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Non-Monotonic Decision Rules for Sensor Fusion

Raymond McKendall and Max Mintz*
GRASP Laboratory
Department of Computer and Information Science
University of Pennsylvania

Philadelphia, PA 19104-6389

Abstract

This article describes non-monotonic estima-
tors of a location parameter § from a noisy
measurement Z = 6 + V when the possible val-
ues of § have the form {0,+1,+2,...,4n}. If
the noise V' is Cauchy, then the estimator is
a non-monotonic step function. The shape of
this rule reflects the non-monotonic shape of
the likelihood ratio of a Cauchy random vari-
able. If the noise V is Gaussian with one of two
possible scales, then the estimator is also a non-
monotonic step function. The shape this rule
reflects the non-monotonic shape of the like-
lihood ratio of the marginal distribution of Z
given § under a least-favorable prior distribu-
tion.

1 Introduction

This article describes non-monotonic estimators in deci-
sion problems motivated by sensor fusion. It finds mini-
max rules under zero-one (0) loss for the location param-
eter § in two problems of the fusion paradigm Z = 6+ V.
The statistical background for this research is reviewed
in the article Statistical Decision Theory for Sensor Fu-
sion [McKendall, 1990b] of these Proceedings, which also
defines notation and terminology.

The first problem is a standard-estimation problem in
which 6 € {0,+1,£2,...,4n}, for a given integer n, and
in which the noise V has the standard Cauchy distribu-
tion. A motivation for these assumptions is extension of
the results of [Zeytinoglu and Mintz, 1984] and [McK-
endall, 1990a] that assume the distribution of V has a
monotone likelihood ratio.! The noise distributions in
most practical applications do not have monotone like-
lihood ratios; the Cauchy distribution is a simple distri-
bution that does not have a monotone likelihood ratio.
The minimax rule for this problem is a non-monotonic
function. In contrast, the decision rules corresponding

*Acknowledgement: Navy Contract N0014-88-K-0630;
AFOSR Grants 88-0244, 88-0296; Army/DAAL 03-89-C-
0031PRI; NSF Grants CISE/CDA 88-22719, IRI 89-06770;
and the Dupont Corporation.

!A random variable Z with a density function fz(-|6),
for § € O, has a monotone likelihood ratio if the ratio
fz(:161)/ fz(-|62) is non-decreasing for all §; > 6,.

to a noise distribution with a monotone likelihood ratio
are monotonic functions.

The second problem is a robust-estimation problem
in which 8 € {—1,0,1} and the noise V' has either the
N(0,0%) or the N(0,03) distribution. If the maximum
allowable scale is not too large, the robust-estimation
problems of [Zeytinoglu and Mintz, 1988] and [McK-
endall, 1990a] reduce to standard-estimation problems.
The underlying distributions in these problems have a
monotone likelihood ratio (in the location parameter),
and so their minimax rules are monotonic. In contrast,
this problem has a non-monotonic minimax rule because
the maximum scale is too large. (A similar problem in
which the possible locations are an interval has a ran-
domized minimax rule. [Martin, 1987].)

Section 2 discusses the standard-estimation problem
with the Cauchy noise distribution. Section 3 discusses
the robust-estimation problem with uncertain noise dis-
tribution. The results listed here are a synopsts of results
in [McKendall, 1990a], which gives the underlying anal-
ysis and the proofs.

2 Cauchy Noise Distribution

This section constructs a ziggurat minimax rule " for
the location parameter in a standard-estimation problem
(©4n, O, Lo, Z) in which Z has a Cauchy distribution. A
ziggurat decision rule is a non-monotonic step function
with range ©,,. The non-monotonicity of §* reflects the
non-monotonicity of the likelihood ratio of a Cauchy dis-
tribution. The range of 6" reflects the structure of the
zero-one (e) loss function.

Section 2.1 reviews the Cauchy distribution. Sec-
tion 2.2 summarizes the main results. The remaining sec-
tions develop these results in more detail. Their organi-
zation follows the strategy for finding a minimax decision
rule by finding a Bayes equalizer rule. Section 2.3 defines
ziggurat decision rules. Section 2.4 discusses Bayes anal-
ysis of a ziggurat decision rule. Sections 2.5, 2.6, and 2.7
give the risk analysis of a ziggurat decision rule. Sec-
tion 2.8 combines the conclusions of this chapter to find
an admissible minimax estimator.

