
University of Pennsylvania
ScholarlyCommons

Departmental Papers (CIS) Department of Computer & Information Science

9-27-2010

Lolliproc: to Concurrency from Classical Linear
Logic via Curry-Howard and Control
Karl Mazurak
University of Pennsylvania

Stephan A. Zdancewic
University of Pennsylvania, stevez@cis.upenn.edu

Follow this and additional works at: http://repository.upenn.edu/cis_papers

Part of the Computer Sciences Commons

Karl Mazurak and Steve Zdancewic. Lolliproc: to Concurrency from Classical Linear Logic via Curry-Howard and Control. In Proc. of the 15th
ACM SIGPLAN International Conference on Functional Programming (ICFP), 2010.
doi>10.1145/1863543.1863551
© ACM, 2010. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The
definitive version was published in Proc. of the 15th ACM SIGPLAN International Conference on Functional Programming, {(2010)} http://doi.acm.org/
10.1145/1863543.1863551" Email permissions@acm.org

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/cis_papers/575
For more information, please contact libraryrepository@pobox.upenn.edu.

Recommended Citation
Karl Mazurak and Stephan A. Zdancewic, "Lolliproc: to Concurrency from Classical Linear Logic via Curry-Howard and Control", .
September 2010.

http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fcis_papers%2F575&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F575&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis?utm_source=repository.upenn.edu%2Fcis_papers%2F575&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F575&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=repository.upenn.edu%2Fcis_papers%2F575&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1145/1863543.1863551
http://dx.doi.org/10.1145/1863543.1863551
http://repository.upenn.edu/cis_papers/575
mailto:libraryrepository@pobox.upenn.edu

Lolliproc: to Concurrency from Classical Linear Logic via Curry-Howard
and Control

Abstract
While many type systems based on the intuitionistic fragment of linear logic have been proposed, applications
in programming languages of the full power of linear logic-including double-negation elimination-have
remained elusive. Meanwhile, linearity has been used in many type systems for concurrent programs-e.g.,
session types-which suggests applicability to the problems of concurrent programming, but the ways in which
linearity has interacted with concurrency primitives in lambda calculi have remained somewhat ad-hoc. In this
paper we connect classical linear logic and concurrent functional programming in the language Lolliproc,
which provides simple primitives for concurrency that have a direct logical interpretation and that combine to
provide the functionality of session types. Lolliproc features a simple process calculus “under the hood” but
hides the machinery of processes from programmers. We illustrate Lolliproc by example and prove soundness,
strong normalization, and confluence results, which, among other things, guarantees freedom from deadlocks
and race conditions.

Disciplines
Computer Sciences

Comments
Karl Mazurak and Steve Zdancewic. Lolliproc: to Concurrency from Classical Linear Logic via Curry-
Howard and Control. In Proc. of the 15th ACM SIGPLAN International Conference on Functional Programming
(ICFP), 2010.

doi>10.1145/1863543.1863551

© ACM, 2010. This is the author's version of the work. It is posted here by permission of ACM for your
personal use. Not for redistribution. The definitive version was published in Proc. of the 15th ACM SIGPLAN
International Conference on Functional Programming, {(2010)} http://doi.acm.org/
10.1145/1863543.1863551" Email permissions@acm.org

This conference paper is available at ScholarlyCommons: http://repository.upenn.edu/cis_papers/575

http://dx.doi.org/10.1145/1863543.1863551
http://dx.doi.org/10.1145/1863543.1863551
http://repository.upenn.edu/cis_papers/575?utm_source=repository.upenn.edu%2Fcis_papers%2F575&utm_medium=PDF&utm_campaign=PDFCoverPages

Lolliproc: to Concurrency from Classical
Linear Logic via Curry-Howard and Control

Karl Mazurak Steve Zdancewic
University of Pennsylvania

{mazurak,stevez}@cis.upenn.edu

Abstract
While many type systems based on the intuitionistic fragment of
linear logic have been proposed, applications in programming lan-
guages of the full power of linear logic—including double-negation
elimination—have remained elusive. Meanwhile, linearity has been
used in many type systems for concurrent programs—e.g., session
types—which suggests applicability to the problems of concurrent
programming, but the ways in which linearity has interacted with
concurrency primitives in lambda calculi have remained somewhat
ad-hoc. In this paper we connect classical linear logic and con-
current functional programming in the language Lolliproc, which
provides simple primitives for concurrency that have a direct logi-
cal interpretation and that combine to provide the functionality of
session types. Lolliproc features a simple process calculus “under
the hood” but hides the machinery of processes from programmers.
We illustrate Lolliproc by example and prove soundness, strong
normalization, and confluence results, which, among other things,
guarantees freedom from deadlocks and race conditions.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features

General Terms Design, Languages, Theory

Keywords Linear logic, Concurrency, Type systems

1. Introduction: Linearity and Concurrency
Since its introduction by Girard in the 1980’s [22], linear logic
has suggested applications in type system support for concurrency.
Intuitively, the appeal of this connection stems from linear logic’s
strong notion of resource management: if two program terms use
distinct sets of resources, then one should be able to compute them
both in parallel without fear of interference, thereby eliminating
problems with race conditions or deadlock. Moreover, linear logic’s
ability to account for stateful computation [42], when combined
with the concurrency interpretation above, suggests that it is a good
fit for describing stateful communication protocols in which the
two endpoints must be synchronized.

Indeed, there have been many successful uses of linearity in type
systems for concurrent programming. Ideas from linearity play a
crucial role in session types [12, 15, 25, 38, 40], for example, where

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ICFP’10, September 27–29, 2010, Baltimore, Maryland, USA.
Copyright © 2010 ACM 978-1-60558-794-3/10/09. . . $10.00

they are used to ensure that two end-points of a channel agree on
which side is to send the next message and what type of data should
be sent. Linearity is also useful for constraining the behavior of π-
calculus processes [4, 28], and can be strong enough to yield fully-
abstract encodings of (stateful) lambda-calculi [45].

Given all this, it is natural to seek out programming-language
constructs that correspond directly to linear logic connectives via
the Curry-Howard correspondence [26]. In doing so, one would
hope to shed light on the computational primitives involved and,
eventually, to apply those insights in the contexts of proof theory
and programming-language design. Here too, there has been much
progress, which falls, roughly, into three lines of work.

First, there has been considerable effort to study various in-
tuitionistic fragments of linear logic [6, 11, 29–31, 39]. This has
yielded type systems and programming models that are relatively
familiar to functional programmers and have applications in man-
aging state and other resources [2, 13, 16, 24, 41, 47]. However,
such intuitionistic calculi do not exploit concurrency (or non-
standard control operators) to express their operational semantics.

A second approach has been to formulate proof terms for the se-
quent calculus presentation of linear logic. This path leads to proof
nets, as in Girard’s original work [22] and related calculi [1, 18].
This approach has the benefit of fully exposing the concurrency
inherent in linear logic, and it takes full advantage of the symme-
tries of the logical connectives to provide a parsimonious syntax.
Yet the resulting type systems and programming models, with their
fully symmetric operations, are far removed from familiar func-
tional programming languages.

A third approach studies natural deduction formulations of lin-
ear logic [10, 14], following work on term assignments for classical
(though not linear) logic [35–37]. These calculi typically use typing
judgments with multiple conclusions, which can be read computa-
tionally as assigning types to variables that name first-class contin-
uations. Their operational semantics encode the so-called commut-
ing conversions which shuffle (delimited) continuations in such a
way as to effectively simulate parallel evaluation. This approach of-
fers type systems that are relatively similar to those used in standard
functional programming languages at the expense of obscuring the
connections to concurrent programming.

Contributions This paper introduces Lolliproc, a language in the
natural deduction tradition that takes a more direct approach to con-
currency. Lolliproc is designed first as a core calculus for concur-
rent functional programming; it gives a Curry-Howard interpreta-
tion of classical—as opposed to intuitionistic—linear logic1 that is
nonetheless suggestive of familiar functional languages.

There are two key ideas to our approach. First, in contrast with
the work mentioned previously, we move from an intuitionistic to
a classical setting by adding a witness for double-negation elimi-

1 Girard would say “full linear logic” or simply “linear logic”.

nation, which we call yield. Second, to recover the expressiveness
of linear logic, we introduce an operation go, which corresponds
logically to the coercion from the intuitionistic negation (ρ (‹)
to ρ̃, ρ’s dual as defined analogously to de Morgan’s laws in classi-
cal logic. Operationally, go spawns a new process that executes in
parallel to the main thread while yield waits for a value sent by an-
other process. These constructs are novel adaptations of Felleisen
& Hieb’s control operator [17] to our linear setting.

The search for appropriate operational semantics for these con-
structs leads us to a simple process language—reminiscent of Mil-
ner’s π-calculus [32]—hidden behind an abstract interface. Pro-
grams are written entirely in a standard linear λ-calculus aug-
mented with the go and yield operations and elaborate to processes
at run time. As a consequence, our type system isolates the classi-
cal multiple-conclusions judgments (captured by our typing rules
for processes) so that they are not needed to type check source
program expressions. This situation is somewhat analogous to how
reference cells are treated in ML—location values and heap typ-
ings are needed to describe the operational semantics, but source
program type checking doesn’t require them.

Organization The next Section introduces Lolliproc informally,
covering both what we take from the standard intuitionistic linear
λ-calculus and our new constructs. Given our goal of enabling con-
current programming in a traditional functional setting, we demon-
strate Lolliproc’s functionality by example in Section 3; we show
how a system that seems to permit communication in only one di-
rection can in fact be used to mimic bidirectional session types.

