- . o
cnn) \ University of Pennsylvania

Libraries ,_
O UNIVERSITY 0f PENNSYLVANIA 4 ScholarlyCOmmonS
Technical Reports (CIS) Department of Computer & Information Science
May 1982

Model Program Generator: System and Programming
Documentation

Kang-Sen Lu
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation
Kang-Sen Lu, "Model Program Generator: System and Programming Documentation", . May 1982.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-82-144.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/645
For more information, please contact repository@pobox.upenn.edu.

In the following MODEL specification a source file INVEN is
declared as a keyed file. STOCKS in the record INVREC is the key field
of INVEN file. Since the control variable POINTER.INVREC is equal to
the field STK in file ' , the INVREC records will be ordered according
to the values in the STK field.

MODULE: MINSALE ;
SOURCE: TRAN, INVEN ;
TRAN IS FILE (SALEREC(*)) ;
SALEREC IS RECORD (CUSTS,STK,QUANTITY) ;
CUST$ IS FIELD(CHAR(5)) ;
STK IS FIELD(CHAR(8)) ;
QUANTITY IS FIELD(CHAR(3)) ;

INVEN IS FILE (INVREC(*))
KEY STOCKS
ORG ISAM ;

INVREC IS RECORD(STOCKS, SALPRICE,QOH) ;
STOCKS IS FIELD(CHAR(8)) ;
SALPRICE IS FIELD(NUMERIC(5)) ;
QOH IS FIELD(NUMERIC(5)) ;

POINTER. INVREC = TRAN.STK ;
FOUND.X
If X is a record in a keyed file, then it is accessed through the

value of a POINTER control variable. It may happen that the key value
used to access the record does not match with any record. The accessing

would fail. The user may test the value in a control variable called
FOUND.X to find out whether a record with some specific key exists or
not. This informaton may be used to decide whether a new record should

be added into the file or an old record should be updated. The control
variable FOUND.X has the same shape as array X and POINTER.X. Its data
type is boolean.

LEN.X

If X is a field in some record and its data type is variable length
character string, then the actual 1length of X is specified by the
control variable LEN.X which is used to disassemble the input or output
records. Corresponding to every element of array X, there is an element
in LEN.X. The values in the array LEN.X are integers. We can use any
integer type expression to define LEN.X. The only restriction is that
the content of LEN.X should not depend upon any data physically
positioned in a record after the data field X.

NEXT.X

If X is a field in an input sequential file, the control variable
NEXT.X can be used to denote the same field in the next physical record
of the file. Although the next record usually means the record with a
subscript value one larger than the current record, it may not be true
when the current record is the last record in some group. The problem

is caused by the fact that the user is dealing with structured data but
the real data in the external file is in a linear form. Sometimes the
information wused to +transform a sequence of records into a structured
form can only be conveniently expressed in the way that the records are
physically contiguous. For example, we may want to compare the value of
a key field in two adjacent records to determine whether a record is the
last record in a group or not. The fact that the current record and the
next record may or may not be in the same group causes trouble in
referencing the next recoxd.

Example:

Suppose the records in a transaction file contain a customer number
and some relevant information and the records are sorted according to
the value of the customer number field. We may use <the following
specification to describe the data structure.

TRANSACTION IS FILE (CUSTOMER(*)) ;
CUSTOMER IS GROUP (TRANS_REC(*)) ;
TRANS_REC IS RECORD (CUSTOM_NO, INFORMATION) ;
CUSTOMER_NO IS FIELD (PIC'99999999') ;
I IS SUBSCRIPT
J IS SUBSCRIPT ;
END.TRANS_REC(I,J) =
CUSTOMER_NO(I,J)*=NEXT .CUSTOMER _NO(I,J) ;

> W

The term NEXT.CUSTOMER NO(I,J) in the last assertion can not be
replaced by CUSTOMER NO(I,J+1) because there may not be a record with
this pair of subscript values. The restriction in using the control
variable NEXT.X is that the position of X field in a record should be
fixed, i.e. the fields to the left of the field X can not be variable
length strings or repeating with a variable number of times. Otherwise,
the field X in the next record may not be located correctly.

