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Non-Monotonic Decision Rules for Sensor Fusion

Raymond McKendal1 and Max Mintz*
GRASP Laboratory

Department of Computer and Information Science
University of Pennsylvania

Philadelphia, PA 19104-6389

Abstract

This article describes non-monotonic estima­
tors of a location parameter () from a noisy
measurement Z = () +V when the possible val­
ues of~ have. the form {0,±1,±2,... ,±n}. If
the nOIse V IS Cauchy, then the estimator is
a ~on-monotonic step function. The shape of
thIS rule reflects the non-monotonic shape of
the likelihood ratio of a Cauchy random vari­
able. If the noise V is Gaussian with one of two
possible scales, then the estimator is also a non­
monotonic step function. The shape this rule
reflects the non-monotonic shape of the like­
lihood ratio of the marginal distribution of Z
given () under a least-favorable prior distribu­
tion.

1 Introduction

This article describes non-monotonic estimators in deci­
sion problems motivated by sensor fusion. It finds mini­
max r~les under zero-one (0) loss for the location param­
eter () In ~w? problems of the fusion paradigm Z =() +V.
The statIstIcal background for this research is reviewed
i~ the article Statistical Decision Theory for Sensor Fu­
ston [McKen~all,1990b] of these Proceedings, which also
defines notatIon and terminology.
~he first problem is a standard-estimation problem in

~hIch. (} E {a, ±1, ±2, ... , ±n}, for a given integer n, and
I~ whIch th~ no~se V has the standard Cauchy distribu­
tIon. A motIvatIon for these assumptions is extension of
the results of [Zeytinoglu and Mintz, 1984] and [McK­
endall, 1990a] that assume the distribution of V has a
monotone likelihood ratio.! The noise distributions in
most practical applications do not have monotone like­
liho.od ratios; the Cauchy distribution is a simple distri­
butIon that does not have a monotone likelihood ratio.
The minimax rule for this problem is a non-monotonic
function. In contrast, the decision rules corresponding

• Acknowledgement: Navy Contract N0014-88-K-0630'
AFOSR Grants 88-0244, 88-0296; Army/DAAL 03-89-C~
0031PRI; NSF Grants CISE/CDA 88-22719, IRI 89-06770;
and the Dupont Corporation.

1 A random variable Z with a density function !z(·IB),
for BEE>, has a monotone likelihood ratio if the ratio
!z(·IB1 )/!z(·182 ) is non-decreasing for alI 81 > 82 .

to a noise distribution with a monotone likelihood ratio
are monotonic functions.

The second problem is a robust-estimation problem
in which () E {-I, 0, I} and the noise V has either the
N(O,O'r) or the N(O, O'~) distribution. If the maximum
allowable scale is not too large, the robust-estimation
problems of [Zeytinoglu and Mintz, 1988] and [McK­
endall, 1990a] reduce to standard-estimation problems.
The underlying distributions in these problems have a
monotone .likel~h?od ratio (in the location parameter),
an.d so theIr mInImax rules are monotonic. In contrast,
thIS problem has a non-monotonic minimax rule because
the maximum scale is too large. (A similar problem in
which the possible locations are an interval has a ran­
domized minimax rule. [Martin, 1987].)

Section 2 discusses the standard-estimation problem
with the Cauchy noise distribution. Section 3 discusses
the robust-estimation problem with uncertain noise dis­
tribution. The results listed here are a synopsis of results
in [McKendall, 1990a], which gives the underlying anal­
ysis and the proofs.

2 Cauchy Noise Distribution

This section constructs a ziggurat minimax rule fJ* for
the location parameter in a standard-estimation problem
(en, en, L o, Z) in which Z has a Cauchy distribution. A
ziggurat decision rule is a non-monotonic step function
with range en. The non-monotonicity of fJ* reflects the
non-monotonicity of the likelihood ratio of a Cauchy dis­
tribution. The range of fJ* reflects the structure of the
zero-one (e) loss function.

Section 2.1 reviews the Cauchy distribution. Sec­
t~on 2.2 summarizes the main results. The remaining sec­
tIo~S develop these results in more detail. Their organi­
zatIon follows the strategy for finding a minimax decision
rule by finding a Bayes equalizer rule. Section 2.3 defines
ziggurat decision rules. Section 2.4 discusses Bayes anal­
ysis of a ziggurat decision rule. Sections 2.5, 2.6, and 2.7
give the risk analysis of a ziggurat decision rule. Sec­
tion 2.8 combines the conclusions of this chapter to find
an admissible minimax estimator.