Section 4 gives the formal typing rules and operational seman-
tics for Lolliproc and presents our main technical contributions: a
proof of type soundness, which implies both deadlock-freedom and
adherence to session types; a proof of strong normalization, ruling
out the possibility of livelocks or other non-terminating computa-
tions; and a proof of confluence, showing that there are no race
conditions in our calculus.

Lolliproc does remain quite restricted, however—we have de-
liberately included only the bare minimum necessary to demon-
strate its concurrent functionality. Section 5 discusses additions
to the language that would relax these restrictions, including un-
restricted (i.e., non-linear) types, general recursion via recursive
types, and intentional nondeterminism. This approach adheres to
our philosophy of starting from a core language with support for
well-behaved concurrency, then explicitly introducing potentially
dangerous constructs (which, for instance, might introduce race
conditions) in a controlled way. This section also concludes with
a discussion of related work and a comparison of Lolliproc to more
conventional classical linear logics.

2. An overview of Lolliproc
As shown in Figure 1, the types τ of Lolliproc include linear func-
tions τ1 (τ2, additive products τ1 & τ2 (sometimes pronounced
“with”), the unit type 1, multiplicative products τ1 ⊗ τ2, and addi-
tive sums τ1⊕τ2. These types form an intuitionistic subset of linear
logic, and they come equipped with standard introduction and elim-
ination forms and accompanying typing rules. In addition, we have
the type ‹, which is notably not the falsity from which everything
follows.2 Its purpose will become apparent later.

Our syntax for expressions is given by the grammar e in Fig-
ure 1, and their standard evaluation semantics is summarized in Fig-
ure 2.3 In Lolliproc, all variables are treated linearly and functions

2 Such a type in linear logic is the additive false, while ‹ is the multiplica-
tive false; we have left additive units out of Lolliproc for simplicity’s sake.
3 The typical rule for handling evaluation contexts is missing, as this is done
at the process level in Lolliproc.

τ ::= τ (τ
∣∣ τ & τ

∣∣ 1 ∣∣ τ ⊗ τ ∣∣ τ ⊕ τ ∣∣ ‹ types
ρ ::= τ (ρ

∣∣ ρ& ρ
∣∣ ‹ protocol types

i ::= 1
∣∣ 2 indices

e ::= x
∣∣ λx:τ. e

∣∣ e e ∣∣ 〈e, e〉 ∣∣ e.i expressions∣∣ ()
∣∣ e; e ∣∣ (e, e)

∣∣ inτ⊕τi e∣∣ let (x, y) = e in e∣∣ case e of in1 x 7→ e | in2 y 7→ e∣∣ goρ e
∣∣ yield e new primitives∣∣ �a� ∣∣ �a� ∣∣ cab channel endpoints

v ::= λx:τ. e
∣∣ 〈e, e〉 ∣∣ ()

∣∣ (v, v)
∣∣ inτ⊕τi v values∣∣ �a� ∣∣ �a� ∣∣ cab

E ::=
[] ∣∣ E e

∣∣ v E ∣∣ E.i evaluation contexts∣∣ E; e
∣∣ (E, e)

∣∣ (v,E)
∣∣ inτ⊕τi E∣∣ let (x, y) = E in e∣∣ case E of in1 x 7→ e | in2 y 7→ e∣∣ goρ E

∣∣ yield E

P ::= e
∣∣ P | P

∣∣ νa:ρ. P processes

Π ::= ·
∣∣ Π, a·ρ

∣∣ Π, ã·ρ
∣∣ Π, a:ρ channel contexts

∆ ::= ·
∣∣ ∆, x:τ typing contexts

Figure 1. Lolliproc syntax

[E-APPLAM] (λx:τ. e) v −→ {x 7→ v}e

[E-LOCALCHOICE] 〈e1, e2〉.i −→ ei [E-UNIT] (); e −→ e

[E-LET] let (x1, x2) = (v1, v2) in e −→ {x1 7→ v1, x2 7→ v2}e

[E-CASE] case inτ1⊕τ2i v of in1 x1 7→ e1
| in2 x2 7→ e2 −→ {xi 7→ v}ei

Figure 2. Basic evaluation rules

are call-by-value. Additive pairs 〈e1, e2〉 use the same resources
to construct both of their components and are thus evaluated lazily
and eliminated via projection; multiplicative pairs (e1, e2), whose
components are independent, are evaluated eagerly and eliminated
by let-binding both components. We use the sequencing notation
e1; e2 to eliminate units () of type 1. Additive sums, eliminated by
case expressions, are completely standard.

Our new constructs—the go and yield operations, along with
channels and processes—are perhaps best understood by looking
at what motivated their design. In the rest of this section we will
see how the desire to capture classicality led to processes with
a simple communication model and how the desire to make that
communication more express led back to classical linear logic.
We will also see Lolliproc’s operational semantics; we defer a full
account of its typing rules for Section 4.

2.1 Moving to classical linear logic
The differences between intuitionistic and classical logic can be
seen in their treatment of negation and disjunction. In standard
presentations of classical linear logic, negation is defined via a
dualizing operator (−)‹ that identifies the de Morgan duals as

shown below:

‹‹ = 1 1‹ = ‹
(t1 & t2)‹ = t‹1 ⊕ t‹2 (t1 ⊕ t2)‹ = t‹1 & t‹2

(t1 (t2)‹ = t1 ⊗ t‹2 (t1 ⊗ t2)‹ = t1 (t‹2

With this definition, dualization is clearly an involution—that is,
(τ‹)‹ = τ . Moreover, the logic is set up so that duals are logically
equivalent to negation: τ‹ is provable if and only if τ (‹ is
provable. In this way, classical linear logic builds double-negation
elimination into its very definition—it is trivial to prove the theorem
((τ (‹)(‹)(τ , which is not intuitionistically valid.

Sequent calculus formulations of classical linear logic take ad-
vantage of these dualities by observing that the introduction of τ
is equivalent to the elimination of τ‹; this allows them to be pre-
sented with half the typing rules and syntactic forms that would
otherwise be required. This symmetric approach is extremely con-
venient for proof theory but does not allow us to conservatively
extend the existing typing rules and operational semantics for the
intuitionistic fragment of linear logic already described above. For
that, we need a natural-deduction formulation of the type system.

Our solution to this problem is to forget dualization (for now)
and instead add double-negation elimination as a primitive. We take
inspiration from type systems for Felleisen & Hieb’s control and
abort operators [17, 34]: in a non-linear setting, control, can be
given the type ((τ → ⊥) → ⊥) → τ , corresponds to double-
negation elimination, while abort is a functional variant of false
elimination that takes ⊥ to any type. The operational behavior of
these constructs is as follows:

E
[
control (λc. e)

]
−→ (λc. e) (λx. abort E

[
x
]
)

E
[
abort e

]
−→ e

Unfortunately, abort clearly has no place in a linear system, as it
discards evaluation context E and any resources contained therein.
What can we do instead? Observe that c has the continuation type
τ → ⊥ (or, in a linear setting, τ (‹) and that invoking c within
the body e returns an “answer” to the context E. We can reconcile
this behavior with a linear system by dropping abort and instead
introducing the ability to evaluate two expression in parallel:

E
[
control (λc. e)

]
−→ E

[
control �a�

]
| (λc. e) �a�

Here, evaluating a control expression spawns its argument as a
child process. The connection between the original evaluation con-
text E and the child process is now the channel a: we write �a� for
the receiving endpoint or source of a, held by the parent process,
while the �a� passed to the child denotes the sending endpoint or
sink. Now evaluation can proceed in the right-hand expression until
the sink is applied to a value, at which point this “answer” is passed
back to the parent process:

E
[
control �a�

]
| E′

[
�a� v

]
−→ E

[
v
]
| E′

[
cab
]

The closed channel token cab indicates that communication over
a is finished; it also indicates that the child process may now ter-
minate, but before process termination actually happens all linear
resources inE′ must be safely consumed. Linearity is preserved by
both of our operations, as neither expressions nor evaluation con-
texts are duplicated or discarded.

So far, though, these constructs offer a very poor form of
concurrency—in the rules above, the parent process immediately
blocks waiting for the child process to return. To allow the parent
and child to execute in parallel, we split can control into two oper-
ations. The first, which we call go, is responsible for generating the
channel a and spawning the child process; it immediately returns a
source value to the parent, which can keep running:

E
[
go (λc. e)

]
−→ E

[
�a�
]
| (λc. e) �a�

The second operation, yield, is used by the parent process to syn-
chronize with the child by blocking on a source:

E
[
yield �a�

]
| E′

[
�a� v

]
−→ E

[
v
]
| E′

[
cab
]

2.2 Typing and extending go and yield
How, then, to type check these new operations? Which is to say,
what is their logical meaning?

The source �a� has type ((τ (‹) (‹), and such doubly-
negated types appear so frequently in Lolliproc that we abbreviate
them as �τ�, pronounced “source of τ”. Invoking yield on such a
source returns a τ—it eliminates the double negation—so we have:

yield : �τ� (τ

What about go? At first glance, it appears that go takes an
expression of type �τ� and returns a �τ�—it is logically an identity
function. This would be sound, but we can do better. The type
τ (‹ is usually thought of as a continuation that accepts a τ , but
here it is better to think of it as expressing a very simple protocol,
one in which a τ is sent and there is no further communication.
From this point of view, we can instead think of go as taking a
function of type ρ (‹, and spawning that function as a child
process that must communicate according to the protocol ρ. The
parent process receives from go a source whose type describes the
other side of the protocol ρ; hence a yield on the source waits for
information to be sent across the sink by the child process, after
which both sides continue with the protocol.