SUBSET.X

If X is a record in an output file, then the control variable
SUBSET.X can be used +to selectively omit some records from an output
file. The SUBSET.X control variable is a boolean array of the same
shape as the array X. When an element in the SUBSET.X has a value of
boolean true, the corresponding record X will be put into the output
file. Oon the other hand, if the element has a value of boolean false,
the corresponding record will not be put into the output file. It
should Dbe noted that the use of SUBSET control variable does not affect
any other computations, Only a subset of records X may be omitted from
the output file.

CHAPTER 3

SYNTAX ANALYSIS PROGRAM

The first phase of the MODEL processor analyzes the syntax and
other local semantics of individual statements, Advanced
state—of-the—art syntax analysis techniques are used here which have
proved to be invaluable. Specifically, the capability to generate the
parser automatically has enabled rapid development changes. In addition
to checking the MODEL statements for syntactic and some semantic errors,
this phase also stores the statements in an internal associative form
for later processing.

3.1 EBNF, SAPG, AND THE SAP
3.1.1 SPECIFICATION OF MODEL USING EBNF AND THE SAPG

The syntax Analysis Program (SAP) for the MODEL statements is
generated automatically by a Syntax Analysis Program Generator (SAPG).
As shown in Figure 3.1, the SAPG produces the Syntax Analysis Program
(sAP) for analyzing MODEL statements, based on a specification of the
MODEL language expressed in the EBNF/WSC (extended Backus Normal Form
With Subroutine Calls) meta language.

- 22 -

|_oSpecifications Li Ting
SAP [_SSyntax Diagrostics an
MD : Cross-Refarente Repcs
= - —>Cncoded and SutTeR
St Statements
tatements

Figure 3.1 Block Diagram of SAPG and SAP

The EBNF/WSC includes the traditional concepts of BNF. BNF uses
sequences of characters enclosed in angle-brackets <« > called
non—terminals to give names to grammatical units, for which
substitutions may be made. It also uses sequences of characters not
enclosed in brackets which are in the object 1language (in this case
MODEL). BNF consists of a series of production rules or substitution
rules of the form "A::=B" where "A" is a single non—terminal symbol and
"B" 1is one or more alternative sequences of terminal or non—terminal
symbols that can be substituted for A. The alternatives are separated
by the meta-symbol "|". To facilitate language description, BNF was
extended to EBNF with two more well-known meta-symbols: €]
representing optionality and []* representing zero or more repetitions.

The specification of MODEL that is input to the SAPG consists not
only of the syntax specification of MODEL, but also of subroutine names
embedded within the EBNF; therefore the name "“EBNF With Subroutine
Calls"” (EBNF/WSC). The SAPG provides a capability to branch to these
subroutines upon successful recognition of a syntactic unit. Thus, they
can complete the SAP to enable it to check some of the statement
semantics, to encode, to produce error messages, and to store the MODEL
statements for later retrieval. The invocations of these subroutines
themselves are written manually. The definition of the MODEL language
in EBNF/WSC appears in Figure 3.2. The subroutines to be invoked are
indicated between slaches (/.../). Note that subroutine calls are made
after the successful recognition of syntactic units up to that point.

The SAP generated by the SAPG according to the EBNF/WSC is
supplemented and 1linked with the routines. The SAP accepts statements
in MODEL and checks them for syntactic correctness, and local semantics.
It produces a listing of the statements, syntax diagnostics, an encoded
stored version of the MODEL statements, syntax trees for the assertions
and a cross-reference report.

