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capillary formation, seen as non-distinct shapes within the pore, as well as organized 

circular lumens, representing competent blood vessels. Significantly more lumens were 

found in the presence of both high VEGF composite scaffolds and VEGF MS-composite 

scaffolds, demonstrating the efficacy of VEGF delivery from both fibers and 

microspheres (Figure 8-6D).  

 

Figure 8-6 Quantification of enhanced vascularization through VEGF delivery. (A) Representative 
image demonstrating the image processing used to clarify the aSMA staining. (B) The amount of 
aSMA staining in composite scaffolds varied in magnitude between animals, but followed a 
similar pattern (2 representative animals shown). (C) High VEGF composite scaffolds and VEGF 
MS-composite scaffolds stimulated vascularity compared to other groups (positive stain threshold 
> 0.05% color, * indicates difference from respective control, p < 0.005). (D) Similarly, high 
VEGF composite scaffolds and VEGF MS-composite scaffolds had more lumens per pore 
compared to control conditions (line indicates difference, p < 0.05). 
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8.5 Discussion  

The ability to control cell behavior in engineered tissues may be critical to successful 

tissue regeneration. This is particularly true in fibrous tissues, where extreme 

mechanical forces, reduced metabolic activity, and little access to blood supply pose 

significant challenges. Further, mechanical cues alone from the surrounding 

environment may not be sufficient to control cell fate. For example, mesenchymal stem 

cells, which are easily accessible and possess a number of appealing properties, may need 

significant chemical guidance to develop a stable and appropriate phenotype [262]. With 

this work, we present a range of techniques for delivery of bioactive growth factors from 

electrospin fibrous scaffolds (Figure 8-1) that do not affect the overall mechanical 

properties of the scaffold, and that can be tuned to deliver different types of factors with 

time-varying release profiles. 

 

Because only small molecules were previously delivered from electrospun MS-composite 

scaffolds [114], we first demonstrated that active growth factors could be encapsulated 

and released from the materials, eliciting a biological response both in vitro and in vivo. 

Exposure to microspheres and MS-composite scaffolds containing bFGF stimulated MFC 

proliferation to similar levels as the addition of 50 ng/mL aqueous bFGF, despite 

differences in dosage (Figure 8-2). Further, while previous work washed out the PEO 

fibers prior to cell seeding, we did not remove PEO prior to use, further simplifying the 

scaffold preparation process. Allowing the PEO to dissolve in situ did not adversely affect 

cell proliferation or morphology, or affect in vivo behavior (data not shown). In contrast, 

while control PLGA microspheres did not affect cell behavior in vitro, PLGA 

microspheres caused a heightened immune response in vivo, stimulating in a slight 

increase in vascularity for all MS-containing scaffolds, perhaps due to the acidic by-

products of PLGA degradation. An increased number of immune cells were identified 
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using H&E in MS-composite scaffolds compared to composite scaffolds without MS 

(data not shown). Finally, we demonstrated that similar to prior in vitro work, scaffolds 

containing sacrificial PEO fibers resulted in better cell infiltration in vivo due to an 

increase in the porosity of the scaffold. 

 

Interestingly, the doses of VEGF that stimulated vessel formation were significantly 

lower than previous reports [123, 263, 264]. While we attempted to encapsulate 

comparable levels of VEGF to prior work, a significant proportion of the growth factor 

dosage was either excluded during fabrication or denatured, according to ELISA 

measurements. Despite the low quantity of VEGF delivered from both sacrificial fibers 

and entrapped microspheres, the angiogenic response in vivo was robust for all 

conditions, suggesting that either the ELISA results were misleading or that significantly 

lower doses of VEGF are needed to stimulate a vascular response than previously 

reported. Indeed, many reports only describe the theoretical VEGF loading prior to 

biomaterial fabrication, and they may also experience similar decreases in growth factor 

dosage after material fabrication.  

 

Two distinct release profiles elicited similar responses in vivo. A relatively large initial 

burst of VEGF from composite scaffolds resulted in similar vascularization as a much 

smaller, sustained release of VEGF from MS-composite scaffolds (a 40-fold difference in 

dosage). Aside from minimizing growth factor expense, the materials used here present 

unique opportunities for designing delivery schemes that closely resemble natural 

biological cascades in vivo. For example, a burst of VEGF could be followed by a 

sustained release of platelet-derived growth factor, which demonstrated improved vessel 

maturation compared to VEGF alone [123, 265]. Or, an initial burst of antibiotic could 

help prevent infections associated with surgery [266].  
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While this work presents a number of interesting new techniques to deliver growth 

factors from electrospun fibers with distinct release profiles, some limitations do exist. 