Which types make sense as protocols? A protocol might be
complete (i.e., ‹), it might specify that a value of type τ be sent
before continuing according to the protocol ρ (i.e., τ (ρ), or it
might specify a choice between protocols ρ1 and ρ2 (i.e., ρ1 & ρ2).
For each such protocol type ρ we define a dual type ρ̃, as follows:4

‹̃ = 1‡ρ1 & ρ2 = �‹ρ1 ⊕ ‹ρ2�flτ (ρ = �τ ⊗ ρ̃�
Aside from the extra double-negations—corresponding opera-
tionally to points at which we must synchronize with yield and
logically to explicitly marking where classical reasoning will take
place—this is exactly the left-hand column of the definition of
(−)‹.5 Additionally, since �τ� is defined in terms of implication,
both �‹ρ1 ⊕ ‹ρ2� and �τ ⊗ ρ̃� are themselves protocol types, a fact
which will become important as we go on.

Thus go witnesses the logical isomorphism between the intu-
itionistic negation of a type and its dual:

go : (ρ(‹)(ρ̃

The channel endpoints �a� and �a�, then, must have the types ρ
and ρ̃. Their types will change over the course of evaluation, as
communication proceeds over the channel a; when communication
is finished, the �a� of type ‹ will be replaced by cab of that same
type, while the �a� of type 1 will simply step to ().

With this plumbing in place, we can define our operational se-
mantics for processes as shown in Figure 3. At the process level
we bind channels with νa:ρ. P ; these binders are generated by
rule EP-GO and require that we annotate go expressions as goρ e.
Evaluation blocks when yielding on sources or eliminating sinks

4 The choice to define ‹̃ as 1 rather than �1� is a simple optimization that
saves us from unnecessary synchronization at channel shutdown; our linkτ

example in the next section shows how this can come in handy.
5 In linear logic, the protocol connectives are said to be negative, meaning
that their introduction forms are invertible. That is, no additional choice is
made in their construction—in contrast to the choice of injection for⊕ and
the choice of resource split for ⊗, which are both positive connectives.

[EP-GO]
a not free in E

[
goρ v

]
E
[
goρ v

]
−→ νa:ρ. (E

[
�a�
]
| v �a�)

[EP-APPSINK] νa:τ (ρ. E1

[
yield �a�

]
| E2

[
�a� v

]
−→ νa:ρ. E1

[
(v, �a�)

]
| E2

[
�a�
]

[EP-REMOTECHOICE] νa:ρ1 & ρ2. E1

[
yield �a�

]
| E2

[
�a�.i

]
−→ νa:ρi. E1

[
inρ1⊕ρ2i �a�

]
| E2

[
�a�
]

[EP-CLOSE] νa:‹. E1

[
�a�
]
| E2

[
�a�
]
−→ E1

[
()
]
| νa:‹. E2

[
cab
]

[EP-DONE] P | νa:‹. cab −→ P

[EP-EVAL]
e −→ e′

E
[
e
]
−→ E

[
e′
] [EP-PAR]

P1 −→ P ′1

P1 | P2 −→ P ′1 | P2

[EP-NEW]
P −→ P ′

νa:τ. P −→ νa:τ. P ′

Figure 3. Process evaluation rules

[E-YIELDOTHER]
v 6= �a�

yield v −→ let (z, u) = yield (goτ(‹ v) in u; z
[E-APPSOURCE] �a� v −→ v (yield �a�)

Figure 4. Expression congruence rules

until a matching pair is in play, at which point the argument or
choice bit is relayed across the channel (rules EP-APPSINK and
EP-REMOTECHOICE). Note that such communication has the ef-
fect of updating the type of the channel at its binding site to re-
flect the new state of the protocol. The rule EP-CLOSE is similar,
but exists only to facilitate typing of completed channels and thus
does not require a yield. EP-DONE eliminates completed processes
(reminiscent of 0 in the π-calculus) and their binders. EP-EVAL in-
tegrates evaluation contexts and expression evaluation with process
evaluation, while EP-PAR and EP-NEW allow evaluation within
processes. (We also define the standard notion of process equiva-
lence, given in Section 4.)

Two final points must be addressed by operational semantics:
the type �τ� can be inhabited by more than just sources, and thus
we need evaluation rules for yielding on other sorts of values; sim-
ilarly, our sources all technically have function types, so we must
be able to apply them. Figure 4 gives the appropriate congruence
rules. For the first case, we recall our earlier intuition concerning
the simpler (but less useful) language where yield and go are com-
bined into control. Rule E-YIELDOTHER thus synthesizes a go in
such cases, although we must also synthesize a let binding, as we
have transformed a value of type �τ� into one of type �τ ⊗ 1�.

When a source appears in the function position of an applica-
tion, we appeal to the intuition from other systems for classical
logics [22, 35] that the interaction of a term with type τ and an-
other with type τ‹ should not depend on the order of those terms.
Thus, applying �a� of type (τ (‹) (‹ to v of type τ (‹
should be the equivalent of first yielding on �a�, then supplying the
result to v. Rule E-APPSOURCE makes this so, and it is easy to
verify that this property also holds in the case of other applications
at those types.

Although these congruence rules are a bit unusual, the fact that
Lolliproc does not introduce a new family of types for channel
endpoints turns out to be a very useful property of the system:
for instance, it allows us to bootstrap bidirectional communication
from what appears, at first glance, to be a unidirectional language.
We will see how this transpires in the next section.

3. Examples
Here we demonstrate some of what can be done with Lolliproc by
introducing several concurrency routines of increasing complexity.
For ease of explanation and consistency, we write fooτ when the
function foo is parameterized by the type τ , and we use capitalized
type abbreviations, e.g., Bar τ . In a real language we would of
course want polymorphism—either ML-style or the full generality
of System F with linearity [31].

Futures A future [33] is simply a sub-computation to be calcu-
lated in a separate thread; the main computation will wait for this
thread to complete when its value is needed. This is one of the sim-
plest forms of concurrency expressible in Lolliproc. We can define

Future τ = �τ ⊗ 1�

futureτ : (1(τ)(Future τ

futureτ = λx:1(τ. goτ(‹ λk:τ (‹. k (x ())

waitτ : Future τ (τ

waitτ = λf :Future τ. let (z, u) = yield f in u; z

The main process passes a thunk to its newly spawned child; this
child applies the thunk and sends back the result.

More pictorially, the run-time behavior ofE
[
futureτ g

]
, where

g () −→∗ v and E
[
−
]
−→∗ E′

[
−
]
, is

�� ���� ��E
[
futureτ g

] ∗//

∗&&LLLLLLLLLL

�� ���� ��E
[
�a�
] ∗//

�� ���� ��E′
[
�a�
]

�� ���� ���a� (g ())

a

OO
O�
O�
O�

∗// �� ���� ���a� v

a

OO
O�
O�
O�

The connection between endpoints of a channel at a given moment
in time are given by arrows. Similarly, for such some �a� of type

�� ���� ��E
[
linkτ vsrc vsnk

] ∗//

∗$$IIIIIIIIIIIIIIIIIIIIIIIII

�� ���� ��E
[
YLD(�a�)

] ∗
a

//
�� ���� ��E
[
cbb
]

�� ���� ���a� cbb

a

ff f& f& f& f& f& f&

a
// �� ���� ��cab

YLD(e) , let (z, u) = yield e in u; z
�� ���� ��go‹ �a�; vsrc vsnk

a

OO
O�
O�
O�
O�
O�
O�
O�
O�
O�

∗//

88qqqqqqqqqq �� ���� ��vsrc vsnk // �� ���� ��vsnk (yield vsrc)

Figure 5. Evaluation of linkτ vsrc vsnk

Future τ , we have

�� ���� ��E′′
[
waitτ �a�

] ∗
a

//
�� ���� ��E′′
[
v
]

�� ���� ���a� v

a

OO
O�
O�
O�

∗
a

// �� ���� ��cab

Here the a subscript on evaluation arrows indicates that communi-
cation over a has occurred. Since a supports no further communi-
cation afterwards—its sink has been replaced by the closed channel
token cab—the connection is then removed. Recall that such a
lone cab indicates a completed process; the child process in this
example is now complete and will disappear.

Linking channel endpoints Given a vsrc of type �τ� and vsnk of
type τ (‹—which may or may not be a literal source and sink—
we might want to join the two such that vsrc flows to vsnk without
making the parent process wait by yielding on vsrc. In doing so,
however, we must still somehow produce a value of type‹; it can’t
be the value that applying vsnk would produce, so it must come from
some other process.

Our solution relies on the ability to pass process completion
tokens from one process to another:

linkτ : �τ� ((τ (‹)(‹
linkτ = λx:�τ�. λf :τ (‹. yield λg:‹(‹. go‹ g;x f

Note that the final x f will step to f (yield x) via rule E-
APPSOURCE; similarly, rule E-YIELDOTHER will insert a go‹(‹
immediately following the yield. A call to linkτ vsrc vsnk thus
spawns two processes: the first spawns the second with the trivial
protocol, then proceeds to wait and link the original arguments; the
second uses the sink created for the first child to immediately return
control to the parent process. This is illustrated in Figure 5; we use
the abbreviation YLD(e) for the now common pattern of yielding
to receive a product, immediately unpacking the resulting pair, and
eliminating the left component.

