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Global Brain Dynamics during Social Exclusion Predict Subsequent
Behavioral Conformity

Abstract

Individuals react differently to social experiences; for example, people who are more sensitive to negative
social experiences, such as being excluded, may be more likely to adapt their behavior to fit in with others. We
examined whether functional brain connectivity during social exclusion in the fMRI scanner can be used to
predict subsequent conformity to peer norms. Adolescent males (n = 57) completed a two-part study on teen
driving risk: a social exclusion task (Cyberball) during an fMRI session and a subsequent driving simulator
session in which they drove alone and in the presence of a peer who expressed risk-averse or risk-accepting
driving norms. We computed the difference in functional connectivity between social exclusion and social
inclusion from each node in the brain to nodes in two brain networks, one previously associated with
mentalizing (medial prefrontal cortex, temporoparietal junction, precuneus, temporal poles) and another with
social pain (dorsal anterior cingulate cortex, anterior insula). Using predictive modeling, this measure of global
connectivity during exclusion predicted the extent of conformity to peer pressure during driving in the
subsequent experimental session. These findings extend our understanding of how global neural dynamics
guide social behavior, revealing functional network activity that captures individual differences.
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Abstract

Individuals react differently to social experiences; for example, people who are more sensitive to negative social experiences,
such as being excluded, may be more likely to adapt their behavior to fit in with others. We examined whether functional brain
connectivity during social exclusion in the fMRI scanner can be used to predict subsequent conformity to peer norms.
Adolescent males (n=57) completed a two-part study on teen driving risk: a social exclusion task (Cyberball) during an fMRI ses-
sion and a subsequent driving simulator session in which they drove alone and in the presence of a peer who expressed risk-
averse or risk-accepting driving norms. We computed the difference in functional connectivity between social exclusion and so-
cial inclusion from each node in the brain to nodes in two brain networks, one previously associated with mentalizing (medial
prefrontal cortex, temporoparietal junction, precuneus, temporal poles) and another with social pain (dorsal anterior cingulate
cortex, anterior insula). Using predictive modeling, this measure of global connectivity during exclusion predicted the extent of
conformity to peer pressure during driving in the subsequent experimental session. These findings extend our understanding
of how global neural dynamics guide social behavior, revealing functional network activity that captures individual differences.

Key words: fMRI; functional connectivity; mentalizing; network; social pain

Introduction Helliwell and Putnam, 2004) and survival (Berkman and Syme,
Social connection is fundamental to human well-being 1978; House et al., 1982; Kawachi et al., 1996), whereas discon-
(Pinquart and Sorensen, 2000; Kawachi and Berkman, 2001, nection from social ties negatively impacts emotional and
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physical health (Holt-Lunstad et al., 2010; Eisenberger and Cole,
2012; Cacioppo and Cacioppo, 2014). Consequently, people work
to remain connected to others and avoid social exclusion. When
these connections are disrupted, such as when a member of a
group is excluded, the individual may feel ‘social pain’
(Eisenberger et al., 2003; Eisenberger and Lieberman, 2004,
MacDonald and Leary, 2005) and attempt to understand others’
thoughts and feelings (i.e. ‘mentalizing’; Frith & Frith, 2003) in
service of reconnecting with others (Maner et al., 2007). One way
that people develop and maintain social connections with those
around them is by conforming to others’ attitudes and behavior
(Cialdini and Goldstein, 2004). Importantly, however, individ-
uals respond differently to social exclusion, even within the
same peer groups (Fenigstein, 1979; Nezlek et al., 1997; Zadro
et al., 2006; Waldrip, 2007; DeWall et al., 2012; Cascio et al.,
2015a), and therefore may be differentially disposed to conform
in service of maintaining social harmony. Critically, the extent
to which a broad range of brain systems become synchronized
with responses in the social pain and mentalizing systems dur-
ing social exclusion may index the influence of these systems
in responding to social threat. In turn, people who show higher
synchrony between social pain and mentalizing systems and a
broader range of other processing may also be more disposed to
conformity. To test this possibility, we directly examine
whether individual differences in functional connectivity be-
tween social pain and mentalizing regions, with the adolescent
brain as a whole in response to exclusion, can capture and ac-
count for individual differences in conformity behavior.

