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INTRODUCTION 
   It is now well established that running animals’ mass centers 
exhibit the characteristics of a Spring Loaded Inverted 
Pendulum (SLIP) in the sagittal plane (Blickhan and Full, 
1993). What control policy accomplishes this collapse of 
dimension by which animals solve the “degrees of freedom 
problem” (Bernstein, 1967)? How valuable might this policy 
be to gait control in legged robots?  
   A general framework for “anchoring” virtual spring loaded 
inverted pendulum (SLIP) mechanics in the far more elaborate 
morphologies of real animals’ bodies (Full and Koditschek, 
1999) has been motivated by successful implementation in 
laboratory robots (Buehler et al., 1990; Nakanishi et al., 2000; 
Rizzi and Koditschek, 1996). However these implementations 
appear to demand sensing, actuation, and computation that 
may be unrealistic relative to the resources that animals and 
practical robots might be expected to have on hand.  
   Can we account for stable running animal gaits without 
recourse to such “expensive” control techniques? If so, can we 
introduce such “cheap” controllers to robotics and hope to 
obtain similarly high performance legged locomotion?  
METHODS 
   A new hexapedal robot, endowed with passive compliant 
legs and sprawled posture in essential conformance with the 
functional properties of exemplary cockroach runners (Full et 
al., 1998), exhibits mobility over general terrain exceeding that 
of any previous (scientifically documented) power autonomous 
legged machine (Saranli et al., 2001). When this machine’s 
mechanical and control parameters are properly tuned, its mass 
center also exhibits pronounced SLIP characteristics 
(Altendorfer et al., 2001). Notably, this stable dynamical 
regime is achieved by a feedforward controller that drives the 
machine’s few (only six) actuators without the benefit of any 
proprioceptive data (beyond the motor shaft angle 
measurements used to enforce the desired open loop hip 
position profile).   
RESULTS AND DISCUSSION 
   At present, we do not understand enough about this robot’s 
mathematical models to select desired gaits by first principles 
analysis. Stable steady state SLIP behavior is adjusted at 
present by systematic but almost purely empirical parameter 
tuning methods.    
   Mathematical analysis (Schmitt and Holmes, 2000) of the 
(simplified) horizontal plane mechanics of a running 
cockroach (Kubow and Full, 1999) has revealed that self-
stabilization can occur in two and three degree of freedom 
lossless mechanisms. These models are mechanically very 
similar to a horizontal plane version of SLIP, motivating a 

search for self-stabilized gaits in the sagittal plane.  Analogous 
study of the sagittal plane SLIP model now reveals that it too 
indeed includes parameter regimes that yield self-stabilizing 
gaits.  Algebraic approximations of this parameter regime 
suggest the possibility of computation- and sensor-cheap 
feedforward control by means of parameter set points 
appropriate to a desired control target. 
SUMMARY 
   The wider range of maneuvers and larger stability margins 
active controls can afford may well justify a greater investment 
in sensory technology and internal models and computation on 
the part of robot designers.  Similarly, there is growing 
evidence in the animal motor literature that biological 
solutions to these same problems span a design space that 
includes both active and passive stabilizing strategies (Klavins 
et al., 2001). A better understanding of the tradeoffs – of just 
how “cheap” a machine might suffice to accomplish just what 
level of locomotion performance – seems essential to better 
robot design as well as deeper insight into animal evolution.  
The talk will review our growing interest and slowly 
increasing understanding respecting the role of self-stability 
mechanisms in sensor-cheap “passive” locomotion behavior. 
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