Reversing directions So far we have seen only child processes
that send information back to their parents. While our constructs
show bias towards this sort of communication, Lolliproc does allow
exchanges in both directions; a few complications arise, however,
due to the unidirectional nature of our so-called dualization.

For instance, while the dual of τ (ρ is �τ ⊗ ρ̃�, the dual of
�τ⊗ρ� is the somewhat unwieldy �((τ⊗ρ)(‹)⊗1� rather than
the τ (ρ̃ for which we would have hoped. Yet we observe that the
former can be transformed into the latter with a yield operation, an
uncurrying, a partial application, and a go; we combine these steps

into a function send:

sendτ(ρ̃ : ‡�τ ⊗ ρ� (τ (ρ̃

sendτ(ρ̃ = λs:‡�τ ⊗ ρ�.
let (f, u) = yield s in
u;λx:τ. goρ λp:ρ. f (x, p)

Similarly, the dual of �ρ1 ⊕ ρ2� is �((ρ1 ⊕ ρ2) (‹) ⊗ 1�; to
coerce this to ‹ρ1 & ‹ρ2, we define select as

selectρ̃1&ρ̃2 : ‚��ρ1 ⊕ ρ2� (‹ρ1 & ‹ρ2

selectρ̃1&ρ̃2 = λs:‚��ρ1 ⊕ ρ2�.

let (f, u) = yield s in
u; 〈goρ1 λp1:ρ1. f inρ1⊕ρ21 p1,

goρ2 λp2:ρ2. f inρ1⊕ρ22 p2〉
To demonstrate the first of these coercions in action, we look to

the identity function echo, which spawns a child process, passes its
argument to that child, then receives it back:

replyτ : �τ ⊗ (τ (‹)� (‹
replyτ = λh:�τ ⊗ (τ (‹)�. let (y, g) = yield h in g y

echoτ : τ (τ

echoτ = λx:τ. let (z, u) = yield
sendτ(�τ⊗1� (go�τ⊗(τ(‹)� replyτ) x

in u; z

Here reply is the body of the child process that will receive the
initial argument and send it back. (The type of replyτ could equally
well have been written as the equivalent �τ ⊗ (τ (‹) (‹�—
this notation better reflects how it is used with echo, while the
notation given above more closely matches its definition.)

The execution of echoτ v for some v of type τ is shown
in Figure 6. We can see how, while the initial spawning of the
replyτ process orients the channel a in the usual child-to-parent
direction, the machinery of send spawns another process that sets
up a channel b in the opposite direction; afterwards, a third channel
c is established in the original direction. All this is facilitated again
by our congruence rules.

It is worth noting that, while the value v cycles among several
processes, at no point does a cycle exist in the communication
structure—the arrows—of Figure 6. That this fact always holds
is crucial to our proof of soundness in Section 4.

A larger example So far we have seen relatively small examples.
As a larger demonstration of the protocols expressible in Lolliproc,
we consider Diffie-Hellman key exchange, formulated as follows:

�� ���� ��echoτ v
∗//

∗��

�� ���� ��YLD(sendτ(�τ⊗1� �a� v)
∗

a
// �� ���� ��YLD(goρ(‹ λp:ρ. �b� (v, �c�))

b

��

�Z
�Y
�W
�U
�S
�Q
�O
M
�K
	I
�G

�E
�D

∗//

∗))SSSSSSSSSSSSSS

�� ���� ��YLD(�c�)
∗

c
// �� ���� ��v

�� ���� ���a� �b�

a

OO
O�
O�
O�

b ***j*j*j*j*j*j*j*j*j*j*j*j*j

∗
a

// �� ���� ��cab
�� ���� ���b� (v, �c�)

c

OO
O�
O�
O�

b

uu u5 u5 u5 u5 u5 u5 u5 u5 u5

∗
b

// �� ���� ��cbb

�� ���� ��replyτ �a�

a

==
=}

=}
=}

=}
=}

=}
=}

=}
=}

=}
=}

=}
=}

=}

∗//

∗ 66mmmmmmmmmmmmmm �� ���� ��let (y, g) = YLD(�b�) in g y ∗
b

// �� ���� ���c� v

c

jj

4t 4t 4t 5u 5u 6v 7w 8x 9y ;{ =}
A�
H�
O�
V�

]�a!
c#e%f&g'h(i)i)j*

∗
c

// �� ���� ��ccb

Figure 6. Evaluation of echoτ v

1. Alice and Bob select secret integers a and b.

2. Alice and Bob exchange ga mod p and gb mod p in the clear.

3. Alice and Bob compute the shared secret (gb)a = (ga)b mod p
and use it to encrypt further communication.

Here g is a publicly known generator with certain properties, often
2 or 5, and p is a similarly known large prime number. The shared
secret cannot feasibly be computed from the publicly known values
ga and gb. For purposes of this example, we declare that further
communication consists only of Alice sending an encrypted string
to Bob, and we treat Alice’s session as a child process spawned
by Bob rather than as a process somewhere over the network that
initiates contact. We augment Lolliproc with the types Int and
String, as well as necessary operations over these types:

bigrandom : 1(Int

powmod : Int(Int(Int(Int

lessthan : Int(Int((1⊕ 1)

encrypt : Int(String(String

decrypt : Int(String(String

For clarity, we also freely use general let expressions rather than
only those that eliminate multiplicative products, and we allow the
reuse of variables of type Int.

To demonstrate the use of additive products and sums—and to
add a hint of realism—we allow Alice or Bob to abort the session
after receiving a value from the other party. Thus the protocol type
that must be enforced in Alice’s session and a sample implementa-
tion of said session are

Alice = Int(�‹⊕ �Int⊗ (‹& (String(‹))��

alice : Int(Int(Int(Alice(‹
alice = λg:Int. λp:Int. λn:Int. λs:Alice.

let a = bigrandom () in
case yield (s (powmod g a p)) of

in1 s1 7→ s1

| in2 s2 7→ let (b, s′) = yield s2 in
case lessthan b n of

in1 u1 7→ u1; s′.1

| in2 u2 7→ u2; let k = powmod b a p in
(s′.2) (encrypt k "I know secrets!")

Since Alice’s session is the child process, the point at which she
must check for an abort signal from Bob appear as ‹ ⊕ ρ, while
the point at which she may abort appears as ‹ & ρ. In this case,

Alice chooses to abort whenever the public key Bob sends her is
too small in comparison to some parameter n.

An implementation of Bob’s side of the communication—i.e.,
the parent process—looks very similar. While bob relies on the
type Alice to specify the whole communication protocol, we do
need type annotations B1 and B2 for our uses of send and select.

B1 = 1 & �((Int⊗ (‹& (String(‹)))(‹)⊗ 1�

B2 = Int(�1⊕ (String(‹)�

bob : Int(Int(Int(String

bob = λg:Int. λp:Int. λn:Int.

let (a, s) = yield (goAlice (alice g p n)) in
case lessthan a n of

in1 u1 7→ u1; (selectB1 s).1; "ERROR1"

| in2 u2 7→ u2; let s1 = (selectB1 s).2 in
let b = bigrandom b in
let s2 = sendB2 s1 (powmod g b p) in
case yield s′ of

in1 u 7→ u; "ERROR2"

| in2 s
′′ 7→ let k = powmod a b p in

let (c, u′) = yield s′′ in
u′; decrypt k c

For brevity, we do not illustrate an evaluation of bob g p n.
We observe, however, that nothing new is going on in this example
as compared to echoτ . We also observe that the definitions of al-
ice and bob are relatively straightforward. They could be improved
by standard type inference and by syntactic sugar that gave the re-
peated generation and consumption of linear variables the appear-
ance of a single variable being mutated [31], but they are generally
quite readable.

4. Metatheory
We now discuss the technical aspects of Lolliproc, including the
formal proofs of soundness, strong normalization, and confluence.

4.1 Typing
The expression typing rules for Lolliproc can be seen in Figure 7.
As we discussed in the introduction, these typing rules follow the
natural-deduction presentation of intuitionistic linear calculi. Our
typing judgment Π; ∆ ` e : τ depends both on a channel context
Π and a term variable context ∆. Term variables x are bound to
types τ in ∆, while Π contains binders a·ρ (representing the ability

[T-UNIT] ·; · ` () : 1 [T-SEQ]
Π1; ∆1 ` e1 : 1 Π2; ∆2 ` e2 : τ

Π1 dΠ2; ∆1 d∆2 ` e1; e2 : τ
[T-VAR] ·;x:τ ` x : τ

[T-LAM]
Π; ∆, x:τ1 ` e : τ2

Π; ∆ ` λx:τ1. e : τ1 (τ2
[T-APP]

Π1; ∆1 ` e1 : τ1 (τ2 Π2; ∆2 ` e2 : τ1

Π1 dΠ2; ∆2 d∆2 ` e1 e2 : τ2
[T-GO]

Π; ∆ ` e : ρ(‹
Π; ∆ ` goρ e : ρ̃

[T-WITH]
Π; ∆ ` e1 : τ1 Π; ∆ ` e2 : τ2

Π; ∆ ` 〈e1, e2〉 : τ1 & τ2
[T-SELECT]

Π; ∆ ` e : τ1 & τ2

Π; ∆ ` e.i : τi
[T-YIELD]

Π; ∆ ` e : �τ�

Π; ∆ ` yield e : τ

[T-TENSOR]
Π1; ∆1 ` e1 : τ1 Π2; ∆2 ` e2 : τ2

Π1 dΠ2; ∆1 d∆2 ` (e1, e2) : τ1 ⊗ τ2
[T-LET]

