Distinguishing Clause-Typing and Subject Positions in Imperatives

Ed Cormany
Cornell University

Follow this and additional works at: https://repository.upenn.edu/pwpl

Recommended Citation
Cormany, Ed (2014) "Distinguishing Clause-Typing and Subject Positions in Imperatives," University of Pennsylvania Working Papers in Linguistics: Vol. 20 : Iss. 1 , Article 8. Available at: https://repository.upenn.edu/pwpl/vol20/iss1/8

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/pwpl/vol20/iss1/8
For more information, please contact repository@pobox.upenn.edu.
Distinguishing Clause-Typing and Subject Positions in Imperatives

Ed Corman

1 Introduction

It is well-known that subjects of imperative clauses behave differently than subjects of declarative clauses; most notably, it appears to be the case that all languages allow null subjects in imperatives, even in languages that generally prohibit them in other clause types. The question examined in this paper is the relationship between the syntactic element that determines clause type and that which licenses subjects and determines their surface position. I argue that it is not possible to account for both functions with a single syntactic element in English, so models that maintain their unity as a crosslinguistic fact (e.g., Zanuttini et al. 2012) cannot be correct.

The diagnostics used to distinguish the clause-typing and subject-licensing positions involve fronting of DP constituents for purposes of information structure. Section 2 deals with the question of what the basic functions of the clausal left periphery are and whether they form a universal, crosslinguistic hierarchy. I maintain that matrix vs. subordinate status, clause typing, information structure, and subject licensing are universal properties of clauses; the relatively spare left-peripheral structure of English is compatible with this universal hierarchy. In Section 3, I show how information-structural movement of contrastive topics to FocusP splits the clause-typing position (Force₀) and the subject-licensing position (Fin₀); Section 4 shows how models with a single imperative-marking position cannot account for this data. Additionally, I present an explanation of restrictions on non-contrastive topicalization in English imperatives based on the paucity of positions in the left periphery. Finally, in Section 5, I present new data that determines Focus₀ to be the position of do-support in English imperatives.

2 Left-peripheral Functions and Positions

Most accounts of the syntax of imperatives use a left-peripheral projection to explain some or all of their characteristic properties, such as verb position, clitic position, and subject agreement. Typically a single syntactic element is used to derive all of these effects. Depending on the account, it is placed either in a specifier position (e.g., Han 2000) or a head position (e.g., Zanuttini 2008, Zanuttini et al. 2012). While unification of several imperative-related phenomena on a single syntactic element is possible (I argue that this is, to an extent, the case for English), it cannot be universal. However, past accounts typically propose crosslinguistic models that contain only a unitary CP (1) or an imperative-specific projection (2) with a label such as AddresseeP (Mauck and Zanuttini 2005) or JussiveP (Zanuttini 2008, Zanuttini et al. 2012).

(1) Unitary CP
 CP > TP …
 (e.g., Han 2000)

(2) Imperative-specific projection
 JussiveP ≥ TP …
 (Zanuttini 2008, Zanuttini et al. 2012)

The framework I adopt is an extension of the articulated left periphery as originally proposed in Rizzi 1997.

(3) Articulated CP
 ForceP > TopP > FocusP > TopP > FinP > TP …
 (Rizzi 1997)

The concepts that Rizzi explained by proposing an articulated CP field are universal properties of clauses, but do not form an exhaustive list. Rather than adopting a fully cartographic approach, I include the four types of positions shown in (3) — Force, Top, Focus, Fin — and advocate for the addition of one more position for marking the matrix or subordinate status of the clause.
The structure in (3) is by no means universal, and has been revised many times in the literature on the cartography of the left periphery, including in Rizzi 2004. Extensions of the sort that posit extremely fine-grained or language-specific positions (e.g., Cinque’s (1999) account of adverb order) do not pertain to the clausal positions that I examine in this paper. I focus on universal clausal characteristics, including clause type (in ForceP), information structure (in TopP and FocusP), and subject licensing (in FinP). All of the clausal functions are represented by syntactic features. Some of these features are binary ([±Focus], [±Topic]), some are non-binary ([{Force{DEC,INT,IMP}}]), and some are feature bundles ([φ] on Fin0). Subject to crosslinguistic variation, each feature may have a dedicated single-purpose head or may reside on a more complex complementizer.

