × p2‖
R = I + sin θ[u]× + (1− cos θ)[u]2×

return RT
end procedure

Algorithm 4 Conversion of a point s on the sphere to
a unit vector in R3

procedure POINTTOVECTOR(s)
sx ← s[0]
sy ← s[1]
x← 2sx/(1 + s2

x + s2
y)

y ← 2sy/(1 + s2
x + s2

y)
z ← (1− s2

x − s2
y)/(1 + s2

x + s2
y)

return
[
x y z

]>
end procedure
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Algorithm 5 Conversion of a unit vector p in R3 to a
point on the sphere in stereographic coordinates

procedure VECTORTOPOINT(p)
x← p[0]
y ← p[1]
z ← p[2]
sx ← x/(1 + z)
sy ← y/(1 + z)

return
[
sx sy

]>
end procedure
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