2.1 Cauchy Distribution

A continuous random variable V has the Cauchy distri-
bution with location parameter y and unit scale, written
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Figure 1: A likelihood ratio f(-|u1)/f(:|u2) of a Cauchy distribution

V ~ C(u, 1), if its density function f is

_r
1+ -

The distribution function of a C(y,1) random variable is

f(vlp) =

v—p
1

The C(0,1) distribution is the standard Cauchy distribu-
tion. An important property of a Cauchy disrtibution is
that it does not have a monotone likelihood ratio. Fig-
ure 1 illustrates the shape of these ratios.

1
F(vp) = - arctan( )+ 3.

2.2 Introduction

This section introduces and summarizes the results
through an example. In particular, it shows how to con-
struct a minimax rule §* and a least-favorable probabil-
ity function 7* on ©,, for the standard-estimation prob-
lem (©,,,0,, Ly, Z) in which n = 2 and F is the C(0,1)
distribution. The general results have arbitrary n.

The decision rule 8% defined by figure 2, is the ziggurat
decision rule over a partition {:c,-}g of £t onto Oy: It is
an even, non-monotonic step function with range ©, and
with steps of unit height occurring at points of {z;}. The
points z; and z, are chosen so that é* is an equalizer
rule. The points z3 and x4 and the positive probability
function n* are constructed from z; and x5 so that §* is
Bayes against 7* Consequently, the rule 6* is admissible
and minimax, and the probability function 7* is least
favorable.

The partition {z;} requires solution of the ziggurat-
equalizer equations:

2ho(y1) = 91(y1) + h1(y2) = g3(y3)
The functions g; and h; are these:

F(z — i)+ F(i — pi(2)),
F(piyr(2) — 1) + F(z —1),

i=1,2
i=0,1

gi(z) =
hi(z) =

The function p; is this:

. . — s 1
z—% if z=i1-3
. . 2
pi(z) = q (E—3)z—=(—3) +f
- if z#i—3
r—(i1—3)

These equations have unique solution y;, y2 such that
v €3 3+v)andy2 € (3,3 +v).

Furthermore, y; < yo. (The solution may be computed
numerically by the Newton-Raphson method.) The par-
tition {z;} is defined in terms of this solution:

zg = 0

Iy = W

T2 = Y2

z3 = pa(y2)
Iy = ﬂl(yl)
T = 00

This partition is a y;-constrained partition of R+.
The probability function 7* is this:

™ (£1) = (0)/p(1)
™" (£2) 7 (0)/(p(1)p(2))
The factors p(%l) connect 7* to {z;} and thus to é*:
_ fz(zlD)
p(l) = fZ(xlll_ 1)

The probability function #* is positive and unique.

=:1/p(=1)

2.3 Ziggurat Decision Rule

This section defines and illustrates ziggurat decision
rules. A ziggurat rule is specified in terms of a parti-
tion of R*t.
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Figure 2: Ziggurat decision rule 6*

Notation: 1} For integers p < g, the notation If

means the integers from p to ¢q. For example, I} =
{0,1,...,p}.

Definition: partition of ®* A partition? of Rt is a
set of points {x;}’é“ such that zo = 0, zp41 = o0, and
zi41 > z; for i € I5. Such a partition is abbreviated as

{z:}.

Example 2.1 A partition of Rt with p =4 is
{2:}s = {0,0.617,1.912,4.536,11.209, 00 }. O

Remark A particular partition of Rt is specified by
the points z;, i € Z}. The specification of zo and Tptl
is implicit.

Definition: ziggurat decision rule Let {J:;}S""'1 be
a partition of ®*. The ziggurat decision rule § over {z;}
onto O, is this:

1 if  z;<z<zi4,
5(2) = n—1 if zp4i <2 < ZTpgita,
—6(—2) if 2<0

Example 2.2 Let n = 2. Define é:

t=0,...,n
1=1,...,n

0 if 0<z<ua

u if z; <z<zo
_ 2u fzrzaLz<zs
6(2) ._ u if z3<z2<24
0 if 24 <2
_6(—z2) if 2 <0

Then § is the ziggurat decision rule over the partition
{0,z1,z2,23,24,00} onto ©,.0

Remark The ziggurat rule over {z; steps be-
tween i—1 and ¢ at z; and between i and i—1 at z9, 414,
1€ 17,

2n+41
0

Remark The term ziggurat loosely describes the shape
of the rule over ®*: A ziggurat is a terraced pyramid.