Neither Han 2000 nor Zanuttini et al. 2012 places the imperative-marking element within an articulated CP field, although Zanuttini et al. 2012 claim that an additional C layer may exist above JussiveP in embedded contexts. If the schemas given in (1) and (2) are abstractions that simply avoid the issue of information structure and the corresponding positions, it should be possible to identify Han’s (2000) CP or Zanuttini’s (2008) JussiveP with a single position in a larger left-peripheral field. I contend that this is not possible, as shown by non-trivial interactions between multiple positions in the left periphery of English imperatives. Even within English, which has a relatively sparse left-peripheral structure, multiple positions are required for clause typing and information-structural movement.

I contend that every clause contains a syntactic feature that specifies its type (and may participate in interactions, particularly Agree, with other syntactic elements). This feature is valued as declarative DEC, interrogative INT, imperative IMP, or possibly other values for minor clause types. The clause-typing feature must be represented quite high in the clause and is traditionally identified with Force0, but I do not argue that the clause-typing position must be at the extreme left edge of the clause. I reserve that position for an important syntactic (and semantic) characteristic: whether the clause is matrix or subordinate. A dedicated phrase for this function has been proposed for Modern Greek (Roussou 2000) and Korean (Zanuttini et al. 2012), where overt particles occupy a position above the traditional C or Force head. I refer to this projection as Subordination Phrase (SubP) and the feature it encodes as [±Sub]. Since it is a binary feature, not a privative one, it is present in both matrix and subordinate clauses. The addition of SubP yields the overall clausal architecture (4) that I adopt in this paper.

\[\text{Extended articulated } \text{CP} \]
\[\text{SubP} > \text{ForceP} > \text{TopP} > \text{FocusP} > \text{TopP} > \text{FinP} > \text{TP} \ldots \]

In English, not all of the positions in (4) are realized. Haegeman 2004 presents arguments that there is only a single, high TopP in English, contra both Rizzi 1997 and Rizzi 2004, which expands the structure in (3) to allow arbitrarily many Topic projections. Building on Haegeman’s conclusion, I propose that English conflates the adjacent positions of SubP, ForceP, and TopP. The resulting projection is headed by a portmanteau complementizer that carries three features [±Sub, Force{DEC,INT,IMP}, ±Top]. The English left periphery therefore has three layers: complementizer, Focus, and Finiteness. Matrix declaratives in English are always headed by Ø, while subordinate declaratives can be headed by that or Ø; all imperative clauses are null-headed.

\[\text{Extended articulated } \text{CP for English} \]
\[\text{Sub} = \text{Force} = \text{TopP} > \text{FocusP} > \text{FinP} > \text{TP} \ldots \]

\[\text{Conflation of left-peripheral positions in English} \]
\[\text{CP} > \text{FocusP} > \text{FinP} > \text{TP} \ldots \]

1 This is roughly equivalent to SubP, which I adopt in (4) below.

2 From a typological standpoint, languages that have an overt functional head that marks only the [±Sub] feature are rare. This is likely due to interaction with its immediate neighbor, ForceP, which encodes clause type as a non-binary feature \([\text{Force}^{\{ \text{DEC,INT,IMP} \}}] \). In most languages, there are two possibilities for the value of [Sub] and three for [Force]. If encoded separately, five functional heads can produce all of the possible combinations of the two features. However, if the two positions are combined such that both features must be encoded on a single head, the complexity is not much greater, requiring six heads: \([\pm \text{Sub, DEC}]\), \([\pm \text{Sub, INT}]\), \([\pm \text{Sub, IMP}]\), \([- \text{Sub, DEC}]\), \([- \text{Sub, INT}]\), \([- \text{Sub, IMP}]\).
The greatest effect of the structure in (6) is that [Top] is covariant with [Sub] and [Force] (in C⁰), while [Focus] has an independent position. The independence of Focus⁰ means that any clause may contain either a [+Focus] or [−Focus] feature, so focal movement is possible regardless of clause type. In the next section, I contend that contrastive topicalization is one type of focal movement, is thus independent of clause type, and occurs freely in English imperatives. On the other hand, non-contrastive topicalization is topic movement, and is barred in imperatives due the lack of a [Force{IMP}, +Top] complementizer in English. The left-peripheral structure in (6) predicts these interactions between clause type and information-structural movement using the same set of projections in declaratives, interrogatives, and imperatives. These interactions cannot be captured in the same way in other theories of the syntax of imperatives.

3 Fronting in English Imperatives

English imperatives exhibit different information-structural restrictions than declaratives and questions. In this section, I show that these restrictions are largely syntactic. There is no semantic restriction on certain information-structural features being present within a single clause, but they must be represented in the available syntactic positions. In English, these positions are determined by the three-layer extended articulated CP (6). The features in the left periphery are not completely in free variation because, as in most languages, they are not isolated in individual syntactic projections.