2.1 Cauclly Distribution

A continuous random variable V has the Cauchy distri­
bution with location parameter It and unit scale, written
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Figure 1: A likelihood ratio !CIJ-ll)j!CIJ-l2) of a Cauchy distribution

v ~ C(p, 1), if its density function! is The function J-li is this:

if X = i - !. I
1- ­
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XQ °
Xl YI
X2 Y2
X3 P2(Y2)
X4 Pl (Yl)

Xs 00

( . 1 ) ( . I )2 2
1 - "2 X - 1 -"2 + Vl

if X # i - ~

1r*(±1) = 1r*(O)jp(l)
1r*(±2) = 1r*(0)j(p(1)p(2))

The factors p(±l) connect 1r* to {Xi} and thus to {)*:

fz(xdl)
p(l) := fz(xtll- 1) =: l/p(-I)

This partition is a Pi-constrained partition of ~+.
The probability function 1r* is this:

v := !v15
These equations have unique solution Yl, Y2 such that

Yl E (~, ~ + Vl) and Y2 E (~, ~ + VI)'

Furthermore, Yl < Y2. (The solution may be computed
numerically by the Newton-Raphson method.) The par­
tition {Xi} is defined in terms of this solution:

2.2 Introduction

This section introduces and summarizes the results
through an example. In particular, it shows how to con­
struct a minimax rule {)* and a least-favorable probabil­
ity function 11"* on 8 n for the standard-estimation prob­
lem (8n ,8n ,Lo,Z) in which n = 2 and F is the C(O, 1)
distribution. The general results have arbitrary n.

The decision rule {)~ defined by figure 2, is the ziggurat
decision rule over a partition {Xi} ~ of ~+ onto 8 2 : It is
an even, non-monotonic step function with range 8 2 and
with steps of unit height occurring at points of {Xi}. The
points x 1 and X2 are chosen so that {)* is an equalizer
rule. The points X3 and X4 and the positive probability
function 1r* are constructed from Xl and x2 so that {)* is
Bayes against 1r; Consequently, the rule {)* is admissible
and minimax, and the probability function 1r* is least
favorable.

The partition {Xi} requires solution of the ziggurat­
equalizer equations:

The distribution function of a C(p, 1) random variable is

1 v - J-l
F(vlJ-l) = -; arctan(-l-) + !.

The C(O, 1) distribution is the standard Cauchy distribu­
tion. An important property of a Cauchy disrtibution is
that it does not have a monotone likelihood ratio. Fig­
ure 1 illustrates the shape of these ratios.

The functions 9i and hi are these:

9i(X) F(x-i)+F(i-lli(X)),

hi{x) F(Jli+l(X) - i) + F{x - i),
i = 1,2

i =0,1

The probability function 1r* is positive and unique.

2.3 Ziggurat Decision Rule

This section defines and illustrates ziggurat decision
rules. A ziggurat rule is specified in terms of a parti-
tion of ~+.
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Figure 2: Ziggurat decision rule 8*

Notation: It For integers p ~ q, the notation It
means the integers from p to q. For example, Ig =
{O, 1, ... ,pl.

Remark A particular partition of ~+ is specified by
the points Xi, i E If. The specification of Xo and Xp+l
is implicit.

Definition: ziggurat decision rule Let {Xi }~n+l be
a partition of ~+. The ziggurat decision rule 8 over {Xi}

onto en is this:

Definition: partition of ~+ A partition2 of ~+ is a
set of points {Xi}~+l such that Xo = 0, Xp+l = 00, and
Xi+l > Xi for i E Ib. Such a partition is abbreviated as
{Xi}.

Example 2.1 A partition of ~+ with p = 4 is

{Xi}~ = {O, 0.617, 1.912,4.536, 11.209,00}. 0

and
X2n+l-i = J-li(Xi).

Example 2.3 A J-li-constrained partition of ~+ has the
following structure:

{O, Xl, X2,·· . ,Xn-l, Xn , J-ln(Xn ), J.ln-I(Xn-I),

... ,J-l2(X2),J-lI(XI), oo}
Furthermore, Xi E ei. 0

Example 2.4 Let n = 2. Define Xl, X2, X3, X4:

Xl := 0.617, X2 := 1.912, X3 := 4.536, X4 := 11.209.

