The Age of Reason: Financial Decisions Over the Lifecycle

Sumit Agarwal
John C. Driscoll
Xavier Gabaix
David Laibson

Follow this and additional works at: https://repository.upenn.edu/prc_papers

Part of the Economics Commons


This paper is posted at ScholarlyCommons. https://repository.upenn.edu/prc_papers/559
For more information, please contact repository@pobox.upenn.edu.
The Age of Reason: Financial Decisions Over the Lifecycle

Abstract
The sophistication of financial decisions varies with age: middle-aged adults borrow at lower interest rates and pay fewer fees compared to both younger and older adults. We document this pattern in ten financial markets. The measured effects cannot be explained by observed risk characteristics. The sophistication of financial choices peaks around age 53 in our cross-sectional data. Our results are consistent with the hypothesis that financial sophistication rises and then falls with age, although the patterns that we observe represent a mix of age effects and cohort effects.

Keywords
Household finance, behavioral finance, behavioral industrial organization, aging, shrouding, auto loans, credit cards, fees, home equity, mortgages

Disciplines
Economics

This working paper is available at ScholarlyCommons: https://repository.upenn.edu/prc_papers/559
The Age of Reason: Financial Decisions Over the Lifecycle

Sumit Agarwal, John C. Driscoll, Xavier Gabaix, and David Laibson

June 2007

PRC WP2007-13
Pension Research Council Working Paper

Pension Research Council
The Wharton School, University of Pennsylvania
3620 Locust Walk, 3000 SH-DH
Philadelphia, PA 19104-6302
Tel: 215.898.7620 Fax: 215.573.3418
Email: prc@wharton.upenn.edu
http://www.pensionresearchcouncil.org
The Age of Reason: Financial Decisions Over the Lifecycle

Sumit Agarwal, John C. Driscoll, Xavier Gabaix, and David Laibson*

June 7, 2007

Abstract

The sophistication of financial decisions varies with age: middle-aged adults borrow at lower interest rates and pay fewer fees compared to both younger and older adults. We document this pattern in ten financial markets. The measured effects cannot be explained by observed risk characteristics. The sophistication of financial choices peaks around age 53 in our cross-sectional data. Our results are consistent with the hypothesis that financial sophistication rises and then falls with age, although the patterns that we observe represent a mix of age effects and cohort effects. (JEL: D1, D4, D8, G2, J14).

Keywords: Household finance, behavioral finance, behavioral industrial organization, aging, shrouding, auto loans, credit cards, fees, home equity, mortgages.

*Agarwal: Federal Reserve Bank of Chicago, sagarwal@frbchi.org. Driscoll: Federal Reserve Board, john.c.driscoll@frb.gov. Gabaix: New York University and NBER, xgabaix@stern.nyu.edu. Laibson: Harvard University and NBER, dlaibson@harvard.edu. Gabaix and Laibson acknowledge support from the National Science Foundation (Human and Social Dynamics program). Laibson acknowledges financial support from the National Institute on Aging (R01-AG-1665). The views expressed in this paper are those of the authors and do not represent the policies or positions of the Board of Governors of the Federal Reserve System or the Federal Reserve Bank of Chicago. For their comments we thank Marco Basetto, Stephane Bonhomme, David Cutler, Ray Fair, Luigi Guiso, Gur Huberman, Ulrike Malmendier, Mitch Petersen, Rich Rosen, Timothy Salthouse, Fiona Scott Morton, Jesse Shapiro, Paolo Sodini, Nick Souleles, Jon Zinman, and participants at the Bank of Spain, Chicago Fed, the Federal Reserve Board, Princeton, the Institute for Fiscal Studies and the NBER (Aging and Behavioral Economics groups), the Yale Behavioral Economics conference.
1 Introduction

Performance tends to rise and then fall with age. Baseball players peak in their late 20s (James 2003). Mathematicians, theoretical physicists, and lyric poets make their most important contributions around age 30 (Simonton 1988). Chess players achieve their highest ranking in their mid-30s (Charness and Bosnian 1990). Autocratic rulers are maximally effective in their early 40s (Simonton 1988). Authors write their most influential novels around age 50 (Simonton 1988).1

The present paper studies an activity that is less august, though it is relevant to the entire adult population: personal financial decision making. Many financial products are complex and difficult to understand. Fees are sometimes shrouded and the true costs of financial services are not always easily calculated. Making the best financial choices takes knowledge, intelligence, and skill.

This paper documents cross-sectional variation in the prices that people pay for financial services. We find that younger adults and older adults borrow at higher interest rates and pay more fees than middle-aged adults controlling for all observable characteristics, including measures of risk.

The hump-shaped pattern of financial sophistication is present in many markets. We study interest rates in six different markets: mortgages, home equity loans, home equity credit lines, auto loans, personal credit cards, and small business credit cards. We study the failure to optimally exploit balance transfer credit card offers. Finally, we study three kinds of credit card fees: late payment fees, cash advance fees, and over limit fees. All of the evidence available to us implies a hump-shaped pattern of financial sophistication, with a peak in the early 50s.

Age effects provide one parsimonious explanation for the hump-shaped pattern of financial sophistication. We hypothesize that financial sophistication depends on a combination of analytic ability and experiential knowledge. Research on cognitive aging implies that analytic ability follows a declining (weakly) concave trajectory after age 20. We hypothesize that experiential knowledge follows an increasing concave trajectory due to diminishing returns. Adding together these two factors implies that financial sophistication should rise and then fall with age.

Cohort effects may also explain some of the effects that we observe. Differences in educational levels may explain why older adults are less financially sophisticated than middle-aged adults. Naturally, such education effects will not explain why young adults (around age 30) are less sophisticated than middle-aged adults. Additional work needs to be done to identify the relative contributions of age effects and cohort effects.