I will examine three of the information-structural processes in English that increase the prominence of a constituent: focalization, contrastive topicalization, and non-contrastive topicalization. One major distinction between topicalization and focalization in English is that topicalization processes require overt movement. On the other hand, focalization is often performed in situ and marked only by prosodic stress, although fronting is also possible.

There is no word order diagnostic that can be applied to fronted elements in English to determine which of these three fronting processes has occurred.³ Thus the status of a fronted constituent must be determined by semantic and pragmatic criteria. A non-contrastive topic draws attention to its content but does not invoke a comparison to alternatives that might fill that element’s role. There is no consensus term for the effect that non-contrastive topicalization has — focus-presupposition, theme-rheme, background-foreground, topic-comment, and given-new are examples (Ward 1988:61) — but they all refer to an intrasentential division between the topicalized element and the remainder of the clause. For example, in (7), the patienthood of the book is given more prominence than the fact that buying was the action that took place or that John was the agent of that action.

(7) The book, John bought ___.

On the other hand, contrastive topics introduce a class of (unexpressed) alternative elements that could replace the topic constituent. Semantically, the potential replacements are represented either as an open proposition, i.e., a proposition with an unbound variable in place of the topicalized element (Ward 1988), or as focal alternatives, a set of propositions with instantiated values for the variable element (e.g., Rooth 1985, Roberts 1996). The existence of alternatives can be represented lexically, as with these in (8), or can be pragmatically introduced by the context.

(8) These stocks, the broker bought ___ immediately.

This additional semantic contribution of contrastive topics is mirrored in the syntax. I argue that contrastive topics move to Spec FocusP in English. Doing so unifies the semantic contribution of Focus⁰ for both information-structural and Wh-movement: it is the element that transforms a proposition into an open proposition.

Furthermore, FocusP is an independent position in English. The locus of non-contrastive topics is combined with subordination and clause typing in C⁰. As a result, the value of the [Top] feature

³Other information-structural processes, such as left-dislocation and clefting, can be diagnosed by word order alone. I do not address them here, but see Cormany 2013 for discussion of the interactions between clefting and imperative clause type.
covaries with the [Sub] and [Force] features, while the value of [Focus] can vary freely. A major consequence of the bundling of features in C^0 is the unavailability of non-contrastive topics in imperative clauses.

(9) a. *The book, buy ___!
 b. These stocks, buy ___ immediately! (Those avoid at all costs!)

I contend that the ungrammaticality of (9a) is due to the unavailability of the proper combination of features on C^0, as determined the lexical inventory of complementizers in English. There is a single matrix imperative complementizer in English, and its featural specification is $[-\text{Sub}, \text{Force}\{\text{IMP}\}, -\text{Top}]$. The value of [Top] is not in free variation; the existence of a $[+\text{Top}]$ imperative complementizer would necessitate a separate lexical entry. Thus the left-peripheral features present in an English matrix imperative simply do not permit movement of the type found in (9a). C^0 cannot attract a DP, because it is valued $[-\text{Top}]$; Focus^0 cannot either, because no focal alternatives are being introduced. The syntax matches the semantics with a $[-\text{Focus}]$ value, which also does not drive movement (10).

(10)

On the other hand, when focal alternatives are introduced, Focus^0 bears a positive value for its characteristic feature. This valuation is necessary in (9b), because the lexical item *these* is inherently focal and its $[+\text{Focus}]$ feature must be checked via Agree. The PF realization of the Agree relationship between Focus^0 and *these books* can either be overt movement or prosodic stress; (11) depicts the movement option.

(11)
4 Force, Fin, and Word Order

The position and order of features in the left periphery have effects on the word order of imperative clauses beyond the English topic-licensing effects discussed in Section 3 above. This section focuses on the relative positions of subjects and fronted elements in imperative clauses. There are two major conclusions that can be drawn from the order of these constituents in English imperatives: the imperative verb can remain lower than the clause-typing position, and marking of imperative force is positionally distinct from subject licensing. Most importantly, the data presented below show that the clause-typing feature [\text{Force}\{\text{DEC,INT,IMP}\}] cannot be as low as the subject licensing position, contra the syntactic analysis proposed in Zanuttini et al. 2012.