- 24 -

<MODEL,_SPECIFICATION> : :={ <MODEL_BODY_STMTS> /CLRERRF/]*
/STMI_FL/ <MODEL_SPECIFICATION>
<MODEI, BODY_STMTS>::= /E(80)/
MODULE <MODULE_NAME_STMT>
| SOURCE <SOURCE_FILES_STMT>
| TARGET <TARGET_ FILES_STMT>
| @ _END @ /ENDINP/
} <DCL_DESCRIPTION>
| <«BLOCK_BEGIN>
| <BLOCK_END>
{ <OLD_FILE_STMT>
| /ASSINIT/ <ASSERTIONS> /STRHS/
<DCIL,_DESCRIPTION> ::= 1 /INTDCL/ /INTMVAR/ /MEMINIT/ /SVMEM/
<DATA_SPEC>
(, /E(108)/ <INTEGER> /CRDCL/
/INTMVAR/ /MEMINIT/ /SVMEM/
<DATA_SPEC>]* /STDCL/ <ENDCHAR>
<DCL_MVAR> [(<OCCSPEC>)] [<IS>]
<ATTR_SPEC> /SVDCL/
<FILE> /SVF/ /SVFLNM/ <FILE_DESC>
<«STORAGE_DESC> /STDEV/
| <RECORD> /SVR/
| <PIELD_STMT> /STDFLD/ /SVD/
| [(<«GROUP>] /SVG/
BLOCK /BLKINIT/ [<NAME> /SVLBL/] /E(2)/
: [<«<BLOCK_SPEC>]* /SVBLOK/ <ENDCHAR>
= «SOLUTION> | <ITERATION> | <REL_ERROR>

<DATA_SPEC>

L1]
]

<ATTR_SPEC>

<BLOCK_BEGIN> ::

<BLOCK_SPEC> :

o oo

<SOLUTION> = [SOLUTION] METHOD [<IS>] /E(62)/

‘ <METHODS> /SVMETH/ ([,]

<METHODS > t1:= NEWTON | GAUSS_SEIDEL | G_S | JACOBI

<ITERATION> 13= ([<MAXIMUM>] <ITER> [<IS>] /E(4)/
<NUMBER> /SVITER/ [,]

<MAXIMUM> = MAX | MAXIMUM

<ITER> t:= ITER | ITERATION | ITERATIONS

<REL_ERROR> [RELATIVE] <ERROR> [<IS>] /E(5)/
<NUMBER> /SVERR/ [,]

<ERROR> s:= ERR | ERROR

<BLOCK_END> ::= <END> /BLKEND/ [<NAME> /CHKLBL/] <ENDCHAR>

<END> s := /ENDID/

<ASSERTIONS> : :=/E(14)/ <CONDITIONAL> |
/SVASSR/ /INTMVAR/ <MVAR> /STMVAR/ /SVCMP1l/
(<IS>/SVNXOP/]<DDL_OR_RHS>
<CONDITIONAL>: :=IF /SVAASl/ /SVOPl/ /SETBIT/ /E(18)/
<BOOLEAN_EXPRESSION> /SVCMPl/ /E(38)/
THEN /SVNXOP/ <SIMPLE_ASSERTION> /SVNXCMP/
(ELSE /SVNXOP/ <ASSERTION> /SVNXCMP/] /STALL/
<ASSERTION>: := /E(14)/ <CONDITIONAL> | <SIMPLE_ASSERTION>

