Inertial Velocity and Attitude Estimation for Quadrotors: Supplementary Material

James B. Svacha Jr
University of Pennsylvania, jsvacha@seas.upenn.edu

Kartik Mohta
University of Pennsylvania, kmohta@seas.upenn.edu

Michael Watterson
University of Pennsylvania, wami@seas.upenn.edu

Giuseppe Loianno
University of Pennsylvania, loiannog@seas.upenn.edu

Vijay Kumar
University of Pennsylvania, kumar@seas.upenn.edu

Follow this and additional works at: https://repository.upenn.edu/ese_papers

Part of the Electrical and Computer Engineering Commons, and the Systems Engineering Commons

Recommened Citation
James B. Svacha Jr, Kartik Mohta, Michael Watterson, Giuseppe Loianno, and Vijay Kumar, "Inertial Velocity and Attitude Estimation for Quadrotors: Supplementary Material", October 2018.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/ese_papers/834
For more information, please contact repository@pobox.upenn.edu.
Inertial Velocity and Attitude Estimation for Quadrotors: Supplementary Material

Disciplines
Electrical and Computer Engineering | Engineering | Systems Engineering

This other is available at ScholarlyCommons: https://repository.upenn.edu/ese_papers/834
Inertial Velocity and Attitude Estimation for Quadrotors:
Supplementary Material

James Svacha¹, Kartik Mohta¹, Michael Watterson¹, Giuseppe Loianno², and Vijay Kumar¹

I. PARALLEL TRANSPORT ON S²

We now demonstrate that the parallel transport on S² with the Levi-Civita connection corresponding to the metric induced by ℝ³ is equivalent to eq. (19) of the parent document, assuming the vector is transported along the geodesic from p to q. Without loss of generality, we will assume p is the north pole (i.e., the point \([0 \ 0 \ 1]^T\) when the sphere is naturally embedded in ℝ³) of the 2-sphere, since this manifold is symmetric under rotation.

Parallel transport is a linear operation on vectors because the covariant derivative is linear \([1]\)

\[
\nabla_X (Y + Z) = \nabla_X Y + \nabla_X Z, \\
\nabla_X (fY) = f\nabla_X Y + \nabla_X Y \cdot \dot{Y}.
\]

(1) (2)

If \(f\) is a constant, \(\nabla_{fX} = 0\), and thus for constants \(a\) and \(b\):

\[
\nabla_X (aY + bZ) = a\nabla_X Y + b\nabla_X Z.
\]

(3)

If we denote the parallel transport of a vector \(u = av + bw\) from the tangent space at \(p\) to the tangent space at \(q\) through the geodesic from \(p\) to \(q\) by \(\tau_{pq}(u)\), we have

\[
\tau_{pq}(u) = ar_{pq}(v) + br_{pq}(w),
\]

(4)

for \(a, b \in ℝ\) and vectors \(v\) and \(w\) in the tangent space at \(p\).

Hence, if we can show that, for some basis vectors \(v_\parallel\) and \(v_\perp\) in the tangent space \(T_p S^2\),

\[
\tau_{pq}(v_\parallel) = R_{qp} v_\parallel, \quad \tau_{pq}(v_\perp) = R_{qp} v_\perp,
\]

(5)

then we have shown that eq. (19) of the parent document is true for any vector \(v_p\) in the tangent space at \(p\).

We will show this by first constructing differential equations from the parallel transport equation, then by showing that they are satisfied by the components of tangent vectors \(v_\parallel\) and \(v_\perp\) moving according to eq. (19) of the parent document. We use stereographic coordinates during this process.