The paper has the following organization. Section 2 discusses evidence on cognitive performance from the psychological and medical literature. Section 3 describes the basic structure of the

---

1 What about economists? Oster and Hamermesh (1998) find that economists’ output in top publications declines sharply with age. This may simply reflect lower motivation with age. More optimistic data are reported in Weinberg and Galenson (2005)’s study of Nobel (Memorial) Prize winners. They find that “conceptual” laureates peak at age 43, and “experimental” ones at age 61.
empirical analysis. The next ten sections present results for interest rates on six different financial products, three different kinds of credit card fee payments, and on the use of balance transfer credit card offers. Section 14 uses all ten sets of results to estimate the age of peak sophistication. Section 15.1 discusses other findings on the effects of aging and the difficulty in separately identifying age effects and cohort effects. Section 16 concludes.

2 Motivating Evidence on Aging and Cognitive Performance from Medical and Psychological Research

Analytic cognitive capabilities can be measured in many different ways, including tasks that evaluate working memory, reasoning, spatial visualization, and cognitive processing speed (see Figure 1). Analytic performance shows a robust age pattern in cross-sectional datasets. Analytic performance is strongly negatively correlated with age in adult populations (Salthouse, 2005 and Salthouse, forthcoming). On average analytic performance falls by two to three percent of one standard deviation\(^2\) with every incremental year of age after age 20. This decline is remarkably steady from age 20 to age 90 (see Figure 2).

The measured age-related decline in analytic performance results from both age effects and cohort effects, but the available panel data implies that the decline is primarily driven by age effects (Salthouse, Schroeder and Ferrer, 2004).\(^3\) Medical pathologies represent one important pathway for age effects. For instance, dementia is primarily attributable to Alzheimer’s Disease (60%) and vascular disease (25%). The prevalence of dementia doubles with every five additional years of lifecycle age (Fratiglioni, De Ronchi, Agüero-Torres, 1999). There is a growing literature that identifies age-related changes in cognition (see Park and Schwarz 1999, Denburg, Tranel and Bechara 2005), including the result that older adults appear to pay relatively less attention to negative information (Carstensen 2006).

Age-driven declines in analytic performance are partially offset by age-driven increases in experience. Most day-to-day tasks rely on both analytic and experiential human capital – e.g. buying a car. For such tasks, we hypothesize that task performance is hump-shaped with respect to age.\(^4\) Figure 3 illustrates this case.

The current paper tests the prediction that general task performance follows a hump-shaped pattern with age. We focus on financial decision-making. Because our financial market data span

\(^2\)This is a standard deviation calculated from the entire population of individuals.

\(^3\)See Flynn (1984) for a discussion of cohort effects.

\(^4\)This happens for instance under the following set of sufficient conditions: (i) general task performance is determined by the sum of analytic capital and experiential capital, (ii) experiential capital is accumulated in diminishing amounts over the lifecycle, and (iii) analytic capital falls linearly (or concavely) over the lifecycle (see Figure 2). Then general task performance will under be hump-shaped with respect to age under simple conditions, e.g., if experiential capital rises fast enough early in life, and slowly enough late in life.
<table>
<thead>
<tr>
<th>Memory</th>
<th>Reasoning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study the following words and then write as many as you can remember</td>
<td>Select the best completion of the missing cell in the matrix</td>
</tr>
<tr>
<td>Goat</td>
<td></td>
</tr>
<tr>
<td>Door</td>
<td></td>
</tr>
<tr>
<td>Fish</td>
<td></td>
</tr>
<tr>
<td>Desk</td>
<td></td>
</tr>
<tr>
<td>Rope</td>
<td></td>
</tr>
<tr>
<td>Lake</td>
<td></td>
</tr>
<tr>
<td>Boot</td>
<td></td>
</tr>
<tr>
<td>Frog</td>
<td></td>
</tr>
<tr>
<td>Soup</td>
<td></td>
</tr>
<tr>
<td>Mule</td>
<td></td>
</tr>
</tbody>
</table>

![Spatial Visualization](image)

<table>
<thead>
<tr>
<th>Spatial Visualization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select the object on the right that corresponds to the pattern on the left</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Perceptual Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classify the pairs as same (S) or different (D) as quickly as possible</td>
</tr>
</tbody>
</table>

![Perceptual Speed](image)

Figure 1: Four IQ tests used to measure cognitive performance. Source: Salthouse (forthcoming).

a small number of years, we are unable to decompose the relative contributions of age and cohort effects, and leave that analysis to future research with different data sets.

The main contribution of the paper is to document a robust empirical regularity in all of our cross-sectional datasets: a hump-shaped relationship between age and financial sophistication. We note that this hump-shaped pattern is consistent with the aging evidence described above, but we do not have any direct evidence for this cognitive/aging mechanism. Other explanations – including cohort effects and other mechanisms – are also plausible. For instance, the outcomes we document could arise as a result of optimal endogenous accumulation of human capital. The young and the old might calculate that it is less valuable to acquire relevant human capital, perhaps because the stakes are smaller for them. Another channel might be social networks. It is plausible that middle-aged adults are generally in social networks that give them more sophisticated advice about the management of their finances, perhaps because they have greater access to financially-minded coworkers.
Figure 2: Age-normed results from four different cognitive tests. The Z-score represents the age-contingent mean, measured in units of standard deviation relative to the population mean. More precisely, the Z-score is \((\text{age--contingent mean} - \text{population mean}) / \text{population standard deviation}\). Source: Salthouse (forthcoming).

Figure 3: Hypothesized relation between general task performance and age. Analytical capital declines with age and experiential capital increase with age. This generates the hypothesis that general task performance (which uses both analytical and experiential capital) first rises and then declines with age.
3 Overview

In the body of the paper, we document a U-shaped age-related curve in financial “mistakes.” Such mistakes reflect the hump-shaped sophistication pattern discussed in the previous section. We study ten separate contexts: home equity loans and lines of credit; auto loans; credit card interest rates; mortgages; small business credit cards; credit card late payment fees; credit card over limit fees; credit card cash advance fees; and use of credit card balance transfer offers.