Figure 3.2 Definition of MODEL language in EBNF/WSC

- 25 —

<DDL_OR_RHS> : :=/INTODDL/ <DATA_DESC_STMT> /FREETMP/
| /E(33)/ <INTOAS> <ASSERTION_BRANCH>
<ENDCHAR>
<ASSERTION_BRANCH> : := <«DEF_EXPRESSION>
| <«BOOLEAN_EXPRESSION>/SVNXCMP/ /STALL/
<DEF_EXPRESSION>::= /INTSUB/ { <VALUE_LIST> } /FREESUB/
<VALUE_LIST>::= (/CRSUB/ /DECPP/ <VALUE_LIST>
(, <VALUE_LIST>]*) /INCPP/
| [(<SIGN> /SVOPP/] <NUMBER> /STNUM/ /STASS/
<INTOAS> : : =/ INTOASS/
<SIMPLE_ASSERTION>::= /SVASAEl/ /INTMVAR/ <MVAR> /STMVAR/
/SVCMP1/ /E(23)/ = /SVNXOP/
<BOOLEAN_EXPRESSION> /SVNXCMP/ /STALL/
<ENDCHAR>
<«SUB_VARIABLE>: := /SETSUBV/ <VAR> /SVCMPl/
((/SVNXOP/ /SETBIT/ /E(22)/
<BOOLEAN_EXPRESSION> /SVNXCMP/ [,/SVNXOP/
<BOOLEAN_EXPRESSION>/SVNXCMP/]*
/E(24)/)] /STALL/
<BOOLEAN_EXPRESSION>::= /E(82)/ /SVBEXP/ <COND_EXP>
| <BOOLEAN_TERM> /SVCMP1l/
[<OR> /SVNXOP/ <BOOLEAN_TERM>
_ /SVNXCMP/]* /STALL/
<COND_EXP>: := IF /SVCOND/ /E(3)/ <BOOLEAN_EXPRESSION>
/SVCMPl/ /E(79)/ THEN /SVNXOP/
<BOOLEAN_EXPRESSION> /SVNXCMP/ /E(12)/ ELSE
/SVNXOP/ <BOOLEAN_EXPRESSION> /SVNXCMP/
/STALL/ |
<OR>::= /OR_REC/ ’ :
<BOOLEAN_TERM> : := /E(83)/ /SVBT1/ <BOOLEAN_FACTOR> /SVCMP1l/
' (_/SVNXOP/ <BOOLEAN_FACTOR> /SVNXCMP/]*
/STALL/
<BOOLEAN_FACTOR>: := /E(82)/ /SVBF1/ <CONCATENATION> /SVCMP1l/
[<RELATION> /SVNXOP/ <CONCATENATION>
/SVNXCMP/]1* /STALL/
<RELATION>: := /RELREC/
<CONCATENATION>: := /E(84)/ /SVCON/ <ARITH_EXP> /SVCMPl/
. { <CONCAT> /SVNXOP/ <ARITH_EXP>
/SVNXCMP/]* /STALL/
<CONCAT> : := /CATREC/
<ARITH_EXP>::= /E(81)/ /SVAE/ [<SIGN> /SVOP1/]
<TERM> /SVCMP1l/ [<OPS> /SVNXOP/ <TERM>
/SVNXCMP/]* /STALL/
<TERM>::= /E(87)/ /SVTERM/ <FACTOR> /SVCMP1l/
[<MOPS> /SVNXOP/ <FACTOR> /SVNXCMP/]* /STALL/
<PACTOR>: := /E(85)/ /SVFAC/ [/SVOP1l/] <PRIMARY> /SVCMPl/
[<EXPON> /SVNXOP/ <PRIMARY> /SVNXCMP/]* /STALL/
<EXPON>: := /EXPREC/

Figure 3.2 Definition of MODEL language in EBNF/WSC

<PRIMARY>::= /E(86)/ /SVPRIM/ <IS_PRIM> /SVCMPl/ /STALL/
<IS_PRIM>::= (<BOOLEAN_EXPRESSION> /E(24)/)