Note that Xl E ~l and X2 E e2:

! < Xl < ~ + ~v'5 = 1.618

~ < X2 < ~ + ~v'5 = 2.618
Verify that X3 = J.l2(X2) and X4 = J.lI(XI). There­
fore, {O, xl, X2, X3, X4, oo} is a J.li-constrained partition
of ~+. 0

2.4 Bayes Rule

Notation

Bayes analysis of a ziggurat rule for a decision problem
(en ,8n ,Lo,Z) in which Z has a Cauchy distribution
requires J-li-constrained partitions of ~+.

Notation ei:= (i - ~, i - ! + v)

Definition: J-li-constrained partition of ~+ A J-li­

constrained partition of ~+ is a partition {Xi }~n+l of ~+
such that for all i E If ,

Xi E ~i

i = 0, ,n
i = 1, ,n

6(z) :=

{

i if Xi ~ Z < Xi+l,

6(z) := n - i if Xn+i ~ Z < Xn+i+l,
-6(-z) if z ~ 0

Example 2.2 Let n = 2. Define 6:

o if 0 ~ Z < Xl

u if Xl ~ Z < X2

2u if X2 ~ z < X3

u if X3 ~ z < X4
o if X4 ~ z

-6(-z) if z < 0

\/X E~.

Then 6 is the ziggurat decision rule over the partition
{0,XI,X2,X3,X4,00} onto O2 .0

Remark The ziggurat rule over {Xi }~n+l steps be­
tween i-I and i at Xi and between i and i-I at X2n+l-i,

i E If.

Remark The term ziggurat loosely describes the shape
of the rule over ~+: A ziggurat is a terraced pyramid.

2This definition differs from the set-theoretic definition of
some contexts.

Remark Let {Xi }~n+l be a J.li-constrained partition of
~+. The ziggurat rule over {Xi} steps between i-I and
i at Xi and between i and i-I at J.li(Xi), i E If·

Remark Let fzeli) "-J C(i,l), where i is an integer.
The function J-li satisfies the identity

!z(J-li(x)li+e) !z(xli+e)
!z(J-li(x)li - e - 1) - !z(xli - e - 1)'

This is the functional definition of J-li. Bayes analysis
motivates this definition. The algebraic definition of J-li
is derived from the functional definition.



6(z) =

I E I~.

2ho(Xl)

91 (Xl) + hI (X2)

92(X2) + h2(xa)

9a(Xa) 0

R(O,6)
R(±u,6)

R(±2u,6)
R(±3u,6)

Yl 0.570743
Y2 = 1.731856
Ya = 2.979961

Here, YI E (0.5,0.5 + VI), Y2 E (1.5,1.5 + VI), and Y3 E
(2.5,2.5+Vl). AIsoY2-Yl > 1 and Y3-Y2 > 1.0

2ho(Yl) =91 (Y1) + hI (Y2) =92(Y2).

The ziggurat-equalizer equations for n =3 are these:

2ho(Y1) = 91(Y1) + h1(Y2) = 92(Y2) + h2(Ya) = 9a(Ya). 0

Example 2.9 The ziggurat-equalizer equations for n =
2 are these:

Proposition 3 states that the ziggurat-equalizer equa­
tions have a unique solution Yl, ... , Yn that has certain
properties. Proposition 4 uses this solution to construct
an equalizer rule.

Proposition 3 Assume F ~ C(O,l). The ziggurat­
equalizer equations have unique, increasing solution Y1,
... , Yn with Yl E ~l· Furthermore Yl - Yl-1 > 1 for
IE I 2.
Example 2.10 Let F ~ C(O, 1). The ziggurat-equalizer
equations for n = 3 and u = 1 have the following solu­
tion:

For n ~ 2, the ziggurat-equalizer equations are

2.6 Ziggurat-Equalizer Equations

Equating the expressions R( (), 6) over () E eN to find
a ziggurat equalizer rule leads to the ziggurat-equalizer
equations. These are n equations in n unknowns Yl, ... ,
Yn. For n = 1, the ziggurat-equalizer equation is

Remark In proposition 1, the restriction to a Pi­
constrained partition of ~+ and the conditions on the
probability function are necessary for the decision rule
to minimize the posterior expected loss.

2.5 Risk Function

Proposition 2 gives the risk function of a ziggurat deci­
sion rule over a Pi-constrained partition of ~+.