Research into adolescent social decision-making motivates
our proposed link between neural responses to social exclusion
and conformity in adolescents (for reviews, see Blakemore,
2008, and Blakemore and Robbins, 2012). Compared to adults,
adolescents show high sensitivity to rejection (Somerville, 2013)
and willingness to conform to peer influence, including risk tak-
ing in the presence of a peer (Gardner and Steinberg, 2005).
Health-risk behaviors are associated with the leading causes of
morbidity and mortality among adolescents in the United
States (Kann et al., 2016), emphasizing the value of understand-
ing the causes of risky behaviors during this developmental
period. Previous research has identified regions of the brain that
continue to develop during adolescence (Giedd, 2004) and their
effect on behavior (Spear, 2000; Steinberg, 2007); recently, more
attention has been given to functional networks in the adoles-
cent brain (Supekar et al., 2009; Whelan et al., 2012). In this work,
we expand upon the theory of developing brains by exploring
how global connectivity in the brain, with particular focus on
key systems of interest, can predict behavior.

The connectivity methods used here offer important insights
into the neural responses to social exclusion. First, the mental
processes that take place during periods of exclusion, such as feel-
ings of dejection and thoughts about others’ reasons for rejection,
may fluctuate over the course of an exclusion episode; connectiv-
ity is sensitive to the synchronicity of these fluctuations through-
out the brain. Second, high-level processing, including social
processing, involves large networks of brain regions rather than
isolated areas (Blakemore, 2008). On a broader scope, a growing
body of research demonstrates that large-scale interactions be-
tween key regions of interest and the rest of the brain may provide
additional information, complementing regional activity in cap-
turing current mental states (Van den Heuvel and Hulshoff Pol,
2010; Bassett et al., 2015; Medaglia et al., 2015; Brooks et al., 2016;
Muraskin et al., 2016, 2017; Garcia et al., 2017; Passaro et al., 2017).

Our connectivity analysis is focused on brain networks impli-
cated in social pain (Eisenberger et al, 2003) and mentalizing
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(Frith and Frith, 2003) processes, which might take on more im-
portance globally in the brain during exclusion, relative to inclu-
sion, for individuals who are more reactive to the exclusion
experience (Eisenberger et al., 2003; Masten et al., 2009). Previous
research demonstrates the high cost of social exclusion (for a re-
view, see Williams, 2007) and the fact that neural reactivity to ex-
clusion varies across individuals (Falk et al., 2014). If social pain
and mentalizing have more global importance in interpreting ex-
periences during exclusion for some individuals, we would ex-
pect not only univariate changes (for a review, see Eisenberger,
2015) but also changes in global connectivity between regions
associated with social pain and mentalizing and the rest of the
brain. Past research demonstrates that conformity is one way
that participants try to regain acceptance (DeWall, 2010) and po-
tentially preempt further exclusion. Therefore, people whose glo-
bal brain response to exclusion is coordinated more strongly with
social pain and mentalizing systems may be more predisposed to
conform. Yet, despite recent studies that have begun to consider
functional connectivity among single regions during social tasks
(Bolling et al., 2011; Meyer, 2012; Puetz et al., 2014), little is known
about larger-scale network dynamics during social experiences.
We hypothesized that the extent to which people conform
to their peers can be predicted using changes in brain dynamics
linked to social pain and mentalizing when people are faced
with social exclusion (cf., Falk et al., 2014). Although there is
promise of predicting behavior from network dynamics (Bassett
et al., 2011; Baldassarre et al., 2012), research has not yet linked
brain network dynamics during social tasks in the neuroimag-
ing environment to objectively logged social behaviors meas-
ured outside of the scanner. To this end, we examined the
relationship between global connectivity of regions implicated
in social pain and mentalizing during social exclusion and in-
clusion as predictors of conformity to peer influence on simu-
lated driving outside of the scanner a week later. We focused on
brain dynamics during exclusion given past research demon-
strating that conformity is one way that participants try to re-
gain acceptance (DeWall, 2010) and potentially preempt further
exclusion. Conformity to driving risk attitudes in teens served
as our outcome because teens’ driving risk is socially influenced
(Simons-Morton et al., 2005, 2014; Bingham et al., 2016) and has
important real-world consequences (Ouimet et al., 2010).