First of all, it is unclear whether the vessels present at 2 weeks would continue to mature 

or recede with time in vivo. Using our system, we could deliver additional growth factors 

that promote vessel maturation, such as the VEGF/PDGF combination mentioned 

earlier. Further, it is unclear if the 1 mm pores would be sufficient to sustain the 

metabolic needs of the cells in the scaffold, and more testing must be conducted to 

understand the effect of such pores on the mechanical properties of the material. 

Another approach to promote vascular invasion would be to include a large-diameter 

sacrificial fiber population that creates pores wide enough to harbor capillaries and other 

blood vessels. Finally, the subcutaneous space is significantly different from the synovial 

environment of the knee, so biomaterial degradation, release profiles and biological 

response will also need to be studied in that context. Large animal studies are on-going 

to assess the role of both composite scaffolds and growth factor delivery from such 

scaffolds. 

 

8.6 Conclusions 

Growth factors are a powerful tool to control cell behavior in tissue engineering 

materials. Because fibrous tissues are especially challenging to engineer, incorporating 

the capability to deliver growth factors from electrospun scaffolds without compromising 

mechanical properties will improve the success of such materials. Two novel approaches, 

one simple method that allows for a burst release and a more complex method that 

allows for sustained release, can be combined in a wide array of ways to generate unique 

delivery schemes that mimic natural cascades or promote regenerative behavior in the 
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neotissue. With this work, we hope to bring electrospun scaffolds closer to a clinically 

successful therapy for fibrous tissue repair. 
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9: Conclusions and Future Work 

 
Meniscus repair remains elusive in medicine today. Since meniscus tears are one of the 

most prevalent injuries in orthopedics, a successful meniscus treatment will prove 

extremely valuable and lucrative, and will have a significant impact on the orthopedic 

field. However, despite major efforts by many researchers around the world, we have not 

been able to engineer a structure that mimics the complexity of the native tissue itself or 

regenerates the tissue in a functional way. Not only is the meniscus composed of various 

specialized cell populations, multiple layers of uniquely-oriented collagen fibers, and 

distinct regions of proteoglycan that all blend seamlessly together, but also the overall 

shape of the tissue features curves and arches that must precisely match the overlaying 

femoral condyles and underlying tibial plateau in order to successfully balance joint 

mechanics, creating an architectural challenge on many levels.  

 

Three potential repair schemes exist for a degradable tissue engineering meniscus 

therapy. In the simplest case, a tear is filled with a degradable material (Figure 9-1A) 

that restores continuity of the tissue across the injury region, either through the material 

itself or by delivering chemical cues locally. In cases where complex tears require entire 

regions to be resected, a patch of material would be inserted (Figure 9-1B) that can 

harbor cells and also match the surrounding physiological characteristics. Finally, in the 

most extreme situations, the entire meniscus can be removed and replaced (Figure 9-

1C) by a complete meniscus construct, complete with insertion sites to the bone. 
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Figure 9-1 Potential treatments after a meniscus injury. (A) A material is used to promote 
integration across a clean meniscus tear. (B) After meniscectomy, the removed tissue is replaced 
with new material, capable of recapitulating the function of the resected tissue. (C) In extreme 
cases, complete meniscus replacement is required, with insertions into the tibial plateau at the 
meniscus horns. 

 

 

We believe that the most promising approach is to create a meniscus patch (Figure 9-

1B), due to the prevalence of meniscectomy after injury. By maintaining a majority of the 

original tissue, joint mechanics are minimally changed, and guide patch insertion and 

geometry. Based on the work described in this thesis, as well as other work performed in 

the lab, we recommend the repair procedure described in Figure 9-2. Specifically, an 

electrospun patch should include sacrificial fibers to increase porosity, which promote 

maturation and result in better integration properties with native tissue. Hastening these 

properties will decrease the amount of time a patient is non-weight bearing after 

implantation. Also, drug-delivering microspheres should be entrapped between the 

fibers in the scaffold, and vascular conduits formed to support cell metabolism during 

regeneration. The addition of expanded cells to the exterior of the scaffold will further 

improve integration, although the cost associated with isolating and expanding 

autologous cells may outweigh this benefit. Based on current work, we also recommend 