Π1; ∆2 ` e′ : τ1 ⊗ τ2 Π2; ∆2, x1:τ1, x2:τ2 ` e : τ

Π1 dΠ2; ∆1 d∆2 ` let (x1, x2) = e′ in e : τ

[T-IN]
Π; ∆ ` e : τi

Π; ∆ ` inτ1⊕τ2i e : τ1 ⊕ τ2
[T-CASE]

Π1; ∆1 ` e′ : τ1 ⊕ τ2 Π2; ∆2, x1:τ1 ` e1 : τ Π2; ∆2, x2:τ2 ` e2 : τ

Π1 dΠ2; ∆1 d∆2 ` case e′ of in1 x1 7→ e1 | in2 x2 7→ e2

[T-SINK] a·ρ; · ` �a� : ρ [T-SOURCE] ã·ρ; · ` �a� : ρ̃ [TR-DONE] a:‹; · ` cab : ‹

Figure 7. Expression typing rules

[U-EMPTY] · d · = · [UT-LEFT]
∆1 d∆2 = ∆ x 6∈ dom(∆)

∆1, x:τ d∆2 = ∆, x:τ
[UT-RIGHT]

∆1 d∆2 = ∆ x 6∈ dom(∆)

∆1 d∆2, x:τ = ∆, x:τ

§ ::= ·
∣∣ ·̃ ∣∣ :

d̈ ::= d
∣∣d̂ [UC-LEFT]

Π1 d̈ Π2 = Π a 6∈ dom(Π)

Π1, a§ρ d̈ Π2 = Π, a§ρ
[UC-RIGHT]

Π1 d̈ Π2 = Π a 6∈ dom(Π)

Π1 d̈ Π2, a§ρ = Π, a§ρ

[UC-NONE]
Π1 dΠ2 = Π

Π1 d̂ Π2 = Π
[UC-SRCSNK]

Π1 dΠ2 = Π a 6∈ dom(Π)

Π1, ã·ρ d̂ Π2, a·ρ = Π, a:ρ
[UC-SNKSRC]

Π1 dΠ2 = Π a 6∈ dom(Π)

Π1, a·ρ d̂ Π2, ã·ρ = Π, a:ρ

Figure 8. Context splitting rules

[TP-EXP]
Π; · ` e : τ

Π ` e : τ
[TP-NEW]

Π, a:ρ ` P : τ

Π ` νa:ρ. P : τ

[TP-PARLEFT]
Π1 ` P1 : τ Π2 ` P2 : ‹

Π1 d̂ Π2 ` P1 | P2 : τ

[TP-PARRIGHT]
Π1 ` P1 : ‹ Π2 ` P2 : τ

Π1 d̂ Π2 ` P1 | P2 : τ

Figure 9. Process typing rules

to send on the channel a), ã·ρ (representing the ability to receive
on a), and a:ρ (combining both capabilities). Both varieties of
context are linear, in the sense that they permit neither weakening
nor contraction.

Many of our rules are standard for a linear type system, but
as linear type systems themselves are not quite standard, they
still deserve some explanation. Because linear variables cannot
be discarded, rules that serve as the leaves of proof trees require
contexts that are either empty (as in T-UNIT) or that contain exactly
what is being typed (as in T-VAR).

Rules with multiple premises vary depending on how many of
their subterms will eventually be evaluated. If only one of several
will, then all those subexpressions should share the same contexts,
as in T-WITH. When multiple subexpressions will be evaluated, as
in T-TENSOR, the contexts must be divided among them. We write

Π1 dΠ2 and ∆1 d∆2 to denote contexts that can be split into Π1

and Π2 and into ∆1 and ∆2 respectively; this relation is formally
defined in Figure 8.

The typing rules for our new constructs are straightforward. The
types for goρ e and yield e have already been discussed; channel
endpoints �a� and �a� have the types ascribed to them by the
channel context Π by a·ρ and ã·ρ respectively. The closed channel
cab accounts for both endpoints but must be given the type ‹.

We write Π ` P : τ for a well-typed process P with channels
typed by Π; our process typing rules are given in Figure 9. No
∆ is needed, as processes never depend on expression variables;
rule TP-EXP type checks atomic processes in the empty variable
context. Rule TP-NEW extends the channel environment at binders.
As the final type of all processes but our original will always be ‹,
rules TP-PARLEFT and TP-PARRIGHT require that one of their
components always have type ‹.

Note that TP-PARLEFT and TP-PARRIGHT split their channel
context with d̂ rather than simply d. As seen in Figure 8, this
allows exactly one a:ρ binding to be decomposed into an a·ρ
binding and an ã·ρ binding. This means that, in any well-typed
process of the form P1 | P2, there can be at most one channel for
which one endpoint is in P1 and the other is in P2. This restriction
substantially cuts down the set of well-typed processes and, as will
be seen shortly, proves crucial for type soundness.

4.2 Soundness
Taking the usual approach and defining soundness in terms of
preservation—well-typed terms that step always step to well-typed

[EQP-REFL] P ≡ P [EQP-SYM]
P2 ≡ P1

P1 ≡ P2
[EQP-TRANS]

P1 ≡ P2 P2 ≡ P3

P1 ≡ P3
[EQP-COMM] P1 | P2 ≡ P2 | P1

[EQP-PAR]
P1 ≡ P ′1 P2 ≡ P ′2
P1 | P2 ≡ P ′1 | P ′2

[EQP-NEW]
P ≡ P ′

νa:ρ. P ≡ νa:ρ. P ′
[EQP-ASSOC] (P1 | P2) | P3 ≡ P1 | (P2 | P3)

[EQP-SWAP] νa1:ρ1. νa2:ρ2. P ≡ νa2:ρ2. νa1:ρ1. P [EQP-EXTRUDE]
a not free in P2

(νa:ρ. P1) | P2 ≡ νa:ρ. (P1 | P2)

Figure 10. Process equivalence rules

terms—and progress—well-typed non-values can always take a
step—we observe that, while preservation makes sense on both
expressions and processes, progress is only a property of well-typed
processes, as there are certainly well-typed expressions that require
the process evaluation rules to take a step.

Preservation on expressions is straightforward, requiring the
usual substitution lemma:

Lemma 1 (Substitution). If Π; ∆1, x:τ ′,∆2 ` e : τ and
Π′; ∆′ ` e′ : τ ′, then Π,Π′; ∆1,∆

′,∆2 ` {x 7→ e′}e : τ .

Lemma 2 (Expression preservation). If Π; ∆ ` e : τ and
e −→ e′, then Π; ∆ ` e′ : τ .

We have proved these results in the Coq proof assistant; the
proofs are fairly standard, although the linear contexts introduce
complexities that can usually be avoided in other systems, e.g., the
need to reason about context permutation.

Preservation and progress for processes are more complex. We
first define a process equivalence relation≡ as shown in Figure 10.
This equivalence separates unimportant structural differences in
process syntax from the evaluation rules of Figure 3, which de-
termine how processes truly evolve. All of these equivalence rules
are standard; they state that the precise position of binders, as well
as the order and grouping of parallel composition, are irrelevant.

We next introduce a notion of (not necessarily unique) canoni-
cal forms for processes: a canonically formed process is of the form
νa1:ρ1. . . . νam:ρm. e1 | (e2 | (. . . | en)) for some m ≥ 0 and
n ≥ 1. It is easy to see that any process can be put in canonical
form by using the process equivalence rules.

Property 3 (Canonization). For any process P , there exists some
P ′ in canonical form such that P ≡ P ′.

We define the communication graph of a process P to be the
undirected6 multigraph in which the vertices are the atomic pro-
cesses (that is, expressions) that make up P and an edge exists
for each active channel a within the process, connecting the ex-
pressions containing �a� and �a�. (No edge exists for cab.) Since
graphs are built out of atomic processes, it is easy to see that this
graph structure is invariant under process equivalence.

Property 4 (Graph invariance). For any processes P and P ′ where
P ≡ P ′, the communication graph of P ′ is isomorphic to the
communication graph of P .

We immediately notice a correspondence between well-typedness
of a process and the acyclicity of its communication graph:

Lemma 5 (Acyclicity and typing). If Π ` P : τ , then the
communication graph of P is acyclic.

6 One might imagine that the directed nature of communication in Lolliproc
would suggest directed graphs, but undirected graphs both entail stronger
acyclicity properties and simplify the proof of process preservation.

Proof. Recall the definition of d̂, which allows only a channel to be
split over the two halves of a parallel composition. It is not possible
to partition the atomic processes in a cycle without going through at
least two edges, thus making it impossible to type check a process
with a cyclic communication graph.

Finally, we observe that acyclicity of communication graphs is
preserved under process evaluation:

Lemma 6 (Acyclicity and evaluation). If the communication graph
of P is acyclic and P −→ P ′, then the graph of P ′ is also acyclic.

Proof. With respect to evaluation graphs, we observe that all eval-
uation steps amount to doing some combination of the following:

1. the creation of a new vertex and a new edge connecting it to
one existing vertex, e.g.

?>=<89:;e1 7→ ?>=<89:;e2 ?>=<89:;e3

2. the deletion of a single edge, e.g.

?>=<89:;e1 ?>=<89:;e2 7→ ?>=<89:;e1 ?>=<89:;e2

3. the deletion of a single unconnected vertex, e.g.