Materials and methods

This research was part of a five-study investigation of the ef-
fects of peer influence on teen driving (Falk et al., 2014; Simons-
Morton et al., 2014; Cascio et al., 2015b; Bingham et al., 2016;
Schmilzle et al., 2017). A previous study in this research pro-
gram found an association between neural activation during ex-
clusion and risk taking (Falk et al., 2014), and prior reports on the
driving simulator data reported here noted substantial individ-
ual variability in susceptibility to influence (Bingham et al,
2016). In this analysis, we extend these results by examining a
measure of global functional connectivity during exclusion vs
inclusion and investigate its predictive relationship with indi-
vidual differences in conformity (Figure 1).

Participants

Fifty-seven right-handed, neurotypical, male participants aged
16 or 17 completed both portions of the study. Each participant
had received a Level 2 Michigan driver’s license (unsupervised
driving allowed with several restrictions) at least 4 months prior
to the study, drove at least twice per week, had normal or
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Fig. 1. Study overview. fMRI BOLD data were collected during Cyberball, a virtual ball-tossing game that simulates social exclusion and social inclusion. Functional
brain activity was extracted from regions in a whole-brain parcellation (gray), including regions previously associated with social pain (green) and mentalizing (purple).
Connectivity was then computed between all region pairs, and the difference in connectivity during social exclusion and social inclusion was used to predict subse-

quent conformity to the attitude of a peer passenger during a driving simulator.

corrected-to-normal vision and was insensitive to simulator
sickness. Participants were told that the purpose of the study
was to examine the physiology of driving. The University of
Michigan Institutional Review Board approved the study pro-
cedures; participants provided written assent, and their legal
guardians provided written informed consent.

Neuroimaging data collection: Cyberball (fMRI)

Participants were told that they would play a variety of com-
puter games while in a functional magnetic resonance imaging
(fMRI) scanner, some alone and one, called Cyberball, with two
other participants; the other ‘participants’ were in reality con-
trolled by a computer (Williams et al., 2000; Williams and Jarvis,
2006). Participants played two rounds of Cyberball. The first
condition simulated social inclusion by having each player (the
actual participant and the two simulated players) receive the
ball equally often; in the second condition, the game started the
same as the first but the two computer-controlled players soon
began throwing the ball only between each other, excluding the
participant. Both the inclusion and exclusion conditions lasted
approximately 2.5 min (74 brain volumes for each condition).

Neuroimaging data were acquired using a 3 Tesla GE Signa
MRI scanner. Functional images were recorded using a reverse
spiral sequence (TR=2000 ms, echo time=30 ms, flip
angle =90°, 43 axial slices, field of view =220 mm, slice thick-
ness =3 mm, voxel size =3.44 x 3.44 x 3.0 mm).

To enhance coregistration and normalization, in-plane T1-
weighted images (43 slices, slice thickness=3mm, voxel
size=0.86 x 0.86 x 3.0mm) and high-resolution T1-weighted
images (SPGR, 124 slices, slice thickness=1.02 x 1.02 x 1.2mm)
were also acquired. The first four volumes were not acquired.
The functional data were preprocessed and analyzed using
Statistical Parametric Mapping (SPM8, Wellcome Department of
Cognitive Neurology, Institute of Neurology, London, UK), and
images despiked using the 3dDespike program as implemented
in the AFNI toolbox (Cox, 1996; Cox and Hyde, 1997; Gold et al.,
1998). The volumes were then corrected for slice time acquisition
differences and spatially realigned to the first functional image.
Functional and structural images were coregistered by aligning
the in-plane T1 images to the mean functional image, and then
the in-plane image was registered to the high-resolution T1

images. Structural images were then segmented into gray matter,
white matter and cerebal spinal fluid (using SPM8) to create a
mask for data extraction and then normalized to the skull-
stripped MNI template provided by FSL.