First, the vectorial representation \(q\) of the point \(q\) on the sphere is represented as a function of the stereographic coordinates

\[
q(t) = \frac{1}{1 + s_x^2(t) + s_y^2(t)} \begin{bmatrix} 2s_x(t) \\ 2s_y(t) \\ 1 - s_x^2(t) - s_y^2(t) \end{bmatrix}.
\]

(6)

From now on, we suppress the dependence of \(s_x(t)\) and \(s_y(t)\) on \(t\) unless necessary. Differentiating this with respect to \(s_x\) and \(s_y\) gives us the tangent basis vectors, denoted \(e_x\) and \(e_y\)

\[
e_x = \frac{1}{(1 + s_x^2 + s_y^2)^2} \begin{bmatrix} 2(1 - s_x^2 + s_y^2) \\ -4s_x s_y \\ -4s_x \end{bmatrix},
\]

(7)

\[
e_y = \frac{1}{(1 + s_x^2 + s_y^2)^2} \begin{bmatrix} -4s_x s_y \\ 2(1 + s_x^2 - s_y^2) \\ -4s_y \end{bmatrix}.
\]

(8)

By taking the dot products of these vectors, we obtain the components of the induced metric tensor

\[
g_{xx} = g_{yy} = \frac{4}{(1 + s_x^2 + s_y^2)^2},
\]

(9)

\[
g_{xy} = g_{yx} = 0.
\]

(10)

The Christoffel symbols can be computed using the formula \([2]\)

\[
\Gamma^{km}_{ij} = \frac{1}{2} \sum_k \left(\frac{\partial}{\partial s_i} g_{jk} + \frac{\partial}{\partial s_j} g_{ki} - \frac{\partial}{\partial s_k} g_{ij} \right) g^{km},
\]

(11)

where \(i, j, k, m \in \{x, y\}\) and \(g^{km}\) are the components of the inverse of the metric tensor \(g_{km}\). The Christoffel symbols for the affine connection are

\[
\Gamma^i_{jk} = \frac{2}{1 + s_x^2 + s_y^2} \left(\begin{array}{c} s_k \\ -s_k \end{array} \right) \begin{cases} s_k & i = j \neq k \\ -s_k & i \neq j \text{ or } i = j = k. \end{cases}
\]

(12)
Any vector \(v \) in the tangent space \(T_pS^2 \) can be constructed
\[
\mathbf{v} = v_x \mathbf{e}_x + v_y \mathbf{e}_y. \tag{13}
\]

The parallel transport equations are obtained by setting the covariant derivative of \(v \) to zero. This provides
\[
\frac{dv_k}{dt} = - \sum_{i,j} \Gamma_{ij}^k v_j ds_i, \quad k = 1, \ldots, n \tag{14}
or, after substituting the Christoffel Symbols,
\[
\dot{v}_x = 2\left((s_y \dot{s}_x - s_x \dot{s}_y)v_y + (s_x \dot{s}_x + s_y \dot{s}_y)v_x \right) \frac{1}{1 + s_x^2 + s_y^2},
\]
\[
\dot{v}_y = 2\left((s_x \dot{s}_y - s_y \dot{s}_x)v_x + (s_y \dot{s}_x + s_x \dot{s}_y)v_y \right) \frac{1}{1 + s_x^2 + s_y^2}. \tag{15}
\]

Now, we construct \(v\| \) and \(v_\perp \) and see that their components, in terms of \(\mathbf{e}_x \) and \(\mathbf{e}_y \), satisfy eq. (15). Let \(r(t) \) be the time-parameterized path on the geodesic from \(p \) to \(q \). Define \(v\| \) as
\[
v\| = \frac{dr}{dt} \big|_{t=0} = [\omega] \times \mathbf{p}, \tag{16}
\]
where \(\omega \) is an angular velocity vector that is orthogonal to both \(p \) and \(q \). If \(v\| \) is transported according to eq. (19) of the parent document, then
\[
\tau_{pq}(v\|) = R_{qp}v\|
= R_{qp}[\omega] \times \mathbf{p}
= [\omega] \times R_{qp} \mathbf{p}
= [\omega] \times \mathbf{q}, \tag{17}
\]
where we have used the fact that, since \(R_{qp} = \exp(\theta_{qp}[\omega] \times) \), it commutes with \([\omega] \times \). We also define \(v_\perp \)
\[
v_\perp = [\mathbf{p}] \times v\| = [\mathbf{p}] \times [\omega] \times \mathbf{p}. \tag{18}
\]