We diagnose mistakes in three forms: higher APRs (Annual Percentage Rates, i.e., interest rates); higher fee payments; and suboptimal use of balance transfer offers.

For each application, we conduct a regression analysis that identifies age effects and controls for observable factors that might explain patterns of fee payments or APRs by age. Thus, unless otherwise noted, in each context we estimate a regression of the type:

\[ F = \alpha + \beta \times \text{Spline}(\text{Age}) + \gamma \times \text{Controls} + \epsilon. \]

Here \( F \) is the level of the APR paid by the borrower (or the frequency of fee payment), \( \text{Controls} \) is a vector of control variables intended to capture alternative explanations in each context (for example, measures of credit risk), and \( \text{Spline}(\text{Age}) \) is a piecewise linear function that takes consumer age as its argument (with knot points at ages 30, 40, 50, 60 and 70).\(^5\) We then plot the fitted values for the spline on age. Regressions are either pooled panel or cross-sectional, depending on the context.

Each section discusses the nature of the mistake, briefly documents the datasets used, and presents the regression results and graphs by age. We provide summary statistics for the data sets in the Appendix.

4 Home Equity Loans

4.1 Data Summary

We use a proprietary panel dataset constructed with records from a national financial institution that has issued home equity loans and home equity lines of credit. The lender has not specialized in subprime loans or other market segments. Between March and December 2002, the lender offered a menu of standardized contracts for home equity credits. Consumers chose between a credit loan and line; between a first and second lien; and could choose to pledge different amounts of collateral, with the amount of collateral implying a loan-to-value (LTV) ratio of less than 80 percent, between 80 and 90 percent, and between 90 an 100 percent. In effect, the lender offered twelve different

\(^5\)For instance, in Table 1, the “Age 30-40” spline is: \( \max(30, \min(40, \text{Age})) \), the “Age < 30” spline is \( \min(30, \text{Age}) \), and the “Age > 70” spline is \( \max(70, \text{Age}) \).
contract choices. For 75,000 such contracts, we observe the contract terms, borrower demographic information (age, years at current job, home tenure), financial information (income and debt-to-income ratio), and risk characteristics (credit (FICO) score, and LTV). We also observe borrower estimates of their house values and the loan amount requested.

4.2 Results

Table 1 reports the results of estimating regressions of APRs (interest rates) on home equity loans on a spline for age and control variables. As controls, we use all variables observed by the financial institution that might affect loan pricing, including credit risk measures, house and loan characteristics, and borrower financial and demographic characteristics. The control variables all have the expected sign, and most are statistically significant, although some of them lack economic significance, surprisingly so in some cases.

The measure of credit risk, the log of the FICO score (lagged three months because it is only updated quarterly), is statistically significant but with a negligible magnitude. Discussions with people who work in the industry reveal that financial institutions generally use the FICO score to determine whether a loan offer is made, but conditional on the offer being made, do not use the score to do risk-based pricing. The results here, and for the other consumer credit products discussed below, are consistent with this hypothesis.

Loan APRs do depend strongly on the absence of a first mortgage (reducing the APR) and whether the property is a second home or a condominium. The absence of a first mortgage reduces the probability of default and raises the amount that might be recovered conditional on a default. Second homes and condominiums are perceived as riskier properties. Log income and log years on the job also have large and negative effects on APRs, as expected, since they indicate more resources available to pay off the loan and perhaps less risk in the latter case. The largest effects on APRs come from dummy variables for LTV ratios between 80 and 90 percent and for ratios greater than 90 percent. This is consistent with different LTV ratios corresponding to different contract choices.

Even after controlling for these variables, we find that the age splines have statistically and

---

6 We interpret a high APR as the sign of a mistake for four reasons. First, contracts do not differ in points charged or in other charges to the borrower. Second, even conditioning on contract choice some borrowers pay higher APRs than others. Third, we control for borrower risk characteristics. Fourth, in section 5.3, we show that the residual variation in APRs is explained by the propensity to make an identifiable mistake in the loan acquisition process.

7 We do not have internal behavior scores (a supplementary credit risk score) for these borrowers. Such scores are performance-based, and are thus not available at loan origination.