Need-Threat Scale: measuring the effects of ostracism

Following the fMRI scan, participants completed several ques-
tionnaires, including the Need-Threat Scale (Van Beest and
Williams, 2006). This assessment quantifies the perceived
threat to participants’ social needs experienced during
Cyberball on a scale of 1-7, with lower scores indicating higher
threat. Scores ranged from 1.7 to 6.1, with a mean of 3.48 and a
standard deviation of 0.96.

Neuroimaging data analysis: global connectivity

We identified a set of brain areas associated with social pain,
including the dorsal anterior cingulate cortex (dACC) and anter-
ior insula (AI) (Eisenberger, 2003; Eisenberger and Lieberman,
2004; Lamm and Singer, 2010; Cacioppo et al., 2013; Rotge et al.,
2015), and a separate set involved in mentalizing, including the
temporoparietal junction (TPJ), temporal pole (TP), precuneus
(PC), and dorsomedial and ventromedial prefrontal cortex
(dmPFC and vmPFC, respectively) (Frith and Frith, 2003; Frith
and Frith, 2006; D’Argembeau et al., 2007; Van Overwalle and
Baetens, 2009). Following a standard preprocessing stream (see
above), we used a previously published whole-brain parcellation
(Power et al., 2011) to define 264 regions.

Since the regions of the social pain and mentalizing net-
works are subdivided in the whole-brain atlas used (Power et al.,
2011), we calculated the distance between each centroid in the
networks (D’Argembeau et al., 2007; Schmadlzle et al., 2017; coord-
inates in Supplementary Figure S1) and the center of every atlas
region and chose the three atlas regions of minimal distance
from it. This resulted in 30 nodes to represent the two theory-
driven networks from this atlas (depicted by green and purple
nodes for social pain and mentalizing, respectively, in Figure 1).

We estimated functional connectivity between brain regions
during the social inclusion and exclusion conditions of the
Cyberball game by calculating the coherence (Rosenberg et al.,
1989) between every pair of regions (see Supplementary data for
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details). Previous research in task-based fMRI has demonstrated
the importance of considering frequencies of up to 0.15Hz in
order to account for a broad range of potential hemodynamic
response function shapes (Sun et al., 2004, 2005; but see Cordes
et al., 2001). To this end, we analyzed coherence for nine fre-
quency bands between 0.0625 and 0.1458Hz (Lauritzen et al.,
2009) and used a data-driven approach to select the one that
was most predictive (0.1146 Hz).

For each region, we derived a measure of ‘global connectiv-
ity’ for the social inclusion condition and one for the social ex-
clusion condition. We created a graph with 264 nodes, one for
each region in the whole-brain atlas (Power et al., 2011), and the
edge weight between nodes was determined by their coherence.
The weighted degree of a region is the sum of its coherence to
every other region in the brain and represents the extent to
which the region is connected to the rest of the brain. We used
this weighted degree summation as the global connectivity
metric for each region, computing it separately for the two
Cyberball conditions. We then subtracted the weighted degree
during the inclusion condition from the weighted degree during
the exclusion condition. The difference in a node’s weighted de-
gree encapsulates the effect that social exclusion has on the re-
gion’s global connectivity (Figure 1). We then use the global
connectivity metric for each region as the feature set in our pre-
dictive model to predict a participant’s behavioral conformity in
a subsequent driving simulator session. Finally, we calculated
the Pearson correlation between the global connectivity meas-
ure and the Need-Threat Scale of ostracism for each of the re-
gions selected in the final model.

Behavioral data collection: driving simulator

Approximately one week after the fMRI session, participants
returned for the driving simulator session. After a short prac-
tice drive, participants completed a solo practice drive in the
simulator and then two drives, one solo and one with a con-
federate as a passenger. Order of the drive conditions was
counterbalanced between participants. Each drive lasted
10-15min, and the participant approached either 9 or 10 traffic
lights that were timed to turn red before the participant
cleared the intersection. The timing of the yellow lights was
fine tuned after the first 8 participants and was held constant
for the final 49 participants. To validate that the timing
changes did not influence the results, we performed a two-
sided t-test to compare conformity between the first 8 partici-
pants and the final participants and determined that the two
samples were not significantly different; t(55)=1.33, P=0.190.
Additional information about the driving simulator can be
found in the Supplementary data.