2This definition differs from the set-theoretic definition of
some contexts.

2.4 Bayes Rule
Notation

Bayes analysis of a ziggurat rule for a decision problem
(©4,0n,Lo,Z) in which Z has a Cauchy distribution
requires pi;-constrained partitions of R+,

Notation ¢ :=(i— %,i - % +v)

Definition: p;-constrained partition of ®% A p;-
constrained partition of ®* is a partition {z; g"“ of R+
such that for all 7 € Z7,
z; €&

and

Tong1-i = Hi(Zi)-
Example 2.3 A p;-constrained partition of R+ has the
following structure:
3y Tn—1,Tn, l‘n(xn), l‘n—-l(-’cn—l),

-y #2(22), p1(21), 0}
Furthermore, z; € §;.0

{0,1'1,1'2,..

Example 2.4 Let n = 2. Define z;, 23, 23, z4:
z,:=0.617, 5 := 1.912, 23 := 4.536, z4 := 11.209.

Note that z; € &; and zo € &5

<z <i+ivh=1618

<z <2+1V5=2618
Verify that z3 = po(z;) and z4 = py(z;). There-
fore, {0,z1,22,3,24,00} is a pi-constrained partition
of RT.O

2n+1

Remark Let {z;}, be a p;-constrained partition of
R*. The ziggurat rule over {z;} steps between i — 1 and
i at z; and between 7 and 1 — 1 at p;(z;), i € I7.

N N

Remark Let fz(-|[{) ~ C(4,1), where 7 is an integer.
The function pu; satisfies the identity
fz(ui(@)lite) _ _fz(zlite)
fz(pi(z)li—e~1)  fz(zli—e—1)
This is the functional definition of u;. Bayes analysis

motivates this definition. The algebraic definition of y;
is derived from the functional definition.

Ve e®R.




Main Result

Proposition 1 shows that to any ziggurat decision rule é
over a p;-constrained partition of 7, there corresponds
a positive probability function = on ©, such that 6 is
Bayes against 7.

Proposition 1 Assume F ~ C(0,1). Let {:c,}z)"'*'1 be
a pi-constrained partition of Rt. Lei m be the even, pos-
itive probability function on O, such that for alll € I,

n(1-1) = p(l) =(1).
The ziggurat decision rule over {z;} onto O, is Bayes
against

Example 2.5 Let n = 2. Let {x,}o be the p;-
constrained partition of R+ given in example 2.4:

{zi} = {0,0.617,1.912,4.536,11.209, oo}
Let é be the ziggurat decision rule over {z;} onto ©,:

0 if 0<2z<0.616
1 if 0.616 <z <1.912
§(z) = 2 if 1.912 < z <4.536

1 if 4.536 < z < 11.209

0 if 11.209 < z

—6(—=z) if z2<0

Then § is Bayes against some positive probability func-
tion on ©,.0

Example 2.6 Consider example 2.5. The conditions
of proposition 1 for a probability function = on ©, are

these:
m(0) = p(1) 7(1)
_ fz(@|l) _ f(0617—1) _
p(1) = fz(z1[0) ~  f(0.617) 1204
(1) = p(2) 7(2)
_ fz(z22)  f(1.912-2)
P =) - fez—1) 58

Also, m(—-1) = n(1) and =(—

Y (6) =

9

2) = 7(2). Hence:

2 2
7(0) (1 taot —,,(1)—,,(2))

= 3.5757(0)
Thus 7 assigns these probabilities:
7(0) = 0.280
m(£l) = 0.232
m(£2) = 0.128
Therefore, the ziggurat decision rule over {xi}g onto O,
is Bayes against the probability function 7 on ©,.0

Example 2.7 The probability function 7 of proposi-
tion 1 is given by the following equations: For all l € I7,

_ fz(zelk) )
T = (Hf(xklk )) "©

where
-1

w(0) = {1+2Z<Hf (zklk—1)>—1:|' m

Remark In proposition 1, the restriction to a p;-
constrained partition of ®* and the conditions on the
probability function are necessary for the decision rule
to minimize the posterior expected loss.