Proposition 2 Let {Xi}~n+1 be a pi-constrained par­
tition of ~+, and let 6 be the ziggurat decision role over
{Xi} onto en.

R(0,6) 2ho(Xl)

R(±i,6) 9i(Xi) + hi(Xi+l), i E I?-l
R(±n,6) 9n(Xn )

Example 2.8 Let n =3. Let {xi}6 be a Pi-constrained
partition of ~+, and let 6 be the ziggurat decision rule
over {Xi} onto ea.

Then 6 is Bayes against some positive probability func­
tion on e 2 • 0

Example 2.6 Consider example 2.5. The conditions
of proposition 1 for a probability function 7r on 8 2 are
these:

7r(0) = p(l) 7r(1)

p(l) := fz(xlI1) = f(0.617 - 1) = 1.204
fz(xdO) f(0.617)

7r(1) = p(2) 7r(2)

p(2) := fZ(X21 2) = f(1.912 - 2) = 1.818
fz(x211) /(1.912 - 1)

Also, 7r(-1) = 7r(1) and 7r(-2) = 7r(2). Hence:

L 71"(9) 71"(0) ( 1+ il) + P(1)P(2))
8

3.5757r(0)

Thus 7r assigns these probabilities:

11"(0) 0.280

7r(±1) = 0.232
7r(±2) = 0.128

Therefore, the ziggurat decision rule over {Xi}~ onto e2
is Bayes against the probability function 11" on e2 . 0

Example 2.7 The probability function iT of proposi­
tion 1 is given by the following equations: For all I E II,

7r(±/) =(IT fz(Xklk) )-171"(0)'
k=1 fZ(Xklk - 1)

where

Main Result

Proposition 1 shows that to any ziggurat decision rule 6
over a Pi-constrained partition of ~+, there corresponds
a positive probability function 7r on en such that 6 is
Bayes against 7r.

Proposition 1 Assume F ~ C(O, 1). Let {Xi}~n+1 be
a pi-constrained partition of ~+. Let 7r be the even, pos­
itive probability function on en such that for alii E II ,

7r(/- 1) = p(/) 7r(/).

The ziggurat decision rule over {Xi} onto en is Bayes
against 7r.

Example 2.5 Let n = 2. Let {Xi}~ be the Pi-
constrained partition of ~+ given in example 2.4:

{Xi} = {0,0.617,1.912,4.536,11.209,oo}

Let 6 be the ziggurat decision rule over {Xi} onto e2 :

° if °~ z < 0.616
1 if 0.616 ~ z < 1.912
2 if 1.912 ~ z < 4.536
1 if 4.536 ~ z < 11.209
o if 11.209 ~ z

- 6(- z) if z < °



Thus, the ziggurat decision rule over {Xi} onto e3 is an
equalizer. Its risk is R6 = 93(X3):

Note that {Xi} is a partition of ~+:

{Xi} ={0,0.571, 1.732,2.980,5.104,6.891, 18.170,00}.

( N)-ll-r
F(-!) < R6. ~ 1 - 1 + 2r .

l-r

Remark The upper bound of this corollary is better
than the upper bound 2F(-!) of proposition 4:

This section constructs a minimax rule for the
location parameter in a robust-estimation problem
(e l x {O'l' 0'2}, e l , Lo,Z) in which the uncertainty class
is {N(O,O'r), N(O,O'~)}. The larger scale 0'2 is large
enough that the problem does not reduce to standard­
estimation. Examples 3.1 and 3.2 give minimax rules
for specific values of the scales. Example 3.3 considers
a similar problem in which the scale set has more than
two points. The minimax rules of these examples are not
monotonic even though the nominal distribution has a
monotone likelihood ratio in its location parameter. Ex­
amples 3.4 - 3.7 discuss the analysis underlying these
results.

3 Uncertain Noise Distribution

( N)-ll-r
1 - 1 + 2r i 2F(-!u) as N i 00

1-r

Then

where

Then 6* and 11"* have the following properties:

1. 6* is Bayes against 11";
2. 6* is an equalizer rule.

3. 6* is minimax.

4. 6* is admissible.
5. 11"* is least favorable.

Example 2.13 Refer to example 2.11: The ziggurat de­
cision rule over {Xi} onto e3 is an adn1issible minimax
rule. 0

Example 2.14 Refer to examples 2.5 and 2.6: Verify
that Yl := 0.617 and Y2 := 1.912 satisfy the ziggurat­
equalizer equations for n = 2, and note that {Xi} is a
Jli-constrained constrained partition of ~+. Thus 6 is
minimax and 11" is least favorable. 0

Corollary 2 In theorem 1, define

r:= F(-~)/F(~).