Then, as was the case with \(v\| \), if the parallel transport of \(v_\perp \) on the geodesic is described by eq. (19) of the parent document
\[
\tau_{pq}(v_\perp) = R_{qp}v_\perp
= R_{qp}[\mathbf{p}] \times [\omega] \times \mathbf{p}
= R_{qp}[\mathbf{p}] \times R_{qp}^T R_{qp}[\omega] \times \mathbf{p}
= [R_{qp} \mathbf{p}] \times [R_{qp}^T[\omega]] \times \mathbf{q}
= [R_{qp} \mathbf{p}] \times [\omega] \times \mathbf{q}
= [\mathbf{q}] \times [\omega] \times \mathbf{q} \tag{19}
\]
where we used the identity that, for any rotation matrix \(R \in \text{SO}(3) \) and any vector \(v \in \mathbb{R}^3 \),
\[
[Rv] \times = [Rv] \times R^T, \tag{20}
\]
if \(\omega = [\omega_1 \quad \omega_2 \quad 0]^T \) (the third component is zero since \(\omega \) is orthogonal to \(p \), which is the north pole of the sphere), then, from (6) and (17)
\[
\tau_{pq}(v\|) = \frac{1}{1 + s_x^2 + s_y^2} \cdot \begin{bmatrix}
-\omega_2 (s_x^2 + s_y^2 - 1) \\
\omega_1 (s_x^2 + s_y^2 - 1) \\
2(\omega_1 s_y - \omega_2 s_x)
\end{bmatrix}, \tag{21}
\]
and, if \(\tau_{pq}(v\|) = v\|_x \mathbf{e}_x + v\|_y \mathbf{e}_y \), then, from (8), we can verify
\[
v\|_x = \frac{1}{2}\omega_2 (1 + s_x^2 - s_y^2) - \omega_1 s_x s_y, \tag{22}
v\|_y = \frac{1}{2}\omega_1 (s_x^2 - s_y^2 - 1) - \omega_2 s_x s_y.
\]

If we substitute (22) into (15) and simplify, we obtain
\[
\frac{(\omega_1 s_x + \omega_2 s_y) s_y}{1 + s_x^2 + s_y^2} = 0, \tag{23}
\]
\[
\frac{(\omega_1 s_x + \omega_2 s_y) s_x}{1 + s_x^2 + s_y^2} = 0.
\]

But we know that \(\omega \) is orthogonal to \(q \). Hence, from (6), we have \(\omega_1 s_x + \omega_2 s_y = 0 \). Thus, eqs 15 are satisfied by (22).

Now, consider \(v_\perp \). We have from (6) and (19)
\[
\tau_{pq}(v_\perp) = \begin{bmatrix}
\omega_1 - \frac{4\omega_2 (\omega_1 s_x + \omega_2 s_y)}{1 + s_x^2 + s_y^2} \\
\omega_2 - \frac{4\omega_1 (\omega_1 s_x + \omega_2 s_y)}{1 + s_x^2 + s_y^2} \\
2(\omega_1 s_y + \omega_2 s_x) (s_x^2 + s_y^2 - 1)
\end{bmatrix}, \tag{24}
\]
Again, one can verify that, if \(\tau_{pq}(v_\perp) = v_\perp x \mathbf{e}_x + v_\perp y \mathbf{e}_y \), then we have
\[
v_\perp x = \frac{1}{2}\omega_1 (1 - s_x^2 + s_y^2) - \omega_2 s_x s_y, \tag{25}
v_\perp y = \frac{1}{2}\omega_2 (1 + s_x^2 - s_y^2) - \omega_1 s_x s_y.
\]

Substituting (25) into (15) and simplifying yields
\[
\frac{(\omega_1 s_x + \omega_2 s_y) s_y}{1 + s_x^2 + s_y^2} = 0, \tag{26}
\]
\[
\frac{(\omega_1 s_x + \omega_2 s_y) s_x}{1 + s_x^2 + s_y^2} = 0.
\]

Again, since \(\omega \) is orthogonal to \(q \), then \(\omega_1 s_x + \omega_2 s_y = 0 \) and these equations are satisfied.