| <NUMBER> /STNUM/ | <STRING_FORM>

| <FUNCTION_CALL> | <SUB_VARIABLE>

<STRING_FORM>::= ' /SETSTRN/ [<STRING> /SVSTRNG/] /E(26)/
* /ADLEX/ [B /STBIT/ /E(1)/ <B_SUFX>]
/STNUM/

<FUNCTION_CALL>: := <FUNCTION_NAME> /STFUN/
/SETFUNC/ [(/SVNXOP/ <BOOLEAN_EXPRESSION>
/SVNXCMP/ [,/SVNXOP/ <BOOLEAN_EXPRESSION>
/SVNXCMP/]1*)] /STALL/
«FUNCTION_NAME> : := /FNCHECK/
<MVAR>::= (<«SUB_VARIABLE> /SVMVAR/
[, <SUB_VARIABLE> /SVMVAR/]*)
| <SUB_VARIABLE> /SVMVAR/
<VAR>::= /SETVAR/ /INITQNM/ /E(68)/ <«NAME> /ADLEX/ /MKQNM/
(. /ADLEX/ /E(68)/ <NAME> /ADLEX/ /MKQNM/]*
/STR_CON/
<DCL_MVAR> ::= (<VAR> /SVMVAR/ [, <VAR> /SVMVAR/]*)
| «<VAR> /SVMVAR/
<B_SUFX>: := /BITSTR/
<QNAME> : := /INITQNM/ /E(68)/ <NAME> /MKQNM/
{ . /E(68)/ <NAME> /MKQNM/] *
<STRING> : := <S'I'RING_CONST>
<OPS>::= /OPREC/
<MOPS>: := /MOPREC/
<TEST>: := /TESTBIT/
<MODULE_NAME_STMT> : := /E(63)/: /E(64)/ <NAME> /STMOD/
: <ENDCHAR> '
<SOURCE_FILES_STMT>::= [<FILE_KEYWORD>] /E(75)/ /INITSFL/ :
<SOURCE_FILELIST> /STSRC/ <ENDCHAR>
<FILE_KEYWORD>::= FILES|FILE
<SOURCE_FILELIST>::= /E(76)/ <NAME> /SVSRC/
(, /E(76)/ <NAME> /SVSRC/]*
<TARGET FILES_STMT>::= [<FILE_KEYWORD>] /E(77)/ /INITTFL/ :
<TARGET_FILELIST> /STTAR/ <ENDCHAR>
<TARGET_FILELIST>::= /E(78)/ <NAME> /SVTAR/
C(, /JE(78)/ <NAME> /SVTAR/]1*
<«DATA_DESC_STMT>: := <«DATA_DESCRIPTION> <ENDCHAR>
<DATA_DESCRIPTION>: :=
<FILE_STMT> /STFILE/
| <RECORD_STMT> /STREC/
| <GROUP_STMT> /STGRP/
| <FIELD_STMT> /STFLD/
| <SUB_STMT> /STSUBST/
<SUB_STMT> : :=<SUBSCRIPT>/MEMINIT/ /SVMEM/ ([(<OCCSPEC>)]
<SUBSCRIPT>::= SUB | SUBSCRIPT | SUBSCRIPTS
<FILE>::= FILE | REPORT | FILES | REPORTS

Figure 3.2 Definition of MODEL language in EBNF/WSC

<RECORD_STMT>: := <RECORD> /MEMINIT/ ((] <ITEM_LIST> [)]
t1:= REC | RECORD | RECORDS
<ITEM_LIST>::= /E(52)/<ITEM> [[,] <ITEM>]*
<ITEM>::= <NAME> /SVMEM / [. <NAME> /SVMEM/]*
((<OCCSPEC>)]
<OCCSPEC»>::= <«STAR> /SVSTAR/ | <MINOCC>/SVMNOC/ [<MAXOCC>]
<STAR> : := /STARREC/
<MINOCC> : :=<INTEGER>
<MAXOCC> ::= [:/E(51)/]<INTEGER> /SVMXOC/ /CKMNMX/
} <INTEGER> /SVMXOC/ /CKMNMX/
<GROUP_STMT> : := <GROUP>/MEMINIT/ [(] <ITEM_LIST> {)]
<GROUP> ::= GRP | GROUP | GROUPS
<FIELD_STMT>::= <FIELD> /SVFLD/ <FIELD_ATTR>
<FIELD> ::= FLD | FPIELD | PIELDS
<FIELD ATTR>::= [(] <«TYPE> /SVFDTP2/[<«LENG_SPEC>]
r