that a cocktail of growth factors are delivered from the electrospun material. These 
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chemicals should promote the properties of immature, healing meniscus in the 

neotissue, and create a regenerative environment that stimulates optimal tissue 

formation. Specifically, we propose a short-term release of bFGF (to increase cell density 

around the repair site) and VEGF (to stimulate early vascularization that supports 

regeneration) from sacrificial fibers, along with delivery of both TGF-β (to stimulate 

matrix production) and PDGF (to mature /sustain existing blood vessels) from 

entrapped microspheres. With this approach, vasculature would be continuously present 

from early timepoints, and integration/maturation properties would slowly improve over 

time. Eventually, as the original tissue is regenerated through matrix deposition, the 

scaffold and associated vascularity will recede, leaving a tissue that is functionally similar 

to the original tissue. 

 

Figure 9-2 A potential meniscus repair scheme. 
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Future work can explore the delivery of other types of molecules from electropun 

scaffolds to promote meniscus repair. For example, early work suggests that enzymes 

such as hyalurodinase could be used to decrease matrix density at the repair site [267], 

allowing for more cell migration and new matrix deposition that spans the injury region. 

Further, regulators of the immune response, such as dexamethasone, could be delivered 

locally, tempering inflammatory processes that might inhibit regenerative behavior. 

Because both short- and long-term delivery schemes are possible, with multiple fibers 

and microsphere populations in a single scaffold, this biomaterial provides a significant 

amount of flexibility in terms of delivery of different factors that support regeneration. 

 

Despite the progress that has been made to date in creating a meniscus repair patch, a 

number of challenges remain. Specifically, our current fabrication technique creates thin, 

flat sheets of scaffold, and it is unclear how these can be formed into the 3-sided c-shape 

of the meniscus. Once we have identified a way to create the overall architecture, other 

surgical realities must be tackled. Current technology allows for measurement of the 

exterior rim of a resected region using an arthroscopic measuring tape (used in the 

Menaflex procedure), but a new device would be needed to measure the radial thickness. 

Further, we need to develop a way to cut the scaffold to the correct dimensions, with 

minimal damage to the remaining scaffold. The material currently requires delicate 

handling, which is unlikely in an orthopedic OR. It ideally must also be inserted 

arthroscopically, as opening the knee is costly and time-consuming, and will significantly 

limit the use of such a therapy. Finally, while we have demonstrated that new matrix will 

interface the scaffold and native tissue, temporary sutures or a glue may help ensure 

scaffold stability prior to maturation and must be thoroughly tested. 
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Prior to human studies, a number of large animal studies will be crucial in 

understanding the potential for success. The in vitro work performed in this thesis 

provides a significant amount of information for designing in vivo studies. However, the 

synovial environment is very different from both the in vitro culture conditions and the 

subcutaneous space in a rat, so we must test the behavior of cells on these scaffolds in the 

knee, as well as the effects on the material properties and degradation rates of the 

polymers that are used. Preliminary studies in an ovine model show some cell infiltration 

into the scaffolds, but that the scaffolds become dislodged over time [148].  Further, we 

will need to test if local growth factor delivery stimulates cell behavior in ways similar to 

in vitro and subcutaneous in vivo studies, which is not a liquid environment like the 

knee.  

 

Finally, while a patch may restore joint mechanics and minimize pain to the patient, the 

ultimate goal is to extend the period of time before a patient must receive a knee 

replacement, ideally removing the need for that surgery entirely. While total knee 

arthroplasty (TKA) is relatively routine and has a high success rate, it is a major surgery 

with large associated costs both in medical expenses as well as in lost wages during 

recovery. Also, revision surgeries are tricky and expensive, and with the population 

aging, so we must delay the need for such extreme surgeries as much as possible. 

Delaying the onset of osteoarthritis, and subsequent TKA surgery, by maintaining joint 

mechanics through the use of such a patch will make this therapy a success, and will 

likely result in the therapy being embraced by both surgeons who would finally have a 

clinical option for their patients beyond resection, and payers who would be happy to 

decrease the number of expensive TKAs.  
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Overall, I must believe that successful meniscus regeneration will some day exist, 

because we have been able to conquer many other challenging conditions. The problem 

is lofty: meniscus repair requires a mix of architectural, chemical and biological 

optimization and design. It is evident that the solution will not be straightforward, but 

the successful design and implementation of such a therapy will certainly revolutionize 

the field of orthopedics.  
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