Each participant was randomly assigned (between partici-
pants) to one of two conditions for the passenger drive:
risk-averse or risk-accepting passenger. In both conditions,
participants completed a pre-drive survey after which a similar-
aged, male confederate arrived late. In the risk-averse condi-
tion, he explained, ‘Sorry I was a little late getting here. I tend to
drive slower, plus I hit every yellow light’, whereas the risk-
accepting confederate said, ‘Sorry I was a little late getting here.
Normally I drive way faster, but I hit like every red light’.

In addition, before the passenger drive, the participant and
confederate watched two videos together, one showing high-
risk driving from the passenger seat and one showing low-risk
driving from the same perspective; the order in which the vid-
eos were shown was random. After each video, the participant
and confederate were asked to rate on a scale of 1-10 how
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similar their driving was to the driving shown in the video and
how likely they would be to ride with the driver in the video.
The confederate responded second and gave responses that
were less risky than the participant’s in the risk-averse condi-
tion or riskier than the participant’s in the risk-accepting
condition.

Finally, during the passenger drive, the confederate was told
to navigate using a map, which provided an excuse to make
comments about the participant’s driving behavior during the
drive. In the risk-accepting condition, the confederate stated
the speed limit when the participant was driving below it, while
in the risk-averse condition, he noted reduced-speed zones.

Behavioral data analysis: driving and conformity

For each drive, we derived a measure of conformity by calculat-
ing the percentage of intersections where the driver failed to
stop in each drive and subtracting them, such that a positive
difference in either condition indicates that the participant
conformed to the confederate’s attitude by driving in a riskier
manner in the risk-accepting condition and more safely in the
risk-averse condition. This estimation of conformity serves as
the dependent variable for our analysis.

To confirm that passenger type influenced driving behavior,
we computed the incidence rate ratio (IRR) of failure to stop at
red lights during the passenger drives between the participants
with risk-accepting passengers and those with risk-averse pas-
sengers, treating each intersection as a separate event.

Cross-validated analysis: connectivity predicts
conformity

We used a predictive modeling pipeline to examine whether
brain connectivity predicts behavioral conformity in an out-of-
scanner driving task a week later, using global connectivity of
regions as features. The primary analysis used 30 regions from
the theory-driven brain areas as features; a second (see
Supplementary data) used all 264 from the whole-brain parcel-
lation. To prevent overfitting, we created 57 splits into training
and test sets, each one leaving out one participant from the
training set, and performed feature selection within each split,
resulting in a model with seven features (see Supplementary
data for details on feature selection).

Results

We investigated whether functional connectivity during exclu-
sion relative to inclusion in the Cyberball task in the scanner
predicted conformity to a confederate passenger in a simulated
drive one week later. Our primary analysis examined connectiv-
ity of theory-driven regions involved in mentalizing and social
pain. Functional connectivity was computed between each re-
gion and the rest of the brain, and these metrics of global con-
nectivity were used as features in a cross-validated predictive
model to predict conformity in the driving simulator.

Behavioral conformity responses in the driving
simulator

We first examined drivers’ conformity to the attitude of their
confederates defined as the amount to which they moved their
driving behavior in the direction of the confederates during the
passenger drive relative to the solo drive, i.e. increased risk in
the presence of a passenger in the risk-accepting condition and
decreased risk in the presence of a passenger in the risk-averse


Deleted Text: 9
Deleted Text: ``
Deleted Text: ''
Deleted Text: D
Deleted Text: C
Deleted Text: D
Deleted Text: S
Deleted Text: -
Deleted Text: utes
Deleted Text: -
Deleted Text: <italic>p</italic>
https://academic.oup.com/scan/article-lookup/doi/10.1093/scan/nsy007#supplementary-data
Deleted Text: ``
Deleted Text: ,
Deleted Text: ''
Deleted Text: ``
Deleted Text: ''
Deleted Text:  to 
Deleted Text: D
Deleted Text: A
Deleted Text: D
Deleted Text: C
Deleted Text: A
Deleted Text: C
Deleted Text: P
Deleted Text: C
https://academic.oup.com/scan/article-lookup/doi/10.1093/scan/nsy007#supplementary-data
Deleted Text: 7
https://academic.oup.com/scan/article-lookup/doi/10.1093/scan/nsy007#supplementary-data
https://academic.oup.com/scan/article-lookup/doi/10.1093/scan/nsy007#supplementary-data
Deleted Text: ,