8 We estimate three variants as a specification check. First, we allow the FICO scores, income, and LTV ratios to have quadratic and cubic terms. This allows us to make sure that the nonlinear effects with age that we see are not a consequence of omission of potential nonlinear effects of other control variables. Second and third, we allow the splines to have knot points at every five years, and have a dummy for each age, to ensure that the smoothing caused by the use of ten-year splines does not artificially create a U-shape. In all three cases, our results are not qualitatively or quantitatively changed.
<table>
<thead>
<tr>
<th></th>
<th>Coefficient</th>
<th>Std. Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>8.1736</td>
<td>0.1069</td>
</tr>
<tr>
<td>Log(FICO Score)</td>
<td>-0.0021</td>
<td>0.0001</td>
</tr>
<tr>
<td>Loan Purpose–Home Improvement</td>
<td>0.0164</td>
<td>0.0138</td>
</tr>
<tr>
<td>Loan Purpose–Rate Refinance</td>
<td>-0.0081</td>
<td>0.0113</td>
</tr>
<tr>
<td>No First Mortgage</td>
<td>-0.1916</td>
<td>0.0097</td>
</tr>
<tr>
<td>Log(Months at Address)</td>
<td>0.0021</td>
<td>0.0039</td>
</tr>
<tr>
<td>Second Home</td>
<td>0.3880</td>
<td>0.0259</td>
</tr>
<tr>
<td>Condominium</td>
<td>0.4181</td>
<td>0.0165</td>
</tr>
<tr>
<td>Log(Income)</td>
<td>-0.0651</td>
<td>0.0077</td>
</tr>
<tr>
<td>Debt/Income</td>
<td>0.0034</td>
<td>0.0002</td>
</tr>
<tr>
<td>Log(Years on the Job)</td>
<td>-0.0246</td>
<td>0.0039</td>
</tr>
<tr>
<td>Self Employed</td>
<td>0.0106</td>
<td>0.0161</td>
</tr>
<tr>
<td>Home Maker</td>
<td>-0.0333</td>
<td>0.0421</td>
</tr>
<tr>
<td>Retired</td>
<td>0.0355</td>
<td>0.0225</td>
</tr>
<tr>
<td>Age &lt; 30</td>
<td>-0.0551</td>
<td>0.0083</td>
</tr>
<tr>
<td>Age 30-40</td>
<td>-0.0336</td>
<td>0.0043</td>
</tr>
<tr>
<td>Age 40-50</td>
<td>-0.0127</td>
<td>0.0048</td>
</tr>
<tr>
<td>Age 50-60</td>
<td>0.0102</td>
<td>0.0039</td>
</tr>
<tr>
<td>Age 60-70</td>
<td>0.0174</td>
<td>0.0076</td>
</tr>
<tr>
<td>Age &gt; 70</td>
<td>0.0239</td>
<td>0.0103</td>
</tr>
<tr>
<td>LTV 80-90</td>
<td>0.7693</td>
<td>0.0099</td>
</tr>
<tr>
<td>LTV 90+</td>
<td>1.7357</td>
<td>0.0111</td>
</tr>
<tr>
<td>State Dummies</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>Number of Observations</td>
<td>16,683</td>
<td></td>
</tr>
<tr>
<td>Adjusted R-squared</td>
<td>0.7373</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: The first column gives coefficient estimates for a regression of the APR of a home equity loan on a spline with age as its argument, financial control variables (Log(FICO) credit risk score, income, and the debt-to-income-ratio), and other controls (state dummies, a dummy for loans made for home improvements, a dummy for loans made for refinancing, a dummy for no first mortgage on the property, months at the address, years worked on the job, dummies for self-employed, retiree, or homemaker status, and a dummy if the property is a condominium).
Figure 4: Home equity loan APR by borrower age. The figure plots the residual effect of age, after controlling for other observable characteristics, such as log(income) and credit-worthiness.

economically significant effects. Figure 4 plots the fitted values on the spline for age for home equity loans. The line has a pronounced U-shape. For this and the nine other studies, we present in section 14.2 a formal hypothesis test for the U-shape. To anticipate those results, we reject the null hypothesis of a flat age-based pattern in 9 out of 10 cases.

5 Home Equity Lines of Credit

5.1 Data Summary

The dataset described in the previous section is used here.

5.2 Results

Table 2 reports a regression of the APRs from home equity lines on a spline for age and the same control variables used for the home equity loans regression. The control variables have similar

---

9Mortgage and other long-term interest rates were generally falling during this period. Thus, another possible explanation for the observed pattern is that younger and older adults disproportionately borrowed at the beginning of the sample period. However, we found no time-variation in the age distribution of borrowers over the sample period.
Figure 5: Home equity credit line APR by borrower age. The figure plots the residual effect of age, after controlling for other observable characteristics, such as log(income) and credit-worthiness.

effects on home equity line APRs as they did on home equity loan APRs. APRs.

Fitted values on the age splines, plotted in Figure 5, continue to reveal a pronounced U-shape.

5.3 One Mechanism: Borrower Misestimation of Home Values

The amount of collateral offered by the borrower, as measured by the loan-to-value (LTV) ratio, is an important determinant of loan APRs. Higher LTVs imply higher APRs, since the fraction of collateral is lower. At the financial institution that provided our data, borrowers first estimate their home values, and ask for a credit loan or credit line falling into one of three categories depending on the implied borrower-generated LTV estimate. The categories correspond to LTVs of 80 percent or less; LTVs of between 80 and 90 percent; and LTVs of 90 percent or greater. The financial institution then independently verifies the house value using an industry-standard methodology. The bank then constructs a bank-generated LTV based on the bank’s independent verification process. The bank-LTV can therefore differ from the borrower-LTV.10

Loan pricing depends on the LTV category that the borrower falls into and not on the specific LTV value within that category; for example, a loan with an LTV of 60 has the same interest