Zanuttini et al. 2012 posits an imperative-specific projection, JussiveP, to host imperative subjects and account for the binding of 2nd person anaphors and reflexives in imperatives, even in the presence of a grammatically 3rd person subject.

(12) a. Everyone wash yourself!

Zanuttini et al. 2012 argues that the person features of the reflexive yourself are not logophorically determined but must be propagated from Jussive0 via Agree. These person features are also responsible for licensing pro subjects in imperatives, even in languages that typically disallow pro-drop in other clause types. However, the restrictions in English are more nuanced than what Jussive0 provides: imperative subjects can be either second person subjects (including pro) or quantificational DPs, but other DPs are generally barred.4

(13) a. Everybody / Somebody / Nobody / You / Ø sit down!
 b. *A man / *People / *My friend sit down!

Structurally, JussiveP is placed directly above TP in order to establish an adjacency interaction with the presence or absence of a person feature in T0. Zanuttini et al. 2012 claims that if the person features of T0 are compatible with those of Jussive0, the two heads will fuse and act as a single probe; otherwise they remain distinct. Zanuttini et al. 2012 thus concludes that the projection responsible for imperative properties either immediately precedes or is identical to the projection that bears tense.

Returning to the English data, we find that the structural configuration JussiveP ≥ TP is incompatible with the surface order of left-peripheral constituents in imperatives. The position of contrastive topics in imperatives is fixed with respect to all other constituents in the clause edge; the order is Focus > Subject > Verb.

(14) a. These stocks everyone buy immediately! ✓ Focus > Subject > Verb
 b. *These stocks buy everyone immediately! ✗ Focus > Verb > Subject
 c. *Everyone these stocks buy immediately! ✗ Subject > Focus > Verb
 d. *Buy these stocks everyone immediately! ✗ Verb > Focus > Subject

Taken in isolation, these word order facts are only informative enough to show that the imperative subject and verb are inseparable (presumably in a Spec/Head configuration), and that contrastive topicalization takes place above both. I make the more specific claim that contrastive topicalized elements occupy Spec FocusP, subjects occupy Spec FinP, and the inflected verb occupies Fin0. Making the single assumption that clause typing is encoded as a syntactic feature on a head in the left periphery is enough to draw this conclusion.

The word order facts in (14) also preclude a method of clause typing that requires movement to Spec ForceP (Spec CP in English). In analyzing Dutch imperative constructions, Koopman 2007 argues for a method of clause typing that involves phrasal movement. In this model, the imperative Force0 probes for a maximal category containing the imperative verb; this phrase, which is typically a remnant constituent, is then overtly moved to Spec ForceP. The general schema for this method of

4Zanuttini et al. 2012 contends that proper names can also be syntactic subjects of imperatives. If so, they are only permissible in limited contexts, whereas the distinctions in (13) hold in out-of-the-blue contexts.
clause typing is said to be “part of the native speakers’ ‘knowledge’ of Dutch imperatives” (Koopman 2007:172).

Because of the possibility of an independent TopP in Dutch imperatives (contrast the structure given in (6) for English imperatives), there are two distinct instantiations of the general mechanism. In the absence of topicalization (15), Koopman argues, TopP is not projected, and FinP headed by the imperative verb is the target of clause-typing movement (15). If topicalization does occur (16), TopP is projected, the verb must adjoin to Top\(^0\) to “identify” TopP as imperative, and then TopP moves to type the clause (16).

(15) *Phrasal clause-typing with V-to-Fin* (after Koopman 2007: ex. 58)

(16) *Phrasal clause-typing with V-to-Fin-to-Top* (after Koopman 2007: ex. 59)

However, both of these configurations generate ungrammatical orders in English. In an English imperative with a fronted constituent, targeting FinP results in Subject-Verb-Adverb-Topic order.
The ability to use contrastive topics as a diagnostic of phrasal movement into the left periphery shows that ForceP and FinP are distinct positions. Even following the additional stipulation of Koopman 2007 that the imperative verb must raise by head movement to the highest head below Force\(^0\), phrasal movement generates an ungrammatical order: *Everyone immediately these stocks buy!\(^{17}\) Movement of FinP to Spec CP in English is ungrammatical (17), so movement to the Spec of the clause-typing head cannot be universal.