186 | Social Cognitive and Affective Neuroscience, 2018, Vol. 13, No. 2

condition. Twenty-six drivers were randomized to the risk-
accepting condition, and 31 were in the risk-averse condition.
Those with risk-accepting passengers drove through more red
lights than those with risk-averse passengers during their pas-
senger drive (IRR=1.31, 95% CI=[1.03, 1.66], P=0.03). The distri-
bution of conformity in the risk-accepting (M =1.90% change in
risk toward the passenger’s attitude, s.d.=24.65%) and risk-
averse conditions (M =1.92%, s.d. =25.14%) was nearly identical.
The combined sample had a mean of 1.91% change toward the
confederate’s attitude and a standard deviation of 24.65%.
Consistent with behavioral reports using these data (Bingham
et al., 2016), these behavioral results indicate a bias toward con-
formity to the confederate’s attitude, but the large amount of
variance confirms its value for understanding individual differ-
ences in susceptibility to social influence for risky behaviors.

Global connectivity from theory-driven regions to the
rest of the brain predicts subsequent conformity

We then investigated whether individual differences in the glo-
bal connectivity of social pain and mentalizing regions
(Figure 1, green and purple regions, respectively) during
Cyberball could account for the substantial amount of variabil-
ity in conformity found in the subsequent driving session. We
used global connectivity from the 30 theory-driven regions as
features in a leave-one-out cross-validation to predict a partici-
pant’s conformity score in the driving simulator one week later.
A parallel analysis conducted considering all 264 regions in the
whole-brain parcellation (Power et al., 2011) confirmed the im-
portance of these networks (see Supplementary data).

To assess global connectivity, we first computed the differ-
ence in a region’s global connectivity with the rest of the brain
between the two social conditions of Cyberball (social exclu-
sion—social inclusion). We then used these global connectivity
measures for each person within our theory-driven regions of
interest to predict individual differences in conformity during
the driving session. As shown in Figure 2 (top left), the best

prediction was achieved from 7 of the 30 theory-driven regions;
these 7 regions’ global connectivity predicted individual differ-
ences in conformity with an out-of-sample R? of 0.325 (root
mean-squared error of 20.07 in cross-validation). Two of the
three regions in the social pain network were selected (left and
right Al), along with four of the seven regions in the mentalizing
network (two regions in the right TPJ and one each in the left
TPJ, left TP, and PC). In Figure 2, the regions in the social pain
network are outlined in green, and the regions in the mentaliz-
ing network are outlined in purple; the center color for each re-
gion reflects the regression coefficient to further characterize
the predictive relationship between global connectivity from
each region and subsequent conformity. For five of the seven re-
gions selected, more connectivity during social exclusion than
inclusion was associated with behavioral conformity.

To assess convergence between the features selected by our
model and self-reports of distress during exclusion, we exam-
ined correlations between global connectivity in our key regions
of interest and scores on the Need-Threat Scale. We found a sig-
nificant correlation between the global connectivity of one re-
gion of the right TPJ and need threat (R=0.387, P=0.003) and a
marginally significant correlation between global connectivity
of the right Al and need threat (R=—0.260, P=0.050), indicating
that greater global connectivity of the right TPJ in response to
social exclusion is associated with more needs being met,
whereas greater global connectivity of the right Al in response
to social exclusion is associated with fewer needs being met.

The correlations between actual conformity and conformity
predicted by our model were similar for participants with a risk-
accepting passenger (R=0.538) and those with a risk-averse pas-
senger (R=0.608), indicating that connectivity is predictive of
conformity regardless of passenger type (see also Supplementary
Figure S3).