Now, we have shown that eq. (19) of the parent document satisfies eq. (15) for the basis vectors of the tangent space at \(p \), \(v\| \) and \(v_\perp \). Hence, this is how we parallel transport any vector on the 2-sphere.
Algorithm 1 Riemannian UKF on S^2

procedure UKF($\hat{x}_{k-1}, \hat{P}_{k-1}, \mathbf{u}_{k-1}, \mathbf{y}_k, T_{k-1}$)

$\hat{s}_{k-1} \leftarrow x_{k-1}[0 : 1]$
$\hat{s'}_{k-1} \leftarrow x_{k-1}[2 : 10]$
$L_{k-1} \leftarrow \sqrt{(n + \lambda)P_{k-1}}$
$\mathbf{X}_{0:k-1} \leftarrow \hat{x}_{k-1}$
for $i = 1, \ldots, n$

$\delta_{i=k} \leftarrow L_{k-1}[0 : 1, i]$
$\mathbf{X}_{i=k} \leftarrow \left[\exp_{s_{i=k}} (T \delta_{i=k}) \right]$
$\hat{s}_{i=k} \leftarrow s_{i=k} + \delta_{i=k}$
$\hat{s'}_{i=k} \leftarrow \exp_{s_{i=k}} (-T \delta_{i=k})$

$X_{n+i,k-1} \leftarrow \exp_{s_{i=k}} (-T \delta_{i=k})$
end for

for $i = 0, \ldots, 2n$

$\mathbf{X}_{i,k} \leftarrow f(\mathbf{X}_{i,k-1}, \mathbf{u}_{i,k})$
$S_{i,k} \leftarrow \mathbf{X}_{i,k}[0 : 1, i]$
$S'{i,k} \leftarrow \mathbf{X}_{i,k}[2 : 10, i]$
end for

$\hat{x}_{k} \leftarrow \text{WEIGHTEDAVGSPHERE}(S_{0:k}, \ldots, S_{2n:k})$
$\hat{s}_{k} \leftarrow \sum_{i=0}^{2n} w_i S_{i,k}$
$\hat{s'}_{k} \leftarrow \sum_{i=0}^{2n} w_i S'_{i,k}$
$T_{k} \leftarrow \text{PARALLELTRANSPORT}(T_{k-1}, \hat{s}_{k-1}, \hat{s'}_{k})$
for $i = 1, \ldots, n$

$\delta_{i=k} \leftarrow T_{k}^{-\top} \log_{\hat{s}_{i,k}} S_{i,k}$
$\delta_{i=k} \leftarrow S'_{i,k} - \hat{s}_{i,k}$
end for

$\hat{P}_{k} \leftarrow \sum_{i=0}^{2n} w_i \left[\delta_{i,k} \delta_{i,k}^\top + Q \right]$
for $i = 1, \ldots, 2n$