10Bucks and Pence (2006) present evidence that borrowers do not generally have accurate estimates of their house values.
<table>
<thead>
<tr>
<th></th>
<th>Coefficient</th>
<th>Std. Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>7.9287</td>
<td>0.0570</td>
</tr>
<tr>
<td>Log(FICO Score)</td>
<td>-0.0011</td>
<td>0.0000</td>
</tr>
<tr>
<td>Loan Purpose–Home Improvement</td>
<td>0.0551</td>
<td>0.0051</td>
</tr>
<tr>
<td>Loan Purpose–Rate Refinance</td>
<td>-0.0386</td>
<td>0.0047</td>
</tr>
<tr>
<td>No First Mortgage</td>
<td>-0.1512</td>
<td>0.0054</td>
</tr>
<tr>
<td>Log(Months at Address)</td>
<td>-0.0160</td>
<td>0.0019</td>
</tr>
<tr>
<td>Second Home</td>
<td>0.3336</td>
<td>0.0132</td>
</tr>
<tr>
<td>Condominium</td>
<td>0.4025</td>
<td>0.0079</td>
</tr>
<tr>
<td>Log(Income)</td>
<td>-0.1474</td>
<td>0.0037</td>
</tr>
<tr>
<td>Debt/Income</td>
<td>0.0044</td>
<td>0.0001</td>
</tr>
<tr>
<td>Log(Years on the Job)</td>
<td>-0.0164</td>
<td>0.0020</td>
</tr>
<tr>
<td>Self Employed</td>
<td>0.0135</td>
<td>0.0073</td>
</tr>
<tr>
<td>Home Maker</td>
<td>-0.0818</td>
<td>0.0215</td>
</tr>
<tr>
<td>Retired</td>
<td>0.0139</td>
<td>0.0109</td>
</tr>
<tr>
<td>Age &lt; 30</td>
<td>-0.0529</td>
<td>0.0050</td>
</tr>
<tr>
<td>Age 30-40</td>
<td>-0.0248</td>
<td>0.0023</td>
</tr>
<tr>
<td>Age 40-50</td>
<td>-0.0175</td>
<td>0.0022</td>
</tr>
<tr>
<td>Age 50-60</td>
<td>0.0152</td>
<td>0.0035</td>
</tr>
<tr>
<td>Age 60-70</td>
<td>0.0214</td>
<td>0.0064</td>
</tr>
<tr>
<td>Age &gt; 70</td>
<td>0.0290</td>
<td>0.0154</td>
</tr>
<tr>
<td>LTV 80-90</td>
<td>0.6071</td>
<td>0.0050</td>
</tr>
<tr>
<td>LTV 90+</td>
<td>1.8722</td>
<td>0.0079</td>
</tr>
<tr>
<td>State Dummies</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>Number of Observations</td>
<td>66,278</td>
<td></td>
</tr>
<tr>
<td>Adjusted R-squared</td>
<td>0.5890</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: The first column gives coefficient estimates for a regression of the APR of a home equity lines of credit on a spline with age as its argument, financial control variables (Log(FICO) credit risk score, income, and the debt-to-income-ratio), and other controls (state dummies, a dummy for loans made for home improvements, a dummy for loans made for refinancing, a dummy for no first mortgage on the property, months at the address, years worked on the job, dummies for self-employed, retiree, or homemaker status, and a dummy if the property is a condominium).
rate as a loan with an LTV of 70, holding borrower characteristics fixed, since the LTVs of both loans are less than 80.\textsuperscript{11} If the borrower has overestimated the value of the house, so that the bank-LTV is higher than borrower-LTV, the financial institution will direct the buyer to a different loan with a higher interest rate corresponding to the higher bank-LTV. In such circumstances, the loan officer is also given some discretion to depart from the financial institution’s normal pricing schedule to offer a higher interest rate than the officer would have offered to a borrower who had correctly estimated her LTV. If the borrower has underestimated the value of the house, however, the financial institution need not direct the buyer to a loan with a lower interest rate corresponding to the bank-LTV (which is lower in this case than the borrower-LTV); the loan officer may simply choose to offer the higher interest rate associated with the borrower-LTV, instead of lowering the rate to reflect the lower bank-LTV.\textsuperscript{12}

Since the APR paid depends on the LTV category and not the LTV, home value misestimation leads to higher interest rate payments if the category of the bank-LTV differs from the category of the borrower-LTV. If, in contrast, the borrower’s estimated LTV was 60, but the true LTV was 70, the borrower would still qualify for the highest quality loan category (LTV<80) and would not suffer an effective interest rate penalty. We define a Rate-Changing Mistake (RCM) to have occurred when the borrower-LTV category differs from the bank-LTV category — for instance, when the borrower estimates an LTV of 85 but the bank calculates an LTV of 75 (or vice versa).\textsuperscript{13} We find that, on average, making a RCM increases the APR by 125 basis points for loans and 150 basis points for lines (controlling for other variables, but not age).

To highlight the importance of RCMs, we first study the APR for consumers who do not make a Rate-Changing Mistake. Figures 6 and 7 plot the fitted values from re-estimating the regressions in Table 1 and 2, but now conditioning on borrowers who do not make a RCM. The plots show only slight differences in APR paid by age. The APR difference for a home equity loan for a borrower at age 70 over a borrower at age 50 has shrunk from 36 basis points to 8 basis points; for a home equity line of credit, it has shrunk from 28 basis points to 4 basis points. For a borrower at age 20, the APR difference over a borrower at age 50 has shrunk to 3 basis points for home equity loans and 3 basis points for home equity lines of credit. We conclude that, conditional on not making a RCM, the APR is essentially flat with age. So the U-shape of the APR is primarily driven by the Rate-Changing Mistakes.

We next study who makes a RCM. Figures 8 and 9 plot the probability of making a rate-changing mistake by age for home equity loans and home equity lines, respectively. The figures

\textsuperscript{11}We have verified this practice in our dataset by regressing the APR on both the level of the bank-LTV and dummy variables for whether the bank-LTV falls into one of the three categories. Only the coefficients on the dummy variables were statistically and economically significant.

\textsuperscript{12}Even if the financial institution’s estimate of the true house value is inaccurate, that misestimation will not matter for the borrower as long as other institutions use the same methodology.

\textsuperscript{13}Recall that the categories are less than 80, 80 to 90, and greater than 90.
Figure 6: Home equity loan APRs for borrowers who do not make a rate-changing mistake. The figure plots the residual effect of age, after controlling for other observable characteristics, such as log(income) and credit-worthiness.

Figure 7: Home equity credit line APRs for borrowers who do not make a rate-changing mistake. The figure plots the residual effect of age, after controlling for other observable characteristics, such as log(income) and credit-worthiness.
Figure 8: Propensity of making a Rate Changing Mistake on home equity loans by borrower age. We define a Rate Changing Mistake to have occurred when a borrower’s misestimation of house value causes a change in LTV category and potentially a change in interest rate paid (see the text for a full definition). The figure plots the residual effect of age, after controlling for other observable characteristics, such as log(income) and credit-worthiness.