Also, define Xo := 0 and X2n+l := 00. Suppose that
{Xi}~n+l is a partition ofSR,+, and let 6* be the ziggurat
decision rule over {Xi} onto en.

Let 1r* be the positive probability function on en de­
fined by the following conditions: For i E It ,

5.104
6.891

18.170

X4 Jl3(X3)
Xs Jl2(X2)
X6 .- Jll(Xl)

2.8 Minimax Rule

Theorem 1 combines the conclusions of this chapter to
find an admissible minimax estimator of the location pa­
rameter () for a decision problem (en, en, L o,Z) in which
Z has a Cauchy distribution.

Tlleorem 1 Assume F ""J C(O, 1). Let Yl, ... , Yn with
Yi E €i satisfy the ziggurat-equalizer equations. For i E
If, define

F(X3 - 3) + F(3 - Jl3(X3))

F(X3 - 3) + F(3 - X4)
0.635

Here, 0.352 =F(-!) < R6 < 2F(-!).D

Example 2.12 Refer to example 2.5: Verify that Yl :=
0.617 and Y2 := 1.912 satisfy the ziggurat-equalizer equa­
tions for n = 2. Thus, since {Xi} is a Jli-constrained
constrained partition of ~+, the ziggurat rule over {Xi}
is an equalizer rule. 0

Remark Proposition 3 asserts that Xl, ... , X n exist
and that Xi > Xi-I, i E I~. There is no guarantee, how-
ever, that {Xi} ~n+ 1 is a partition of ~+; it is necessary
to verify that Jli-l(Xi-l) > Jli(Xi), i E I!]. If {Xi} is
a partition of ~+, then it is a Jli-constrained partition
by construction. Numerical computations suggest that
{Xi} is in fact a partition of ~+, but there is no proof of
this conjecture.

2.7 Equalizer Rule

Proposition 4 gives a ziggurat equalizer rule.

Proposition 4 Assume F ""J C(O,l). Let Yl, ... , Yn
with Yi E ei satisfy the ziggurat-equalizer equations. For
i E It, define

Xi := Yi and X2n+l-i := Jli(Yi).

Also, define Xo := 0 and X2n+l := 00. If {Xi}~n+l is
a partition of ~+, then the ziggurat decision rule 6 over
{Xi} onto en is an equalizer rule. Furthermore, if {Xi}
is a partition of ~+, then the common risk of 6 is R6 =
9n(Xn) and F(-!) < R6 < 2F(-!).

Example 2.11 Let n =3. The solution Yl, Y2, Y3 to the
ziggurat-equalizer equations specified by the proposition
IS

Yl = 0.571, Y2 = 1.732, Y3 =2.980.

Let Xl := Yl, X2 := Y2, and X3 := Y3. Also, define X4,
Xs, and X6 as follows:
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Figure 3: A minimax rule for (81 X{0'1,0'2},8 1,Lo,Z) (z ~ 0)

Example 3.1 Let 0'1 :== 1 and 0'2 :== 2.5. Define the
decision rule 6* as follows:

Xl 1.09833

X2 2.59355

X3 3.095

this:

11"*(0,0'1)

11"* (0,0'2)
7r*(±1,0'1)

1I"*(±1, 0'2)

o
0.43414873

0.09183446

0.19109118

R«0,0'1),6*) == 0.271514

R«O, 0'2), 6*) == R«±l,0'1), 6*) == R«±l,0'2), 6*)

== 0.550656

In this example, too, the risk for the parameter (0,0'1)
is less than the equalized risk for the other parameters,
and the probability mass for (0,0'1) is zero. 0

Example 3.3 This example extends example 3.2 by al­
lowing the scale set to have more than two points.