It could be argued that the adverb in (17) is not initially merged within TP, and the depicted illicit remnant movement never actually occurs. However, phrasal adjuncts that must be initially merged within TP should participate in remnant movement, and produce a similarly ungrammatical Subject-Verb-Adjunct-Topic order.

\[(18) \quad ^{*}[CP_{FinP} \text{Everyone buy } [PP \text{ for their clients}]] \text{these stocks ◯ FinP}!\]

Given these results, the phrasal movement method of clause typing is inadequate for English, and therefore inadequate as a universal model. The incorrect predictions of Koopman’s (2007) approach are not due only to remnant movement or phrasal movement, but also the prerequisite head movement of the imperative verb.

5 Focus, Neg, and do-support

Another element that interacts with the imperative left periphery is negation. It has been widely observed that many languages (English being an exception) do not permit the direct negation of imperatives (e.g., Aikhenvald 2010, Han 2000, Zanuttini 1997). In particular, the analysis of Han 2000 focuses on ruling out negative imperatives in languages that lack them by appealing to the hierarchy of adjoined heads and the semantic scope of negation over clause typing. The argument is based on the fact that when negation is present in an imperative, it always is treated as part of the proposition being commanded and never cancels imperative force. Thus, regardless of the specific structure being proposed, clause typing must always outscope negation.

English allows direct negation of imperatives, but requires do-support in such clauses. Placing Neg suitably high in the clausal architecture accounts for word order facts in English and positively determines the position of do-support in negative imperatives to be Focus.\(^5\) No similar prediction can be made in an analysis with less articulated structures.

Consider an ordinary negative imperative in English:

\[\text{Everyone buy these stocks immediately} \quad \text{FinP} \quad \text{FocusP} \quad \text{these stocks} \quad \text{Focus}^0 \quad \text{everyone buy these stocks immediately} \]

\^[5]The analysis that I present here does not make any claims about the position of do-support in other clause types in English, nor about similar phenomena in imperatives in other languages. Each case must be analyzed as the interaction of the available positions and features in the left periphery, as I do for English imperatives here.
Don’t buy these stocks!

Don’t can be pronounced do NOT for emphasis, but cannot be separated, either by a fronted element (20b) or by a subject (20c). This indicates that do and Neg are adjoined and occupy a single head position.

(20)

a. Do NOT buy these stocks!

b. *Do these stocks not buy ___!

c. *Do you not buy these stocks!

Subjects cannot appear to the left of don’t in English imperatives (21a). If subjects are hosted in Spec FinP, the lowest position in which Neg can be realized is Focus. Zanuttini (1997) associates Neg with Focus, which would accurately predict the possible Neg/subject word orders.

(21)

a. *[FinP Everyone don’t do that!] ✗ high subject

b. Everyone, [CP don’t do that!] ✓ vocative

c. [CP [FocusP Don’t anyone do that!]] ✓ low subject

The fact that don’t occupies a single position is beneficial for syntactic analyses that have a unitary CP, since it allows negative imperatives to fit into their minimal structure. However, these analyses don’t take into account the fact that contrastive topics can occur in negative imperatives, and when they do they must occur to the left of don’t.

(22)

a. These stocks, don’t anyone/everyone buy ___!

b. *Don’t these stocks anyone/everyone buy ___!

Thus don’t must occupy a position between the host of contrastive topics and the subject position. These are adjacent Spec positions, namely Spec Focus and Spec Fin, so don’t must reside in Focus.

6 Conclusions

By examining the relative positions of left-peripheral elements in English imperatives, I have shown that clause typing (determined by the [Force] feature on C₀) is distinct from subject licensing (performed by Fin₀), as proven by the intervention of contrastive topics. All of the English phenomena are consistent with a universal structural hierarchy that encodes major clausal functions: matrix vs. subordinate status, clause typing, information structure, and subject licensing. Crosslinguistically, the realization of the hierarchy is variable. Adjacent projections can collapse, with the result that English has a three-layer left periphery.

Analyzing fronting patterns in English imperatives with respect to the language’s three-layer left periphery produced two more results. First, [Force{IMP}] is not an independent feature, and only occurs on complementizers that are also [−Top]; only contrastive topicalization is permissible. Second, the inseparability of don’t in negative imperatives, combined with the fact that don’t must follow fronted topics, demonstrates that Focus₀ is the locus of do-support in English imperatives.

All of the above were determined by word order tests, combined with basic assumptions about the functions performed by the left periphery. Similar tests can be applied to other languages and other clause types to learn more about their left-peripheral characteristics.

References

6The bracketing shown here, with the vocative outside of CP, is consistent with Portner’s (2007) hypothesis that vocatives are structurally similar to hanging topics.

Department of Linguistics
203 Morrill Hall
Cornell University
Ithaca, NY 14853
esc53@cornell.edu