Figure 9: Propensity of making a Rate Changing Mistake on home equity credit lines by borrower age. We define a Rate Changing Mistake to have occurred when a borrower’s misestimation of house value causes a change in LTV category and potentially a change in interest rate paid (see the text for a full definition). The figure plots the residual effect of age, after controlling for other observable characteristics, such as log(income) and credit-worthiness.
show U-shapes for both. Borrowers at age 70 have a 16 (19) percentage point greater chance of making a mistake than borrowers at age 50 for home equity loans (lines); borrowers at age 20 have a 35 (41) percentage point greater chance of making a mistake than borrowers at age 50. The unconditional average probability of making a rate-changing mistake is 24 percent for loans and 18 percent for lines.

This age effect is consistent with the cost of a RCM calculated above and the additional probability of making a RCM by age. For example, a 70-year old has a 16 and 19 percent additional chance of making a RCM for loans and lines, respectively. Multiplying this by the average APR cost of a RCM for home equity lines and loans of about 150 and 125 basis points, respectively, gives an expected incremental APR paid of about 26 and 23 basis points. These differences are very close to the estimated differences of about 23 basis points for loans (reported in Figure 4) and of about 28 basis points for lines (reported in Figure 5).

We conclude that in the example of home equity lines and loans, we have identified the channel for the U-shape of the APR as a function of age (as always, controlling for other characteristics). Younger and older consumers have a greater tendency to misestimate the value of their house, which leads to a Rate-Changing Mistake, which leads them to borrow at an increased APR. On the other hand, for consumers who do not make a Rate-Changing Mistake, the APR is essentially independent of age. Hence, this channel explains quantitatively the higher APR paid by younger and older adults.

Given the large costs associated with a Rate-Changing Mistake, one might ask why borrowers do not make greater effort to more accurately estimate their house values. One possibility is that potential borrowers may not be aware that credit terms will differ by LTV category; or, even if they are aware of this fact, they may not know how much the terms differ by category. This particular aspect of loan pricing may thus be a shrouded attribute.

6 “Eureka” Moments: Balance Transfer Credit Card Usage

6.1 Overview

Credit card holders frequently receive offers to transfer account balances on their current cards to a new card. Borrowers pay substantially lower APRs on the balances transferred to the new card for a six-to-nine-month period (a ‘teaser’ rate). However, new purchases on the new card have high APRs. The catch is that payments on the new card first pay down the (low interest) transferred balances, and only subsequently pay down the (high interest) debt accumulated from new purchases.

The optimal strategy during the teaser-rate period, is for the borrower to make all new purchases on her old credit card and to make all payments to her old card. The optimal strategy implies
that the borrower should make no new purchases with the new card to which balances have been
transferred (unless she has already repaid her transferred balances on that card).

We hypothesize that some borrowers will identify this optimal strategy immediately – before
making any purchases with the new card. Some borrowers will never identify the optimal strategy.
Some borrowers may not initially identify the optimal strategy, but will discover it after one or more
pay cycles after observing their (surprisingly) high interest charges. Those borrowers will make
purchases for one or more months, then have a “eureka” moment, after which they will implement
the optimal strategy.\textsuperscript{14}

6.2 Data Summary

We use a proprietary panel data set from several large financial institutions, later acquired by
a single financial institution, that made balance transfer offers nationally. The data set contains
14,798 individuals who accepted such balance transfer offers over the period January 2000 through
December 2002. The bulk of the data consists of the main billing information listed on each
account’s monthly statement, including total payment, spending, credit limit, balance, debt, pur-
chases, cash advance annual percentage rates (APRs), and fees paid. We also observe the amount
of the balance transfer, the start date of the balance transfer teaser rate offer, the initial teaser
APR on the balance transfer, and the end date of the balance transfer APR offer. At a quarterly
frequency, we observe each customer’s credit bureau rating (FICO) and a proprietary (internal)
credit ‘behavior’ score. We have credit bureau data about the number of other credit cards held
by the account holder, total credit card balances, and mortgage balances. We have data on the
age, gender, and income of the account holder, collected at the time of account opening. In this
sample, borrowers did not pay fees for the balance transfer. Further details on the data, including
summary statistics and variable definitions, are available in the Appendix.

6.3 Results

About one third of all customers who make a balance transfer do no spending on the new card,
thus implementing the optimal strategy immediately. Slightly more than one third of customers
who make a balance transfer spend every month during the promotional period, thus never expe-
riencing a “Eureka” moment. The remaining nearly one-third of customers experience “Eureka”
moments between the first and sixth months.

Figure 10 plots the frequency of Eureka moments for each age group. The plot of those who
never experience a “Eureka” moment – that is, who never implement the optimal strategy – is a
pronounced U-shape by age. The plot of those who implement the optimal strategy immediately
(the "Month One" line) is a pronounced inverted U-shape by age. Plots for Eureka moments

\textsuperscript{14}We thank Robert Barro for drawing our attention to this type of potentially tricky financial product.
Figure 10: Fraction of borrowers in each age group experiencing specific delays. For example, the dashed line plots the fraction of borrowers experiencing no delay to a Eureka moment. These sophisticated borrowers represent a large fraction of middle-aged households and a much smaller fraction of younger and older households.

in the interior of the time space (that is Eureka moments that occur strictly after Month One) are flat. The No Eureka line implies that the groups with the greatest frequency of maximal confusion are younger adults and older adults. The group with the greatest frequency of optimality is middle-aged adults.

Table 3 reports the results of a regression of a dummy variable for ever having a Eureka moment on a spline for age and controls for credit risk (log(FICO)), education, gender, and log(income). Credit risk is included because higher scores may be associated with greater financial sophistication. Similarly, we would expect borrowers with higher levels of education to be more likely to experience Eureka moments. The coefficients on the age spline imply that young adults and older adults are less likely to experience Eureka moments.