?>=<89:;e 7→

4. and transferring the endpoint of an edge from one vertex to
another by sending it across some other edge, e.g.

?>=<89:;e1

?>=<89:;e2 ?>=<89:;e3

7→

?>=<89:;e1

BB
BB

BB
BB

B

?>=<89:;e2 ?>=<89:;e3

EP-GO involves one use of (1) along with uses of (4) correspond-
ing to the number of channel endpoints in the argument to goρ.
EP-APPSINK can similarly be seen as a repetition of (4), while
EP-CLOSE and EP-DONE exactly correspond, respectively, to (2)
and (3). All other evaluation rules do not impact the communication
graph.

Only (4) can conceivably create a cycle. If a cycle is created,
the final step in its creation must be the connection of some atomic
processes e1 and e2. But this can only be facilitated by some e3
that is already connected to both e1 and e2, in which case a cycle
would already exist! Acyclic graphs can thus never become cyclic
through application of these graph operations.

We can now tackle preservation and progress; our statements of
both lemmas reflects the idea that both process typing and process
evaluation are performed modulo the process equivalence relation.

Lemma 7 (Process preservation). If Π ` P1 : τ and there exists
some P ′1 and P ′2 such that P1 ≡ P ′1 and P ′1 −→ P ′2, then there
exists some P2 such that P2 ≡ P ′2 and Π ` P2 : τ .

Proof. Mostly straightforward, given the obvious extensions of
Lemma 2 to evaluation contexts and processes. The difficulty
comes from the requirement of the channel context splitting re-
lation d̂ that at most one a:ρ binder be split at each step. We must
show that, given the canonical form of P ′2, we can always rearrange
the parallel compositions such that this is the case.

Observe, however, that we can always do this if the communi-
cation graph of P ′2 (and thus its canonical form) is acyclic: we have
our parallel compositions cut at most one edge at a time, and we
will eventually reduce down to atomic processes. From Lemma 5
we already know that the communication graph of P1 and hence
also P ′1 is acyclic, and thus from Lemma 6 we can conclude that
the graph of P ′2 is acyclic as well. From this we can appropriately
rearrange its canonical form to create a well-typed P2.

For progress we must first define what it means for a process
to be done evaluating. We use one of the simplest such definitions:
a process has finished when it contains an atomic process that is
a value and that is not �a�, �a�, or cab. Our proofs make use of
the standard canonical forms properties: all expressions of a given
type eventually reduce to certain forms. Some types have more
canonical forms than usual, as sources and sinks are both values.

Lemma 8 (Progress). If Π ` P : τ , then either P has finished or
there exists some P1 and P2 such that P ≡ P1 and P1 −→ P2.

Proof. We proceed by examining each of the atomic processes
within P . If, in doing so, we find an appropriate value or the
opportunity to take a step, then we are done, but we may encounter
an expression e stuck at the elimination of a sink or a yield on a
source. In that case, we consider the atomic process e′ that contains
the other endpoint of the channel in question. If e′ itself can take
a step, we are done. If e′ is ready to communicate with e we stop
searching, as we have found a matched source and sink. Otherwise,
e′ itself is stuck at the elimination of a sink or a yield on a source
for some different channel, in which case we recursively continue
our search using the same procedure.

BecauseP is well typed, it has an acyclic communication graph,
so this search will eventually terminate in the identification of
some matching source and sink that are ready to communicate.
We then consider the canonical form of P and repeatedly push the
appropriate channel binding inwards until the process matches the
form of one of our communication rules.

From progress and preservation, we can state the standard
soundness theorem:7

Theorem 9 (Soundness). If · ` P :τ , then there exists no P1 such
that P ≡ P1, P1 −→∗ P2, and P2 has not completed but is not
equivalent to any process that can step further.

This soundness property guarantees freedom from deadlocks
in Lolliproc, but our type system says nothing about whether an
expression will evaluate to a single value or a composition of
processes—both are considered acceptable final outcomes, and
there is nothing preventing the programmer from, for instance,
not matching each call to future with a corresponding call to wait.
These concerns can be addressed in a language that also includes
unrestricted types, however, which we will discuss in Section 5.

7 We are still working to extend our Coq proofs to preservation and progress
on processes; complications arise due to the relatively informal nature, by
Coq’s standards, of our the graph-based reasoning.

4.3 Strong normalization and confluence
Other properties common to simple, typed λ-calculi are strong
normalization—the fact that all sequences of evaluations terminate—
and confluence—the fact that all possible evaluations for a given
term converge to the same final result. Although Lolliproc has a
non-deterministic operational semantics, it still enjoys these prop-
erties.

Theorem 10 (Strong normalization). If Γ ` P : τ , any reduction
sequence P ≡ P1, P1 −→ P ′1, P ′1 ≡ P2, P2 −→ P ′2, . . . will
eventually terminate in some P ′n such that there exists no Pn+1

and P ′n+1 for which P ′n ≡ Pn+1 and Pn+1 −→ P ′n+1.

Proof. Since everything in our language is linear, subterms are
never duplicated; thus we can verify strong normalization by as-
signing non-negative weights w(P) to processes P and w(D) to
derivations D of Γ; ∆ ` e : τ—which we abbreviate as w(e)—
and showing that these weights always decrease with evaluation.

We define w(νa:ρ. P) = 1 + w(P) and w(P1 | P2) =
w(P1) + w(P2). For channel endpoints, we first define the length
of a protocol type `(ρ) as `(‹) = 1, `(τ (ρ) = 1 + `(ρ), and
`(ρ1&ρ2) = 1+max (`(ρ1), `(ρ2)). Whenever �a� has type ρ, we
define w(�a�) = `(ρ); similarly, when �a� has type ρ̃, we define
w(�a�) = 2 · `(ρ) (as larger terms appear on the source side after
communication). Since process communication always decreases
the length of the protocol type, it will consequently decrease the
weight of the composite process. We define w(goρ e) = 2 + 3 ·
`(ρ) + w(e), ensuring that its evaluation also decreases in weight
even as it spawns a new process.

The weights of most other expression forms are fairly straight-
forward; for instance, w(x) = w(()) = 0, w(λx:τe) = 1 + w(e),
w((e1, e2)) = 1 + w(e1) + w(e2), and w(〈e1, e2〉) = 1 +
max w(e1),w(e2). The cases for yield and application are tricky,
though, since the rules E-YIELDOTHER and E-APPSOURCE ap-
pear to increase the size of terms. For yield, we define w(yield e) =
1 + w(e) whenever e is either (goρ e′) or any source; otherwise,
given that e is assigned the type �τ�, we define

w(yield e) = 1 + w(let (y, z) = yield (goτ(‹ e) in z; y)

= 5 + w(goτ(‹e)
= 13 + w(e)

For applications, we must conservatively estimate how many times
E-APPSOURCE might be applied. For this we first define the height
of a type h(τ) such that h(τ (‹) = 1 + h(τ) and h(τ) = 0
otherwise. Assuming the derivation for e1 e2 gives e1 the type
τ1 (τ2 and e2 the type τ1, then we can define w(e1 e2) =
1 + 14 · h(τ1) + w(e1) + w(e2), since the height of τ1 determines
the maximum number of yields that could ever be introduced.

With these definitions in place, it is clear by inspection of our
evaluation rules that the weight of a process decreases with each
evaluation step. Since weights are never negative, this assures us
that evaluation always terminates.

With strong normalization, we can obtain confluence directly
from local confluence (also known as the diamond property).

Theorem 11 (Local confluence). If Γ ` P : τ , and we have that
P ≡ P1, P ≡ P2, P1 −→ P ′1, and P2 −→ P ′2, then there
exist some P3, P ′3, P4, and P ′4 such that P ′1 ≡ P3, P3 −→ P ′3,
P ′2 ≡ P4, P4 −→ P ′4, and P ′3 ≡ P ′4.

Proof. Our expression evaluation rules are deterministic, and there
is only one way to decompose an expression e into some E

[
e′
]

such that some expression or process evaluation rule applies—
and only one such rule will ever apply. Our only source of non-
determinism, then, is the parallel composition of processes. We

must thus show that the evaluation P1 −→ P ′1 does not rule out
subsequently applying the same steps that produced P2 −→ P ′2,
and vice-versa.

We observe that, in a well-typed process, potential evaluation
steps can never interfere with each other. We have only two end-
points for each process, so multiple acts of communication can
never conflict, and since communication always involves values,
it cannot conflict with some internal evaluation step on a non-value
expression. And of course such internal steps cannot conflict with
each other. It is thus easy to see that local confluence holds.

Strong normalization and confluence show that the concurrency
available in Lolliproc is particularly well behaved. Strong normal-
ization implies that there are no livelocks, while confluence implies
a lack of race conditions, which could otherwise introduce irrecon-
cilable nondeterminism.

5. Future directions and related work
Finally, we examine a few possible future directions of this work
and look briefly at related systems.

5.1 Extending Lolliproc
Lolliproc is very far from being a full-fledged programming
language. Many of the extensions needed to bridge this gap—
compilation and runtime system, support for processes spread over
the network, useful libraries, etc.—are beyond the scope of this
paper, but several obvious extensions do warrant more discussion
here.

Unrestricted types and polymorphism Although we have defined
Lolliproc such that all variables must be used exactly once, this is
clearly an unrealistic simplification; unrestricted types must be ac-
counted for somehow. In earlier work [31] we introduced an intu-
itionistic language System F◦, an extension of the fully polymor-
phic System F in which the distinction between the linear and the
unrestricted is handled at the kind level: a kind ? categorizes unre-
stricted types, while a kind ◦ categorizes linear types. System F◦

features a subkinding relation in which ? 6 ◦, implying that unre-
stricted types may safely be treated as though they were linear.