Define 0'0 == 0.9073846. Let ~ be a scale set that
includes 0'1, 0'2, and any finite number of points between
0'0 and 0'1. Then 6* is robust minimax for the decision
problem (8 1 x~, 8 1 , Lo, Z). The probability function of
example 3.2 is extended as follows: If 0' =F 0'1 or 0' =F 0'2,
then 11"*(0,0') :== 0 for all O. Here, too, 6* is Bayes against
7r: and 7r* is least favorable. 0

Example 3.4 In the standard-estimation problems
of [McKendall, 1990a], the likelihood ratio of the sam­
pling density fz (·10) is important to Bayes analysis. If
Z has a monotone likelihood ratio, for example, the cor­
responding Bayes rule is monotonic. Alternatively, if Z
has a Cauchy distribution, the non-monotonic shape of a
Bayes rule mimics the non-monotonic shape of a Cauchy
likelihood ratio. In this robust-estimation problem, how­
ever, it is the likelihood ratio of the marginal density of
Z given 0 under the least-favorable distribution 11"*, de­
noted .Bz(·IO), that is important to Bayes analysis:

The risk function is this:

(1)

o
0.40587187

0.048166

0.24890241

1("* (0,0'1)
1("*(0,0'2)

11'"* (±1, 0'1)

11'"* (±1, 0'2) .-

6*(z) :==

Then 6* is a Bayes rule against 7r: and 7r* is a least­
favorable probability function.

The rule 6* is almost an equalizer rule over 8 1 x
{0'1,0'2}:

R((0,0'1),6*) == 0.26453

R«O, 0'2), 6*) == R«±l,0"1), 6*) == R«±l,0"2), 6*)

== 0.576597

The risk for the parameter (0,0"1) is less than the equal­
ized risk for the other pairs, and the probability mass for
(0,0"1) is zero. 0

Example 3.2 Let 0"1 := 1 and 0"2 := 2. The corre­
sponding points Xl, X2, X3 are these:

o if 0::; z < Xl

1 if Xl::; z < X 2

o if x 2 ::; z < X3

1 if X3 ::; Z

-6*( -z) if z < o.
(See figure 3.) This rule is a minimax rule for
(81 X {0'1, 0'2}, 8 1 , L o, Z).

Let 11'"* be the following probability function on 8 1 x
{0'1,0'2}:

Figure 4 plots a likelihood ratio of .Bz( ·10) for the robust­
estimation problem of example 3.1. The non-monotonic
shape of 6* mimics the shape of this ratio. 0

Xl 1.09504

X2 2.93635

X3 3.20822

Define 6* by definition (1). Then 6* is minimax. The
corresponding least-favorable probability function 11'"* is

.Bz(zIO) :== E fz(zl(O, 0')) 11"(0,0'), zEW



Figure 4: A likelihood ratio of ,8z( .\0)

Example 3.7 This example lists the risk function of a
decision rule 8* of definition (1).

Example 3.5 The probability function 1r* of exam­
ple 3.1 or 3.2 satisfies the following linear system of equa­
tions:

.Bz(xiI1) = .Bz(xdO), i = 1,2,3

L L 1r*(0, 0") = 1
(J q

Define Yo, Y1, Y2, and Y3:

R( (0,0"),8*)

R((l, 0"), 6*)

R( (-1 , 0") , 8*)

-2F(X1/O:) + 2F(X2/0")
+ 2F(-X3/0")
F((XI - 1)/0") - F((X2 - 1)/0")
+ F((X3 - 1)/0")
R( (1, 0"), 6*) 0

Yo .- 1r* (0, 0"1)

Y1 .- 1r*(0, 0"2)

Y2 1r*(1, 0"1)

Y3 .- 1r*(2, 0"2)

The equations are these (i = 1,2,3):

1 x· 1 x·
- f( ..2. ) Yo + - f( --..: ) Yl
0"1 0"1 0"2 0"2

1 Xi - 1 1 x· - 1
--f(--) Y2 - - f(-'-) Y3 =0

0"1 0"1 0"2 0"2

Yo + YI + 2Y2 + 2Y3 = 1

When Xl, X2, and X3 are known, these are four equations
in four variables.

These constraints on the probability function are anal­
ogous to those of proposition 1.0

Example 3.6 The results of examples 3.1, and 3.2 are
computed from the following nonlinear system of equa­
tions with the assumption that 7r* (0,0"1) =0 (or Yo =0):

YI + 2Y2 + 2Y3 = 1
,Bz(xiI1) = ,Bz(xiIO), i = 1,2,3
R( (1, 0"j ), 6*) = R(0, 0"2), 8* ), j = 1, 2

These are six equations in the six unknowns Xl, X2, X3,

YI, Y2, Y3· It must be verified for any solution that
Xl ~ X2 ~ X3, that YI, Y2, and Y3 are non-negative,
that 8* is Bayes against 1r: and that R«O, 0"1), 8*) ~

R((O, 0"2), 8*).0
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