(,] ([<LINE_SPEC>] ([,] [<COL_SPEC>] ()]
<LENG_SPEC> ::= (/E(48)/ <MIN_LENGTH> [<MAX_LENGTH>]
/E(49)/)

| <MIN_LENGTH> [<MAX_LENGTH>]
<MIN_LENGTH>: := <INTEGER> /SVMNFLN/
<LINE_SPEC>::= LINE /E(53)/ /E(54)/ /E(55)/
(<INTEGER> /SVLINE/)
<COL_SPEC>: := COL /E(90)/ /E(91)/ /E(S2)/
(<INTEGER»> /SVCOL/)
<TYPE>::= /E(47)/ <PIC_DESC> | <STRING_SPEC> | <NUM_SPEC>
<PIC_DESC>::= <PIC_TYPE> /E(67)/ /SVPIC/
' [<STRING> /SVPICST/] ' /STPIC/
<PIC_TYPE>::= PIC | PICTURE
<STRING_SPEC> : := <«STRING_TYPE> /SVSTRTP/
<STRING_TYPE>::= CHAR | CHARACTER | BIT | NUM | NUMERIC
<NUM_SPEC>: := <NUM_TYPE> /SVNUMTP/ [<FIXFLT> /SVMOD/]
<NUM_TYPE>::= BIN | BINARY | DEC | DECIMAL
<FIXFLT>::= FIX | FIXED | FL | FLOAT | FLT
<MAX _LENGTH>::= [:] <INTEGER> /SVMXFLN/
| , /JE(46)/ <SINTGR»> /SVSCALE/
| <INTEGER> /SVMXFLN/
<SINTGR>::= — /E(50)/ <INTEGER> /NEGATE/ | <INTEGER>
<NUMBER> ::= /SETNUM/ <INITNUM> /E(65)/ <RECNUM>
<RECNUM> : := /RECNUM/
<INITNUM> ;: := /INITNUM/
<SIGN>::= + |} —
<RECG»>: := <RECORD> | <GROUP>
<KEY> : : =KEY | SEQUENCE
<CODE> : :=EBCDIC}|BCD|ASCII
<ANY> : := <NAME> | <INTEGER>
<NO_TRKS>::= 7|9
<DENSITY>::= 200{556}800}|1600}|6250
<PARITY>: := ODD|EVEN

Figure 3.2 Definition of MODEL language in EBNF/WSC

<TYPEDSK>::= 2314|2311|3330{2305 | 3330-1
<ORG> : : =ORG | ORGANIZATION
<ORG_TYPE> : := /E(7)/1ISAM|SEQUENTIAL|SAM| INDEXED_SEQUENTIAL
<ENDCHAR> : := /E(74)/ <END_CHAR> /STMTINC/
<END_CHAR> : := /SVENDC/
<STRING_CONST> : :=/CHARSTR/
<NAME> : : =/NAMEREC/
<INTEGERS> : : =/ INTREC/
<IS»>::1= IS | = | ARE
<FILE_STMT>::= <FILE> /SVFLNM/ /MEMINIT/ <SON_DESC>
<FILE_DESC> <STORAGE_DESC> /STDEV/
<SON_DESC>: :=(<ITEM_LIST>)
| <RECG> [NAME] [<IS>] [(] <ITEM> ()]
<OLD_FILE_STMT>::= <FILE> [NAME] (<IS>] /E(56)/ /MEMINIT/
/ INTMVAR/
<DCL,_MVAR> /SVFLNM/
<RECG> [NAME] [<IS>] [(] <ITEM> [)]
<FILE_DESC> /STFILE/
‘ <STORAGE_DESC> /STDEV/ <ENDCHAR>
<FILE_DESC>::= [STORAGE [NAME] (<IS>] /E(44)/ <NAME>
/SVSTNM/]
[<KEY> [NAME] [<IS>] /E(45)/ <NAME> /SVKEY/]
(<ORG> ([<IS>] <ORG_TYPE> /SVORG3/]
<«STORAGE_DESC> ::= [DEVICE ([<IS>] <DEVICE>] /SVDEV/
(RECORD /E(57)/]1(FORMAT [<IS>] <REC_FMT>]/SVRECF/
<BLK_REC_VOL»>
(<TAPE_DESC>] [<DISK_DESC>]
(HARDWARE] [SOFTWARE]