$\mathbf{Y}_{i,k} \leftarrow h(\mathbf{X}_{i,k})$
end for

$\mathbf{P}_{yy,k} \leftarrow \sum_{i=0}^{2n} w_i (\mathbf{Y}_{i,k} - \hat{\mathbf{y}}_k)(\mathbf{Y}_{i,k} - \hat{\mathbf{y}}_k)^\top + R$
$\hat{P}_{xy,k} \leftarrow \sum_{i=0}^{2n} w_i \left[\delta_{i,k} \delta_{i,k}^\top \right]$ $(\mathbf{Y}_{i,k} - \hat{\mathbf{y}}_k)^\top$
$K_{k} \leftarrow \hat{P}_{xy,k} \hat{P}_{yy,k}^{-1}$
$\Delta_{x,k} = K_{k}(\mathbf{y}_k - \hat{\mathbf{y}}_k)$
$\Delta_{z,k} = K_{k}[0 : 1]$
$\Delta_{x',k} \leftarrow \Delta_{x,k}[2 : 10]$
$\hat{s}_{k} \leftarrow \exp_{\Delta_{x',k}} (T_k \Delta_{x,k})$
$\hat{s'}_{k} \leftarrow \hat{s'}_{k} + \Delta_{x',k}$
$\hat{s}_{k} \leftarrow \left[\hat{s}_{k} \hat{s'}_{k} \right]^\top$
$\hat{P}_{k} \leftarrow \hat{P}_{k} - K_{k} \mathbf{P}_{yy,k} K_{k}^\top$
$T_{k} \leftarrow \text{PARALLELTRANSPORT}(T_{k}, \hat{s}_{k}, \hat{s'}_{k})$
end procedure

II. Algorithms

The following algorithms summarize the implementation of the UKF on the sphere.

Algorithm 2 Weighted average of points p_1, \ldots, p_n on a sphere

procedure WEIGHTEDAVGSPHERE(p_1, \ldots, p_n)
$p \leftarrow \sum_{i=1}^{n} w_i \cdot \text{POINTTOVECTOR}(p_i)$
$p \leftarrow \text{VECTORTOPOINT}(p)$
$\Delta_{p} \leftarrow \sum_{i=1}^{n} w_i \log_{\bar{p}} p_i$
while $\|\Delta_{p}\| > \epsilon$
do
$p \leftarrow \exp_{\bar{p}} \Delta_{p}$
$\Delta_{p} \leftarrow \sum_{i=1}^{n} w_i \log_{\bar{p}} p_i$
end while
$p \leftarrow \exp_{\bar{p}} \Delta_{p}$
return \bar{p}
end procedure

Algorithm 3 Parallel transport of the tangent basis T on the sphere from point p_1 to point p_2

procedure PARALLELTRANSPORT(T, p_1, p_2)
$p_1 \leftarrow \text{POINTTOVECTOR}(p_1)$
$p_2 \leftarrow \text{POINTTOVECTOR}(p_2)$
$\theta \leftarrow \cos^{-1}(p_1 \cdot p_2)$
$u \leftarrow (p_1 \times p_2)/\|p_1 \times p_2\|$
$R = I + \sin \theta |u|_x + (1 - \cos \theta) [u]^2_x$
return RT
end procedure

Algorithm 4 Conversion of a point s on the sphere to a unit vector in \mathbb{R}^3

procedure POINTTOVECTOR(s)
$s_x \leftarrow s[0]$
$s_y \leftarrow s[1]$
$x \leftarrow 2s_x/(1 + s_x^2 + s_y^2)$
y \leftarrow 2s_y/(1 + s_x^2 + s_y^2)$
z \leftarrow -(1 - s_x^2 - s_y^2)/(1 + s_x^2 + s_y^2)$
return $[x \ y \ z]^\top$
end procedure
Algorithm 5 Conversion of a unit vector \(\mathbf{p} \) in \(\mathbb{R}^3 \) to a point on the sphere in stereographic coordinates

\begin{algorithm}
\textbf{procedure} \textsc{VectorToPoint}(\mathbf{p})
\vspace{1mm}
\hspace{1em} \(x \leftarrow \mathbf{p}[0] \)
\hspace{1em} \(y \leftarrow \mathbf{p}[1] \)
\hspace{1em} \(z \leftarrow \mathbf{p}[2] \)
\hspace{1em} \(s_x \leftarrow x/(1 + z) \)
\hspace{1em} \(s_y \leftarrow y/(1 + z) \)
\vspace{1mm}
\hspace{1em} \textbf{return} \begin{bmatrix} s_x & s_y \end{bmatrix}^T
\vspace{1mm}
\textbf{end procedure}
\end{algorithm}

REFERENCES