We can extend this approach to encompass Lolliproc by intro-
ducing a protocol kind • such that • 6 ◦. We could then replace our
syntactic separation of ρ types with the appropriate kinding rules.
For function types—which System F◦ writes as κ→ rather than the
(we use for Lolliproc—this gives us

[K-ARR]
Γ ` τ1 : κ1 Γ ` τ2 : κ2 κ = • =⇒ κ2 = •

Γ ` τ1 κ→ τ2 : κ

Here Γ is an unrestricted context, binding both type variables and,
although not relevant to this judgment, unrestricted term variables.

Since such a system allows quantification over type variables
α of kind •, we would also require dualized type variables α̃,
instantiated to ρ̃ whenever α is instantiated with ρ. If we also
allow ∀α:κ. ρ to be a protocol type—thus permitting types to be
sent between processes—we gain even greater flexibility, allowing
partially specified protocols dependent on protocol type variables.

Adopting the techniques of System F◦ also allows us to address
the concerns mentioned at the end of Section 4.2: we would know
that, if e is a well-typed expression of type τ that does not contain
any channel endpoints, e will eventually step to some isolated
value v, regardless of how many processes may be spawned along
the way. Here we appeal to an alternate operational semantics for
System F◦ that tags values and types as they are substituted into
expressions: this semantics guarantees that unrestricted values do
not contain tagged linear objects, and, since channel endpoints do
not appear in source programs, they would always appear tagged.

Recursion and non-determinism We have proved in Section 4.3
that Lolliproc is both strongly normalizing and confluent. However,
one does not generally want to program in languages that rule out
non-terminating programs, and in a concurrent setting it is common
to want programs that might evaluate differently depending on
which processes are available to communicate at which times, thus
breaking confluence.

One natural companion to Lolliproc’s existing constructs is
recursive types µα[:κ]. τ , where any αs appearing within τ expand
to µα[:κ].τ . Such types allow for full general recursion, can be used
to encode many standard datatypes (e.g., lists over a given type),
and, in our setting, enable looping protocols, for which there are
many obvious applications. For instance, we could write a session-
serving server with the type µα[:•]. �(ρ ⊗ α))�, which could be
used to send out any number of sessions for the protocol ρ.

For controlled non-confluence, we can imagine a family of
primitive functions like the one below

receiveτ1,τ2,τ2 : �τ1� (�τ2� (
((τ1 (�τ2� (τ) & (�τ1� (τ2 (τ))(τ

A call to a receive function waits until a yield on one of its source
arguments can succeed, then selects and applies the appropriate
function from its additive product argument to handle that result
and the other remaining sources. (We would, of course, want syn-
tactic sugar for these functions.)

This closely mimics the non-deterministic operations found in
many concurrent languages—e.g., the join calculus [20, 21] and
Erlang [3]—while still preserving our linearly typed channels. We
would also likely want other constructs to handle cases for which
receive is awkward: for instance, we might want non-deterministic
analogs of map and fold for several sources of the same type.

Proof theory The expression typing rules in (Figure 7), when
viewed as a logic, are clearly sound with respect to standard clas-
sical linear logic. To see why, note that we may consider only case
where Π is empty, as channels do not occur in source programs.
Our only nonstandard rules are then T-GO and T-YIELD, but these
are both admissible in standard linear logic. We leave establishing
the completeness—with respect to the non-exponential fragment of
standard linear logic—to future work. It would also be interesting
to study the relationship between our evaluation rules and proof
normalization—there seems to be a strong connection between our
definition of channel endpoints and “focused” proofs [46].

5.2 Related work
There is a vast literature on linear logic, its proof theory, and related
type systems, ranging from applications to categorical semantics—
we cannot possibly cover it all here. Thus we highlight the work
most closely related to ours and suggest some connections that
might be fruitful for subsequent research.

Intuitionistic linear types The intuitionistic fragment of linear
logic has seen much use in programming languages [6, 9, 11, 29,
30]—particularly its connections to memory management [2, 13,
39, 42]. We recently looked at enforcing user-defined protocols in
a linear variant of System F [31]. De Paiva and Ritter study an in-
tuitionistic linear language that, like Lolliproc, is not directly invo-
lutive (i.e., τ is not identified with τ⊥⊥); its operational semantics
is reminiscent of the classical calculi described below.

Classical natural deduction and control Natural deduction pre-
sentations of classical logics [10, 14, 35–37] typically use multiple
conclusions judgments of the form:

x1:τ1, . . . , xn:τn ` e : τ, yn+1:τn+1, . . . , ym:τm

By duality, such a judgment is logically equivalent to

x1:τ1, . . . , xn:τn, yn+1:τ‹n+1, . . . , ym:τ‹m ` e : τ

This approach recovers the usual shape of the typing judgment and
so can be reconciled more easily with type systems for functional
programming. Moreover, if we recall that τ (‹ is the type of a
continuation accepting τ values, it is possible to read the ys above
as binding continuations. Operational semantics in this setting im-
plement commuting conversions, which give rise to nondetermin-
ism. The correspondence with concurrency is obscured, however,
because these semantics rely on decomposing a single term (often
using evaluation contexts).

The connection between classical logic and control operators
has been known for some time [17, 23, 34]. As mentioned in
Section 2, control has the type of double-negation elimination; the
more familiar callcc can similarly be given the type of Peirce’s Law.
While these operations cannot be directly imported to the linear
setting, they are a major part of the inspiration for our approach.

Linear continuations in otherwise unrestricted languages have
also been studied, as they indicate certain predictable patterns of
control flow [8, 19]. Berdine’s dissertation [7], for example, shows
how such continuations can be used to implement coroutines; Lol-
liproc goes further by allowing true concurrent evaluation.

Our process typing rules can be seen as an alternative to the
multiple conclusion judgment style described above. While these
systems give all auxiliary conclusions a continuation type τ (‹,
our helper processes simply have type ‹. A practical consequence
of our design is that, since processes appear only at runtime, a
type checker for a language based on Lolliproc would not need to
implement these rules at all.

Linear sequent calculi In order to take advantage of the symme-
tries discussed in Section 2, languages and proof terms based on
linear sequent calculi [1, 22] feature a multiplicative disjunction `
and define τ1 (τ2 as τ‹1 ` τ2. It has proved difficult, however, to
find intuitions for ` in a standard functional programming setting
that fit as naturally as those for ⊗, &, and ⊕ [44].

We can encode ` in Lolliproc by noting following the logical
equivalence:

τ1 ` τ2 ⇐⇒ ((τ1 (‹)(τ2) & ((τ2 (‹)(τ1)

We will not be able to construct an object of this type unless we
can eliminate some τ (‹ without producing a witness of type
‹, which requires the existence of another process and a channel
over which we can send the closed channel token. Thus ` serves
as a way of internalizing—and at least partially suspending—two
processes within one, although it cannot exist in isolation. The
choice of projections offered by & internalizes the commutativity
of the ‘|’ constructor of process terms.

Zeilberger presented an interesting sequent calculus [46] that,
while not actually linear, makes use of the connectives of linear
logic for their polarity and gives a term assignment in which eager
positive connectives and lazy negative connectives coexist harmo-
niously. The dual calculus [43] and Filinski’s language [18] are also
tightly tied to sequent calculus while being closer to standard term
languages than, e.g., proof nets. All of these languages define pro-
grams as interactions between terms and co-terms, departing rather
significantly from the norm in functional programming.

Process calculi Many type systems exist for the π-calculus [32],
some able to guarantee sophisticated properties; Kobayashi [27]
gives a good overview of this area. Many of these type systems use
linearity in one form or another [4, 28], and, in particular, session
types [12, 25, 38, 40] originated in this setting. The Sing] language,
which ensures safety for its light-weight processes through its type
system, takes many ideas from the world of process calculi [15].

Programming in a process calculus, however, is also rather dif-
ferent from programming in a traditional functional language, and
it is not always clear how to best take ideas from that setting while

reusing as much standard machinery as possible. Additionally, π-
calculus type systems are not as tightly coupled with logics as λ-
calculus type systems are, though there has been some work on
using π-calculus terms to describe proof reductions [5].

5.3 Conclusion
We have presented Lolliproc, a concurrent language whose de-
sign separates source programs from the processes they spawn at
runtime, while retaining a close correspondence to classical lin-
ear logic. Though simple, Lolliproc can express useful protocols
whose well-behaved interactions are enforced by session types. It
is our hope that Lolliproc will inspire language designers, if not to
build their next language on its ideas, then at least to consider what
linear types might have to offer in terms of concurrency. Whether
or not this comes to pass, however, we feel that our approach offers
an appealing point in the design space of concurrent calculi.

Acknowledgments
The authors thank the anonymous reviewers, the Penn PL Club, and
the MSR Cambridge types wrestling group for their feedback about
this work. Phil Wadler and Guillaume Munch-Maccagnoni also
provided excellent suggestions about how to improve this paper.
This work was supported in part by NSF Grant CCF-541040 and
some of this research was conducted while the second author was
a visiting researcher at Microsoft Research, Cambridge.

References
[1] Samson Abramsky. Computational interpretations of linear logic.

Theoretical Computer Science, 111:3–57, 1993.

[2] Amal Ahmed, Matthew Fluet, and Greg Morrisett. L3: A linear
language with locations. Fundam. Inf., 77(4):397–449, 2007.