<DEVICE> ::= /E(61)/ TAPE | DISK/SETDEVB/
| CARD /SETDEVC/ | PRINTER /SETDEVP/
| PUNCH /SETDEVU/ | TERMINAL /SETDEVT/

<REC_FMT> ::= /E(69)/ FIXED|VARIABLE|}VAR_SPANNED | UNDEFINED
<BLK_REC_VOL> ::=
((MAX] /E(70)/ /E(71)/ BLOCKSIZE [<IS>]
<INTEGER> /SVBLK/]
{ (MAX/E(59)/] RECORDSIZE ([<IS>] /E(72)/
<INTEGER>/SVRCSZ/]
{ VOLUME (NAME] ([<IS>] /E(60)/ <NAME>
/SVVOL/ (,/E(60)/<NAME>]*]
<TAPE_DESC> ::= [<TRACKS> [<IS>] /E(66)/<NO_TRKS>/SVTRK2/]
(PARITY [<IS>] /E(66)/ <PARITY>/SVPAR2/]
[DENSITY [<IS>] /E(66)/ <DENSITY> /SVDEN2/]
((TAPE] LABEL [<IS>] <LABEL_TYPE>/SVLAB2/]
[START (FILE] (<IS>] /E(66)/ <INTEGER>
/SVSTFL2/]
({CHAR] CODE [<IS>] <CODE> /Svcc/]
<TRACKS> ::= NO_TRKS | TRACKS
<LABEL,_TYPE> ::= /E(58)/ IBM_STD|ANSI_STD|NONE | BYPASS

Figure 3.2 Definition of MODEL language in EBNF/WSC

<DISK_DESC> ::= [UNIT [<IS>] /E(9)/ <TYPEDSK> /SVUNITZ2/]
[<CYLINDERS>/SVUCYL/ [<IS>] /E(66)/
<INTEGER> /SVQTY2/]
<«CYLINDERS> ::= NO_CYLS | CYLINDERS
<HARDWARE> : := [[COMPUTER] MODEL [<IS>] <ANY>
<SOFTWARE> : := [[OPERATING] SYSTEM [<IS>] <ANY>]

FPigure 3.2 Definition of MODEL language in EBNF/WSC

3.1.2 HOW THE SAPG PRODUCES THE SAP

The SAPG is a parser generator. It accepts a specification in the
language EBNF/WSC and produces a parser program (SAP). It performs this
in three passes over the set of productions.

In pass 1, each production is scanned, and its components are
encoded into a set of tables. Non—-terminal symbols appearing on the
left-hand-side of a production (new production names) are put into a
symbol table (LHS-NT-SYM-TAB), while non—terminals appearing on the
right-hand-side of a production are put into another symbol table
(RHS—-NT-SYM—TAB). Terminal symbols in a production are put into a
terminal symbol table (TERM—-SYM—TAB). Subroutine calls are put into yet
another table (SUB-TAB).

In pass 2, the symbolic references in RHS-NT-SYM-TAB (i.e.
non—terminals on the right-hand—-side of the original production) are
resolved. Pass 2 checks that each non—-terminal symbol in RHS—-NT-SYM—TAB
is defined, and links it to the corresponding entry in LHS—NT-SYM-TAB.
Undefined non—-terminals as well as circularly-defined non-terminals can
be detected in these table searches.

Pass 3 of the SAPG is the code-generation phase that produces the

SAP in PL/I. It is only entered if no errors were encountered in the
previous phases. For each EBNF/WSC production, a PL/I procedure is
generateéd. Each one returns a bit: 1 if the recognition was

successful; O if it was unsuccessful. The exclusive nature of EBNF
production rules and alternatives is effected by generating nested PL/I
IF-THEN-ELSE statements. Repetition zero or more times is effected by
generating a GO TO to the statement testing for recognition. Subroutine
names embedded in the EBNF/WSC get a CALL generated for them in place.
Calls to other subroutines not explicit in the EBNF/WSC are also
generated. These include "housekeeping” subroutines of the SAP and
calls to LEX, a subroutine to scan and return the next token in the
object language.