To verify that our predictive accuracy does not arise from
chance or overfitting, we performed a permutation test on the
data, training our model on 10 000 permutations of the depend-
ent variable and using it to predict the shuffled dependent
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is true.
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variables in leave-one-out cross-validation. The true model
achieved a better R®> than 99.99% of the shuffled models
(P=0.0002; Ojala and Garriga, 2010). As a final test of signifi-
cance, we generated 1000 random subsets of 30 regions from
the entire 264-region whole-brain atlas (Power et al., 2011) and
ran our model starting with these regions instead of our 30
theory-driven regions. For each random subset of 30 regions, we
tested models using between 1 and 10 features and empirically
selected the optimal number of features for this subset of re-
gions. This led to 1000 optimized models. Only 0.7% of these
optimized models outperformed our original model, with more
than two thirds of the total features selected in those models
coming from among the features selected from our networks-
of-interest or whole-brain models (see Supplementary data).
The median out-of-sample R? score among all 1000 optimized
models was 0.055.

Finally, we examined whether global connectivity during ei-
ther of the two Cyberball conditions could predict conformity as
well as did their difference. Individual differences in connectiv-
ity during social exclusion were substantially predictive of con-
formity (R? =0.274), although not as strongly as the difference in
connectivity between social exclusion and social inclusion
(R*=0.325); individual differences in connectivity during social
inclusion had little predictive power (R? = 0.096).

Collectively, these results indicate that global connectivity
during social exclusion, either alone or in comparison to
connectivity during social inclusion, can predict individual
differences in subsequent conformity behavior 1 week later.
This highlights the value of examining global connectivity
to understand individual variability in real-world social
situations.

Discussion

Social connection is fundamental to well-being, and a motivat-
ing force for a wide range of behaviors, including conformity
(Cialdini and Goldstein, 2004; Maner et al., 2007). Previous re-
search has characterized a neural alarm system that responds
to social pain (Eisenberger, 2003; Eisenberger and Lieberman,
2004; Lamm and Singer, 2010; Rotge et al., 2015), as well as a
broader set of brain regions that allow people to understand
others’ mental states (Frith and Frith, 2003, 2006; D’Argembeau
et al., 2007; Van Overwalle and Baetens, 2009). Using a
Cyberball game, we show that individual differences in the de-
gree to which key brain regions implicated in social pain and
mentalizing change their connectivity with the rest of the
brain in response to social exclusion predict conformity to
peer attitudes in a driving simulator a week later. Thus, the
current research uses a novel application of a network neuro-
science measure to highlight how individual differences in
network connectivity in response to a social experience, such
as exclusion, predict sensitivity to social influence in a real-
world setting.

Although we observed nonsignificant trends in group-
averaged neural responses to social exclusion, not all partici-
pants showed equal levels of differentiation in their global
connectivity between exclusion and inclusion. Similarly, in the
initial report of the driving simulator data used here, the au-
thors noted substantial individual variability in tendency to
conform (Bingham et al., 2016). Previous research suggested that
sensitivity to social pain might prime individuals to preempt ex-
clusion in other social contexts by conforming (Maner et al.,
2007; Peake et al., 2013; Falk et al., 2014). For example, Falk et al.
(2014) found that univariate increases in brain activity within
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social pain and mentalizing regions of interest were associated
with greater driving risk taking in the presence of a peer, com-
pared to driving alone. No prior research, however, has exam-
ined how social pain and mentalizing regions might change
their global connectivity with the rest of the brain in response
to social threats, nor how this relates to real-world relevant de-
cision making. In this study, we hypothesized that individual
differences in connectivity between social pain and mentalizing
systems with the rest of the brain would relate to behavioral
conformity responses in an unrelated driving context, if social
pain and mentalizing have more global importance in interpret-
ing experiences during exclusion for some individuals.
Consistent with this hypothesis, coherence in brain networks
involved in responding to social cues (i.e. social pain and men-
talizing networks) during social exclusion compared to social
inclusion predicted approximately one-third of the variance in
the degree to which participants conformed to peers’ driving
preferences a week later. This result substantially extends past
research on social behavior and the brain by demonstrating
that the global connectivity of social pain and mentalizing sys-
tems in response to exclusion maps onto the inclination to con-
form to peer attitudes. These data are consistent with the idea
that conformity is a means to preserve one’s position in a group
and that a person who experiences a greater reaction to exclu-
sion may take greater actions to prevent such an experience in
other contexts.