[3] Joe Armstrong, Robert Virding, Claes Wikström, and Mike Williams.
Concurrent Programming in Erlang. Prentice-Hall, 1996.

[4] Emmanuel Beffara. A concurrent model for linear logic. Electronic
Notes in Theoretical Computer Science, 155:147–168, 2006.

[5] G. Bellin and P. J. Scott. On the π-calculus and linear logic. Theoret-
ical Computer Science, 135(1):11–65, 1994.

[6] Nick Benton, G. M. Bierman, J. Martin E. Hyland, and Valeria
de Paiva. A term calculus for intuitionistic linear logic. In Proceed-
ings of the International Conference on Typed Lambda Calculi and
Applications, pages 75–90. Springer-Verlag LNCS 664, 1993.

[7] Josh Berdine. Linear and Affine Typing of Continuation-Passing Style.
PhD thesis, Queen Mary, University of London, 2004.

[8] Josh Berdine, Peter W. O’Hearn, Uday S. Reddy, and Hayo Thielecke.
Linearly used continuations. In Proceedings of the Continuations
Workshop, 2001.

[9] G. M. Bierman, A. M. Pitts, and C. V. Russo. Operational properties of
Lily, a polymorphic linear lambda calculus with recursion. In Fourth
International Workshop on Higher Order Operational Techniques in
Semantics, Montral, volume 41 of Electronic Notes in Theoretical
Computer Science. Elsevier, 2000.

[10] Gavin Bierman. A classical linear lambda calculus. Theoretical
Computer Science, 227(1–2):43–78, 1999.

[11] Gavin M. Bierman. Program equivalence in a linear functional lan-
guage. Journal of Functional Programming, 10(2), 2000.

[12] Luı́s Caires and Frank Pfenning. Session types as intuitionistic linear
propositions. In Proceedings of the 21st International Conference on
Concurrency Theory (CONCUR 2010), Paris, France, August 2010.
Springer LNCS.

[13] Arthur Charguéraud and François Pottier. Functional translation of
a calculus of capabilities. In ICFP ’08: Proceeding of the 13th
ACM SIGPLAN international conference on Functional programming,
pages 213–224, New York, NY, USA, 2008. ACM.

[14] Valeria de Paiva and Eike Ritter. A parigot-style linear lambda-
calculus for full intuitionistic linear logic. Theory and Applications
of Categories, 17(3), 2006.

[15] Manuel Fähndrich, Mark Aiken, Chris Hawblitzel, Orion Hodson,
Galen Hunt, James R. Larus, and Steven Levi. Language support
for fast and reliable message-based communication in singularity os.
SIGOPS Oper. Syst. Rev., 40(4):177–190, 2006.

[16] Manuel Fähndrich and Robert DeLine. Adoption and focus: Practical
linear types for imperative programming. In Proc. of the SIGPLAN
Conference on Programming Language Design, pages 13–24, Berlin,
Germany, June 2002.

[17] M. Felleisen and R. Hieb. A revised report on the syntactic theo-
ries of sequential control and state. Theoretical Computer Science,
103(2):235–271, 1992.

[18] Andrzej Filinski. Declarative continuations and categorical duality.
Master’s thesis, University of Copenhagen, August 1989.

[19] Andrzej Filinski. Linear continuations. In Proc. 19th ACM Symp. on
Principles of Programming Languages (POPL), pages 27–38, 1992.

[20] C. Fournet and G. Gonthier. The Reflexive CHAM and the Join-
Calculus. In Proc. ACM Symp. on Principles of Programming Lan-
guages (POPL), pages 372–385, 1996.

[21] Cédric Fournet. The Join-Calculus: a Calculus for Distributed Mobile
Programming. PhD thesis, École Polytechnique, nov 1998.

[22] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–
102, 1987.

[23] Timothy G. Griffin. A formulae-as-types notion of control. In Confer-
ence Record of the Seventeenth Annual ACM Symposium on Principles
of Programming Languages, pages 47–58. ACM Press, 1990.

[24] Michael Hicks, Greg Morrisett, Dan Grossman, and Trevor Jim. Expe-
rience with safe manual memory-management in Cyclone. In ISMM
’04: Proceedings of the 4th international symposium on Memory man-
agement, pages 73–84, New York, NY, USA, 2004. ACM.

[25] Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. Language
primitives and type discipline for structured communication-based
programming. In ESOP98, volume 1381 of LNCS, pages 122–138.
Springer-Verlag, 1998.

[26] W. A. Howard. The formulae-as-types notion of contstruction. In To
H. B. Curry: Essays on Combinatory Logic, Lambda Calculus, and
Formalism. Academic Press, 1980.

[27] Naoki Kobayashi. Type systems for concurrent programs. In Proceed-
ings of UNU/IIST 10th Anniversary Cooloquium, March 2002.

[28] Naoki Kobayashi, Benjamin C. Pierce, and David N. Turner. Linearity
and the Pi-Calculus. Transactions on Programming Languages and
Systems, 21(5):914–947, 1999.

[29] Yves Lafont. The linear abstract machine. Theoretical Computer
Science, 59:157–180, 1988. Corrections in vol. 62, pp. 327–328.

[30] John Maraist, Martin Odersky, David N. Turner, and Philip Wadler.
Call-by-name, call-by-value, call-by-need, and the linear lambda cal-
culus. In 11’th International Conference on the Mathematical Foun-
dations of Programming Semantics, New Orleans, Lousiana, – 1995.

[31] Karl Mazurak, Jianzhou Zhao, and Steve Zdancewic. Lightweight
linear types in System F◦. In TLDI ’10: Proceedings of the 5th ACM
SIGPLAN workshop on Types in language design and implementation,
pages 77–88, New York, NY, USA, 2010. ACM.

[32] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes.
Information and Computation, 100(1):1–77, 1992.

[33] J. Niehren, J. Schwinghammer, and G. Smolka. A concurrent lambda
calculus with futures. Theor. Comput. Sci., 364(3):338–356, 2006.

[34] C.-H. L. Ong and C. A. Stewart. A curry-howard foundation for
functional computation with control. In Proc. 24th ACM Symp. on
Principles of Programming Languages (POPL), pages 215–227, Paris,
France, 1997.

[35] Michel Parigot. λµ-calculus: An algorithmic interpretation of classi-
cal natural deduction. In Proceedings of the International Conference
on Logic Programming and Automated Reasoning, volume 624 of Lec-
ture Notes in Computer Science, pages 190–201. Springer, 1992.

[36] Michel Parigot. Classical proofs as programs. In Proceedings of the
3rd Kurt Gödel Colloquium, volume 713 of Lecture Notes in Computer
Science, pages 263–276. Springer-Verlag, 1993.

[37] Eike Ritter, David J. Pym, and Lincoln A. Wallen. Proof-terms for
classical and intuitionistic resolution. Journal of Logic and Computa-
tion, 10(2):173–207, 2000.

[38] Kaku Takeuchi, Kohei Honda, and Makoto Kubo. An interaction-
based language and its typing system. In Proceedings of PARLE’94,
pages 398–413. Springer-Verlag, 1994. Lecture Notes in Computer
Science number 817.

[39] David N. Turner and Philip Wadler. Operational interpretations of lin-
ear logic. Theoretical Computer Science, 227(1-2):231–248, Septem-
ber 1999.

[40] Vasco T. Vasconcelos, Simon J. Gay, and António Ravara. Type check-
ing a multithreaded functional language with session types. Theoreti-
cal Computer Science, 368(1–2):64–87, 2006.

[41] Edsko Vries, Rinus Plasmeijer, and David M. Abrahamson. Unique-
ness typing simplified. In Implementation and Application of Func-
tional Languages: 19th International Workshop, IFL 2007, Freiburg,
Germany, September 27-29, 2007. Revised Selected Papers, pages
201–218, Berlin, Heidelberg, 2008. Springer-Verlag.

[42] Philip Wadler. Linear types can change the world! In M. Broy
and C. Jones, editors, Progarmming Concepts and Methods, Sea of
Galilee, Israel, April 1990. North Holland. IFIP TC 2 Working Con-
ference.

[43] Philip Wadler. Call-by-value is dual to call-by-name. In ICFP ’03:
Proceedings of the eighth ACM SIGPLAN international conference on
Functional programming, pages 189–201, New York, NY, USA, 2003.
ACM.

[44] Philip Wadler. Down with the bureaucracy of syntax! Pattern matching
for classical linear logic. unpublished manuscript, 2004.

[45] Nobuko Yoshida, Kohei Honda, and Martin Berger. Linearity and
bisimulation. J. Log. Algebr. Program., 72(2):207–238, 2007.

[46] Noam Zeilberger. On the unity of duality. Annals of Pure and Applied
Logic, 153(1–3):66–96, 2006.

[47] Dengping Zhu and Hongwei Xi. Safe Programming with Pointers
through Stateful Views. In Proceedings of the 7th International Sym-
posium on Practical Aspects of Declarative Languages, pages 83–97,
Long Beach, CA, January 2005. Springer-Verlag LNCS vol. 3350.

	University of Pennsylvania
	ScholarlyCommons
	9-27-2010

	Lolliproc: to Concurrency from Classical Linear Logic via Curry-Howard and Control
	Karl Mazurak
	Stephan A. Zdancewic
	Recommended Citation

	Lolliproc: to Concurrency from Classical Linear Logic via Curry-Howard and Control
	Abstract
	Disciplines
	Comments

	tmp.1342625578.pdf.T_Rd1