To illustrate the code that the SAPG generates, consider the
following representative production rule in the EBNF/WSC and the PL/I
code that corresponds:

<FIELD_STMT>::= <FIELD> /SVFLD/ <FIELD_ATTR> /STFLD/

The PL/I code that is generated for it by the third pass of the SaAPG
would be the following:

FIELD_STMT
CALL $MARK
IF FIELD() THEN DO;

IF ERRORSW THEN DO; CALL $SUCCES; RETURN('l1'B); END; ELSE;
CALL SVFLD;

IF FIELD_ATTR() THEN DO;

IF ERRORSW THEN DO; CALL $SUCCES; RETURN('l1°'B); END; ELSE;
CALL STFLD;

CALL $SUCCES; RETURN('1'B);

END; ELSE DO; CALL $SUCCES; RETURN(‘l1'B); END;

END; ELSE DO; CALL SFAIL; RETURN('O'B); END;

END FIELD_STMT;

PROCEDURE RETURNS(BIT(1));

N oo

The above code generated by the SAPG would become one procedure in
the SAP. Note that the name that the language definer uses in the
production rule are preserved in the generated SaAP code. The
subroutines beginning with dollar signs ($) are "housekeeping” routines
that are internal to the mechanisms of SAPG—generated code.

3.2 SUPPORTING SUBROUTINES FOR EBNF OF MODEL

A refined system flowchart of the SAPG and SAP showing the types of
supporting routines appears in Figure 3.3.

\/

Stcrage/Peieval
Sub~-Systex

SAFG
r-- .-.-—————..—-—’——-———-.—“—.———.]
1 Hmth . ‘
supporting

1 routines &P t

{

L 1 | |

|| Leciany Zrrr Local Storirz | |

t Analyzer Message S¢=a§§i=s E:::;ing Routises

Reutines Cheskirg Scutines

| tires I

l —*‘\
\i |

|

i

|

3

KT
Rapor~

Fig. 3.3 More Detailed View Of SAPG and SAP With
Supporting Subroutines

The manually-written syntactical supporting routines are of one of

several types:

(1) a lexical analyzer which returns tokens of syntactic units to

the SAP for analysis;

(2) statement semantics checking routines;

- 32 —

(3) error message handling routines;

(4) encoding routines to compact information for further efficient
processing; and

(5) statement storage routines.

The cross-reference report produced during this phase is generated
by a manually-written program (XREF) and is described in section 3.4.

A discussion on how to decide where to insert subroutines as well
as a tabular summary of all routines used appears in section 3.2,

3.2.1 THE LEXICAL ANALYZER

The purpose of the lexical analyzer is to scan for syntactic units
or "tokens”, using such delimiters as blanks and certain punctuation
marks, and to return tokens to the Syntax Analysis Program (SAP) for
syntactic checking. The automatically—generated SAP calls upon the
lexical analyzer (LEX) whenever it needs the next +token. The lexical
analyzer is based on the finite state machine concept. Each state of
the machine corresponds to a condition in the lexical processing of a
character string. At each state, a character is read, an action is
taken based on the character read (such as concatenating the current
character to previous ones or returning the entire token to the SarP),
and the machine changes to a new state. The character classes for the
MODEL language, for the purposes of lexical analysis, appear in Table
3.1. These classes divide the entire character set into categories such
as 1illegal characters, delimiters, "normal" characters, ... etc. The
state transition matrix for the MODEL language appears in Table 3.2.
The rows of the matrix represent the character classes of the previous
character, while the columns represent those of the current character.
The entries in the matrix indicate the action to be taken and the next
state. The action taken in each state is summarized in Table 3.3. The
actions involve such steps as concatenating of a character, ignoring a
character, detecting an illegal character, returning a complete token to
the SAP, ... etc., and setting a "next state".

Class Character Set Explanation

(o] AB...YZ_#6e Characters in names

1 space Delimiter

2 012 ...9 Numerals

3 <+), %" Delimeters

4

S < Delimeter in logical exp
6 H "OR" symbol

7 * Multi. or comment in "/**
8 “NOT" symbol

9 - minus symbol

10 / Division or comment

11 > Delimeter in logical exp
12 = Delimeter and logical exp
13 all others Illegal

Table 3.1 Character Classes for MODEL Language

- 34 —