The current findings also extend past research by revealing
information about how the brain helps navigate the social
world. In line with past research suggesting that specific control
points in the brain, and particularly within the default mode
network, help transition the brain to execute different tasks (Gu
et al., 2015; Betzel et al., 2016; Muldoon et al., 2016; Medaglia et al.,
2016), we find that global connectivity between key social pain
and mentalizing regions predicts individual differences in sus-
ceptibility to peer influence. In other words, greater changes in
global brain connectivity may be associated with flexibly alter-
ing behaviors to adjust to social situations. Specifically, our
method uses a novel application of a functional connectivity
measure that allowed us to identify the regions whose global
brain dynamics were the most predictive of behavior change.
During our main analysis, these regions were selected from two
hypothesized networks of interest, namely networks previously
associated with social pain and mentalizing. Prior work has
shown that activity in the social pain and mentalizing networks
can be used to predict subsequent behavior change (Hein et al.,
2010; Carter et al., 2012). Here, we show that functional connec-
tions between both regions in the social pain (e.g. bilateral Al)
and mentalizing networks (bilateral TPJ), and the rest of the
brain are associated with later individual differences in ten-
dency to change behavior. Both the right TPJ and right Al also
appeared in our whole-brain analysis (see Supplementary data),
suggesting the robustness of these results. Moreover, the global
connectivity of the right TPJ and right Al was associated with
self-reported need threat after the exclusion task; this indicates
that these two regions’ brain dynamics are not only predictors
of future conformity but also correlates of a subjective response
to social exclusion.

The key roles of the Al and TPJ in our models and in rela-
tion to the Need-Threat Scale may elucidate the psychological
significance of our method. The right Al has been identified as
a ‘causal outflow hub’ (Sridharan et al., 2008; Menon and
Uddin, 2010; Uddin et al., 2011), meaning that its activity is pre-
dictive of that of a large number of other regions in the brain.
Similarly, the TPJ also functions as a hub of connectivity,
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integrating activity in different regions into a single coherent
social context and affecting processing throughout the brain
(Carter and Huettel, 2013). As the features in our model are the
cumulative (i.e. ‘global’) functional connectivity of each region,
it is to be expected that the regions that are most predictive of
behavior change are those that serve as focal points, integrat-
ing and influencing other regions. This influence is also seen
in relation to self-reported need threat: of the seven regions in
our predictive model, only the global connectivity of the right
TPJ and right AI were related to the Need-Threat Scale of
ostracism.

Taken together, these results highlight the importance of
considering not only how individual brain regions are modu-
lated by social experiences but also how those regions com-
municate with the rest of the brain more globally. We find
that social context (i.e. exclusion vs inclusion) causes different
changes across individuals in the extent to which key regions
implicated in social pain and mentalizing become more
globally connected to the rest of the brain. Further, individual
differences in the extent of this shift were significantly
predictive of later conformity to driving norms expressed by a
peer.

Future directions

Our results show a predictive relationship between brain ac-
tivity and social influence in our sample of 16- and 17-year-
old, primarily Caucasian, males from Southeast Michigan.
Future research could examine possible changes in this rela-
tionship across developmental periods, including whether the
brain regions involved in responding to social exclusion fluc-
tuate over time or play a differential role in the brain’s global
connectivity dependent on developmental stage (see
Vijayakumar et al.,, 2017 for a univariate perspective on this
question). It would also be interesting to examine the extent
to which this relationship generalizes across other socio-
demographic populations since cultural variation has been
shown to influence social processing, including social orienta-
tion (individualism vs collectivism; Kitayama and Markus,
1991), decision making (Iyengar and Lepper, 1999), and team
performance (Wagner et al., 2012).

Conclusion

This work shows that the functional connectivity of brain re-
gions associated with social pain and mentalizing in response
to social exclusion is able to predict subsequent conformity.
This result highlights the power of considering global connect-
ivity as predictor and is a first step toward understanding how
neural connectivity informs our interaction with the social
world. The technique that we developed in the process, using
overall connectivity of regions as predictors, addresses common
limitations of other connectivity techniques while capturing
processes that are averaged away in models based on mean ac-
tivation. Our method is likely to have applications for develop-
ing predictive models based on network dynamics, which in
turn provide parsimonious explanations relating brain activity,
social context and behavior.
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