2.5 Risk Function

Proposition 2 gives the risk function of a ziggurat deci-
sion rule over a p;-constrained partition of R+.

Proposition 2 Let {xi}§"+1 be a p;-constrained par-
tition of R, and let 6 be the ziggurat decision rule over
{zi} onto ©,.

R(0,8) = 2ho(z1)
R(£i,6) = gi(zi) + hi(zig1), ieIp™!
R(:tn, 6) - gn(zn)

Example 2.8 Let n = 3. Let {:c,-}z be a p;-constrained
partition of ®%, and let § be the ziggurat decision rule
over {z;} onto O3.

R(0,6) = 2ho(zy)
R(xu,8) = gi(z1)+ hi(22)
R(£2u,8) = ga(z2) + ho(z3)

R(£3u,8) = g3(z3)0

2.6 Ziggurat-Equalizer Equations

Equating the expressions R(#,8) over § € Oy to find
a ziggurat equalizer rule leads to the ziggurat-equalizer
equations. These are n equations in n unknowns y, ...,
yn. For n = 1, the ziggurat-equalizer equation is

2ho(y1) = 91(%1)-

For n > 2, the ziggurat-equalizer equations are

2ho(y1) = @i(w1) + hi(yi41) = gn(yn), leIf.

Example 2.9 The ziggurat-equalizer equations for n =
2 are these:

2ho(y1) = 91(y1) + h1(y2) = g2(y2).

The ziggurat-equalizer equations for n = 3 are these:

2ho(y1) = 91(1) + ha(y2) = g2(y2) + ha(y3) = g3(y3). O

Proposition 3 states that the ziggurat-equalizer equa-
tions have a unique solution y, ..., y, that has certain
properties. Proposition 4 uses this solution to construct
an equalizer rule.

Proposition 3 Assume F ~ C(0,1). The ziggurat-
equalizer equations have unique, increasing solution y,
.., Yn with y; € &. Furthermore y; — yj—1 > 1 for
leIs.

Example 2.10 Let F ~ C(0,1). The ziggurat-equalizer
equations for n = 3 and u = 1 have the following solu-
tion:

y1 = 0.570743
y» = 1.731856
ys = 2.979961

Here, y; € (0.5,0.5+ v1), y2 € (1.5,1.54+ v1), and y3 €
(2.5,254+v1). Alsoys —y1 >land yzs —y» > 1.0



2.7 Equalizer Rule

Proposition 4 gives a ziggurat equalizer rule.

Proposition 4 Assume F ~ C(0,1). Let y1, ..., yn

with y; € &; satisfy the ziggurat-equalizer equations. For
1 € I7, define

=y and Tony1-i = lli(yi)-

AISO! deﬁne Zo = 0 and Ton41 = OO. If {Ii}§n+1 is

a partition of RT, then the ziggurat decision rule § over
{z;} onto O, is an equalizer rule. Furthermore, if {z;}
is a partition of R¥, then the common risk of § is Rs =
gn(2n) and F(—1) < Rs < 2F(-1%).

Example 2.11 Let n = 3. The solution y1, y2, y3 to the
ziggurat-equalizer equations specified by the proposition
1s

y1 = 0.571, y, = 1.732, y3 = 2.980.

Let z1 := y1, 2 := y2, and x3 := y3. Also, define z4,
zs, and zg as follows:

T4 = ﬂ3(1‘3) = 5.104
z5 = po(z2) = 6.891
ze = m((z;) = 18.170

Note that {z;} is a partition of Rt:
{z:} = {0,0.571,1.732,2.980,5.104,6.891,18.170, 00}.