Figure 11 plots the fitted values of the age splines for the propensity of ever experiencing a “Eureka” moment. Note that, unlike the other figures, higher values indicate a smaller propensity to make mistakes. Consistent with the evidence so far, we observe a performance peak in middle

15 Although the average percent of borrowers for each of the intermediate categories is small—on the order of five percent—summing over all the months yields a fraction of borrowers equal to the one-third of total borrowers.

16 Although we report an OLS regression for ease in interpreting the coefficients, we have also run the regression as a logit and found similar results.
Propensity of ever experiencing a “Eureka” Moment

<table>
<thead>
<tr>
<th></th>
<th>Coefficient</th>
<th>Std. Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>0.2587</td>
<td>0.0809</td>
</tr>
<tr>
<td>Age &lt; 30</td>
<td>0.0134</td>
<td>0.0026</td>
</tr>
<tr>
<td>Age 30-40</td>
<td>0.0019</td>
<td>0.0005</td>
</tr>
<tr>
<td>Age 40-50</td>
<td>-0.0001</td>
<td>0.0000</td>
</tr>
<tr>
<td>Age 50-60</td>
<td>-0.0029</td>
<td>0.0009</td>
</tr>
<tr>
<td>Age 60-70</td>
<td>-0.0035</td>
<td>0.0008</td>
</tr>
<tr>
<td>Age &gt; 70</td>
<td>-0.0083</td>
<td>0.0072</td>
</tr>
<tr>
<td>Some High School</td>
<td>-1.6428</td>
<td>0.9570</td>
</tr>
<tr>
<td>High School Graduate</td>
<td>-0.6896</td>
<td>0.8528</td>
</tr>
<tr>
<td>Some College</td>
<td>-0.4341</td>
<td>0.8944</td>
</tr>
<tr>
<td>Associate’s Degree</td>
<td>-0.2439</td>
<td>0.4537</td>
</tr>
<tr>
<td>Bachelor’s Degree</td>
<td>0.3280</td>
<td>0.5585</td>
</tr>
<tr>
<td>Graduate Degree</td>
<td>0.6574</td>
<td>0.3541</td>
</tr>
<tr>
<td>Log(FICO)</td>
<td>0.0102</td>
<td>0.0019</td>
</tr>
<tr>
<td>Log(Limit)</td>
<td>0.0120</td>
<td>0.0022</td>
</tr>
<tr>
<td>Log(Income)</td>
<td>-0.0044</td>
<td>0.0067</td>
</tr>
<tr>
<td>Number of Observations</td>
<td>3.622</td>
<td></td>
</tr>
<tr>
<td>Adjusted R-squared</td>
<td>0.1429</td>
<td></td>
</tr>
</tbody>
</table>

Table 3: This table reports estimated coefficients from a panel regression of the month in which the borrower did no more spending on the balance transfer card (the “Eureka” moment) on a spline with age as its argument and other control variables.

7 Credit Cards

7.1 Data Summary

We use a proprietary panel dataset from several large financial institutions that offered credit cards nationally, later acquired by a larger financial institution. The dataset contains a representative random sample of about 128,000 credit card accounts followed monthly over a 36 month period (from January 2002 through December 2004). The bulk of the data consists of the main billing information listed on each account’s monthly statement, including total payment, spending, credit limit, balance, debt, purchases and cash advance annual percent rates (APRs), and fees paid. At a quarterly frequency, we observe each customer’s credit bureau rating (FICO) and a proprietary (internal) credit ‘behavior’ score. We have credit bureau data about the number of other credit cards held by the account holder, total credit card balances, and mortgage balances. We have data on the age, gender and income of the account holder, collected at the time of account opening. Further details on the data, including summary statistics and variable definitions, are available in
Figure 11: Propensity of ever experiencing a “Eureka” moment by borrower age. The figure plots the residual effect of age, after controlling for other observable characteristics, such as log(income), education, and credit-worthiness.

7.2 Results

Table 4 reports the results of regressing credit card APRs on a spline with age as its argument and other control variables. As controls, we again use information observed by the financial institution that may influence pricing. As before, we find that credit scores have little impact on credit card APRs. APRs rise with the total number of cards, though the effect is not statistically significant. Other controls, including the total card balance, log income, and balances on other debt, do not have economically or statistically significant effects on credit card APRs.

Figure 12 plots the fitted values on the spline for age. A U-shape is present, though it is much weaker than the age-based patterns that we document for other financial products.

8 Auto Loans

8.1 Data Summary

We use a proprietary data set of auto loans originated at several large financial institutions that were later acquired by another institution. The data set comprises observations on 6,996 loans originated for the purchase of new and used automobiles. We observe loan characteristics
Table 4: This table gives coefficient estimates for a regression of the APR of a credit card on a spline with age as its argument, financial control variables (Log(FICO) credit risk score, income, total number of cards, total card balance, home equity debt balance and mortgage balance).

<table>
<thead>
<tr>
<th></th>
<th>Coefficient</th>
<th>Std. Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>14.2743</td>
<td>3.0335</td>
</tr>
<tr>
<td>Age &lt; 30</td>
<td>-0.0127</td>
<td>0.0065</td>
</tr>
<tr>
<td>Age 30-40</td>
<td>-0.0075</td>
<td>0.0045</td>
</tr>
<tr>
<td>Age 40-50</td>
<td>-0.0041</td>
<td>0.0045</td>
</tr>
<tr>
<td>Age 50-60</td>
<td>0.0023</td>
<td>0.0060</td>
</tr>
<tr>
<td>Age 60-70</td>
<td>0.0016</td>
<td>0.0184</td>
</tr>
<tr>
<td>Age &gt; 70</td>
<td>0.0016</td>
<td>0.0364</td>
</tr>
<tr>
<td>Log(Income)</td>
<td>-0.0558</td>
<td>0.0803</td>
</tr>
<tr>
<td>Log(FICO)</td>
<td>-0.0183</td>
<td>0.0015</td>
</tr>
<tr>
<td>Home Equity Balance</td>
<td>0.0003</td>
<td>0.0022</td>
</tr>
<tr>
<td>Mortgage Balance</td>
<td>-0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>Number of Observations</td>
<td>92,278</td>
<td></td>
</tr>
<tr>
<td>Adjusted R-squared</td>
<td>0.0826</td>
<td></td>
</tr>
</tbody>
</table>