Thus, the ziggurat decision rule over {z;} onto O3 is an
equalizer. Its risk is Rs = ga(zs):

93(z3) = F(z3—3)+ F(3— p3(z3))
= F(zz—3)+ F(3—z4)
0.635

Here, 0.352 = F(—1) < Rs < 2F(-1).0

Example 2.12 Refer to example 2.5: Verify that y; :=
0.617 and y2 := 1.912 satisfy the ziggurat-equalizer equa-
tions for n = 2. Thus, since {z;} is a p;-constrained
constrained partition of R*, the ziggurat rule over {z;}
is an equalizer rule. O

Remark Proposition 3 asserts that z;, ..., z, exist
and that z; > z;_1, 1 € I}. There is no guarantee, how-

ever, that {z;}2"*! is a partition of ®%; it is necessary
to verify that p;_1(zi-1) > pi(z;), i € I¢. If {z;} is
a partition of R*, then it is a y;-constrained partition
by construction. Numerical computations suggest that
{z:} is in fact a partition of ®*, but there is no proof of
this conjecture.

2.8 Minimax Rule

Theorem 1 combines the conclusions of this chapter to
find an admissible minimax estimator of the location pa-
rameter 6 for a decision problem (0,,0,, Lo, Z) in which
Z has a Cauchy distribution.

Theorem 1 Assume F ~ C(0,1). Let y;, ..., y, with

Yi € & salisfy the ziggurat-equalizer equations. For i €
17, define

z; =y and ZTonyr-i = piyi)-

Also, define zg := 0 and z2n41 = 0o. Suppose that
{:L',-}gﬂ+1 is a partition of R, and let §* be the ziggurat
decision rule over {z;} onto O,,.

Let m* be the positive probability function on ©, de-
fined by the following conditions: Fori € 17,

w*(ﬂ)z(ﬂ p(k)) = (0),
k=1

where
-1

7*(0) = 1+2Z(Hp(k)) .
=1 \k=1

Then 6% and 7* have the following properties:
&* is Bayes against 7*

8% is an equalizer rule.

8" is minimaz.

8" is admissible.

SRS I

*

7w 1s least favorable.

Example 2.13 Refer to example 2.11: The ziggurat de-
cision rule over {z;} onto ©3 is an admissible minimax
rule. O

Example 2.14 Refer to examples 2.5 and 2.6: Verify
that y, := 0.617 and y, := 1.912 satisfy the ziggurat-
equalizer equations for n = 2, and note that {z;} is a
pi-constrained constrained partition of ®*. Thus § is
minimax and = is least favorable. O

Corollary 2 In theorem 1, define
= F(—%)/F(%)
Then

1—7V\7!
F(—%)<R6.§1—-(1+21‘ )

1—-171

Remark The upper bound of this corollary is better
than the upper bound 2F(——:}) of proposition 4:

1—-7N

1-—(14—27‘1

-1
) T?F(—%u) as N Joo

3 TUncertain Noise Distribution

This section constructs a minimax rule for the
location parameter in a robust-estimation problem
(©1x{01,02},01, Lo, Z) in which the uncertainty class
is {N(0,02%), N(0,02)}. The larger scale o, is large
enough that the problem does not reduce to standard-
estimation. Examples 3.1 and 3.2 give minimax rules
for specific values of the scales. Example 3.3 considers
a similar problem in which the scale set has more than
two points. The minimax rules of these examples are not
monotonic even though the nominal distribution has a
monotone likelihood ratio in its location parameter. Ex-
amples 3.4 - 3.7 discuss the analysis underlying these
results.
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Figure 3: A minimax rule for (0; x {¢1,02},01,Lo,Z) (z > 0)

Example 3.1 Let 07 := 1 and o2 := 2.5. Define the
decision rule 6* as follows:
zy := 1.09833
2.59355
3.095

L2

I3

if 0 S 2 <
if 2 <z<xq
if 2o <2< 23 (1)
if z3<z
—6*(—=2) if z < 0.

(See figure 3.) This rule is a minimax rule for
(©1x{01,02},01, Lo, 2).

Let 7* be the following probability function on ©; x
{o1,02}:

0

1
6*(2) := 0

1

(_

7(0,01) == 0

7(0,05) := 0.40587187
7 (+l,01) := 0.048166
" (xl,02) := 0.24890241

Then 6* is a Bayes rule against #} and =* is a least-
favorable probability function.
The rule é6* is almost an equalizer rule over ©, x
{Ula02}:
R((0,04),8*) = 0.26453

R((0,07),6*) = R((£1,0,),8*) = R((£1, 03),6")
= 0.576597

The risk for the parameter (0,04) is less than the equal-
ized risk for the other pairs, and the probability mass for
(0,01) is zero.O

Example 3.2 Let 07 := 1 and o3 := 2. The corre-

sponding points z;, 3, 23 are these:

z; = 1.09504
zo = 2.93635
3 = 3.20822

Define 6* by definition (1). Then 6* is minimax. The
corresponding least-favorable probability function #* is

this:
7 (0,01) = 0
7*(0,02) := 0.43414873
7 (xl,01) = 0.09183446
7 (x1, 02) 0.19109118

The risk function is this:
R((0,01),6*) = 0271514

R((0,02),6™) = R((£1,07),6%) = R((£1, 02),6)
= 0.550656

In this example, too, the risk for the parameter (0, 01)
is less than the equalized risk for the other parameters,
and the probability mass for (0, ;) is zero.O

Example 3.3 This example extends example 3.2 by al-
lowing the scale set to have more than two points.

Define 09 = 0.9073846. Let ¥ be a scale set that
includes o4, 07, and any finite number of points between
oo and o,. Then é* is robust minimax for the decision
problem (©;xX,0;, Lo, Z). The probability function of
example 3.2 is extended as follows: If ¢ # o) or ¢ # 03,
then 7*(6, ¢) := 0 for all 6. Here, too, §* is Bayes against
7y and 7" is least favorable. O

Example 3.4 In the standard-estimation problems
of [McKendall, 1990a], the likelihood ratio of the sam-
pling density fz(-|#) is important to Bayes analysis. If
Z has a monotone likelihood ratio, for example, the cor-
responding Bayes rule is monotonic. Alternatively, if Z
has a Cauchy distribution, the non-monotonic shape of a
Bayes rule mimics the non-monotonic shape of a Cauchy
likelihood ratio. In this robust-estimation problem, how-
ever, it is the likelihood ratio of the marginal density of
Z given @ under the least-favorable distribution 7*, de-
noted Bz(-|8), that is important to Bayes analysis:

Bz(2l0) =Y fz(z|(8,0))7(0,0), z€R

Figure 4 plots a likelihood ratio of 8z (+|#) for the robust-
estimation problem of example 3.1. The non-monotonic
shape of 6* mimics the shape of this ratio. O



Figure 4: A likelihood ratio of 8z(-|0)

Example 3.5 The probability function #* of exam-
ple 3.1 or 3.2 satisfies the following linear system of equa-
tions:

ﬂz(x"ll) = ,Bz(z,-|0), 1= 1,2,3
ZZ#*(B,U) =1
6 o

Define yo, y1, y2, and ys:

Yo = 7(0,01)
y1 = 7(0,02)
y2 = 7(1,01)
ys = w°(2,02)

The equations are these (i = 1,2,3):
1 Ty 1 x;
5 G vt S n

— 5
oy

z;—1 1  z;—-1 _
= )yz—azf( - Jys=0

1 2

yo+y1+2y2+2ys =1

When z,, z2, and z3 are known, these are four equations
in four variables.

These constraints on the probability function are anal-
ogous to those of proposition 1. O

Example 3.6 The results of examples 3.1, and 3.2 are
computed from the following nonlinear system of equa-
tions with the assumption that 7*(0,07) = 0 (or yo = 0):

n1+2y2+2y3 =1
Bz(zi]l) = Bz(:l0), i=1,2,3
R((1,0;),6") = R(0,02),6"), j=1,2

These are six equations in the six unknowns z1, z2, z3,
Y1, Y2, y3- It must be verified for any solution that
z; £ z3 < z3, that y;, y2, and y3 are non-negative,
that 6* is Bayes against w} and that R((0,0,),6*) <
R((0,09),6*).0

Example 3.7 This example lists the risk function of a
decision rule §* of definition (1).

R((0,0),6") = —2F(z./c)+2F(z2/0)
+2F(—z3/0)
R((1,0),8*) = F((z1—1)/o) - F((z2 —1)/0)

+ F((z3 —1)/0)

R((-1,0),6") = R((1,0),6*)0
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