Figure 12: Credit card APR by borrower age. The figure plots the residual effect of age, after controlling for other observable characteristics, such as log(income) and credit-worthiness.
Table 5: This table gives coefficient estimates from a regression of the APR of an auto loan on a spline with age as its argument, financial control variables (Log(FICO) credit risk score, income, and the debt-to-income-ratio), and other controls (state dummies, dummies for whether the car is Japanese or European, loan age and car age).

including the automobile value and age, the loan amount and LTV, the monthly payment, the contract rate, and the time of origination. We also observe borrower characteristics including credit score, monthly disposable income, and borrower age.

### 8.2 Results

Table 5 reports the results of regressing the APR paid for auto loans on an age-based spline and control variables. FICO credit risk scores again have little effect on the loan terms. Higher incomes lower APRs and higher debt-to-income ratios raise them, though the magnitudes of the effects are small. We also include car characteristics, such as type and age, as one of us has found those variables to matter for APRs in other work (Agarwal, Ambrose, and Chomsisengphet, forthcoming)—though we note that the financial institutions do not directly condition their loans on such variables. We also include loan age and state dummies.

Figure 13 plots the fitted values on the spline for age. The graph shows a pronounced U-shape.
Figure 13: Auto loan APR by borrower age. The figure plots the residual effect of age, after controlling for other observable characteristics, such as log(income) and credit-worthiness.

9 Mortgages

9.1 Data Summary

We use a proprietary data set from a large financial institution that originates first mortgages in Argentina. Using data from one other country provides suggestive evidence about the international applicability of our findings. The data set covers 4,867 owner-occupied, fixed rate, first mortgage loans originated between June 1998 and March 2000 and observed through March 2004. We observe the original loan amount, the LTV and appraised house value at origination, and the APR. We also observe borrower financial characteristics (including income, second income, years on the job, wealth measures such as second house ownership, car ownership and value), borrower risk characteristics (Veraz score, a credit score similar to the U.S. FICO score, and mortgage payments as a percentage of after-tax income), and borrower demographic characteristics (age, gender, and marital status).

9.2 Results

Table 6 reports results of regressing the mortgage APR on an age-based spline and control variables. As controls, we again use variables observed by the financial institution that may affect loan pricing, including risk measures (credit score, income, mortgage payment as a fraction of
Mortgage APR by Borrower Age

Figure 14: APR for Argentine mortgages by borrower age. The figure plots the residual effect of age, after controlling for other observable characteristics, such as log(income) and credit-worthiness, income, and LTV), and various demographic and financial indicators (gender, marital status, a dummy variable for car ownership, and several others – these coefficients are not reported to save space). The coefficients on the controls are again of the expected sign and generally statistically significant, though of small magnitude.

The coefficients on the age spline are positive below age 30, then negative through age 60 and positive thereafter. Figure 14 plots the fitted values on the spline for age. The figure provides only partial support for the U-shape hypothesis.

10 Small Business Credit Cards

10.1 Data Summary

We use a proprietary data set of small business credit card accounts originated at several large institutions that issued such cards nationally. The institutions were later acquired by a single institution. The panel data set covers 11,254 accounts originated between May 2001 and May 2002. Most of the business are very small, owned by a single family, and have no formal financial records. The data set has all information collected at the time of account origination, including the business owner’s self-reported personal income, the number of years the business has been in operation, and the age of the business owner. We observe the quarterly credit bureau score of the business owner.
Table 6: This table reports the estimated coefficients from a regression of mortgage APR on a spline with age as its argument and financial and demographic control variables.

<table>
<thead>
<tr>
<th></th>
<th>Coefficient</th>
<th>Std. Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>12.4366</td>
<td>4.9231</td>
</tr>
<tr>
<td>Age &lt; 30</td>
<td>0.0027</td>
<td>0.0046</td>
</tr>
<tr>
<td>Age 30-40</td>
<td>-0.0023</td>
<td>0.0047</td>
</tr>
<tr>
<td>Age 40-50</td>
<td>-0.0057</td>
<td>0.0045</td>
</tr>
<tr>
<td>Age 50-60</td>
<td>0.0127</td>
<td>0.0093</td>
</tr>
<tr>
<td>Age 60-70</td>
<td>0.0155</td>
<td>0.0434</td>
</tr>
<tr>
<td>Age &gt; 70</td>
<td>0.0234</td>
<td>0.0881</td>
</tr>
<tr>
<td>Log(Income)</td>
<td>-0.2843</td>
<td>0.1303</td>
</tr>
<tr>
<td>Log(Credit Score)</td>
<td>-0.1240</td>
<td>0.0217</td>
</tr>
<tr>
<td>Debt/Income</td>
<td>0.0859</td>
<td>0.2869</td>
</tr>
<tr>
<td>Loan Term</td>
<td>-0.0114</td>
<td>0.0037</td>
</tr>
<tr>
<td>Loan Term Squared</td>
<td>-0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>Loan Amount</td>
<td>-0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>Loan to Value</td>
<td>0.1845</td>
<td>0.0187</td>
</tr>
<tr>
<td>Years on the Job</td>
<td>-0.0108</td>
<td>0.0046</td>
</tr>
<tr>
<td>Second Home</td>
<td>0.1002</td>
<td>0.1014</td>
</tr>
<tr>
<td>Auto</td>
<td>0.1174</td>
<td>0.0807</td>
</tr>
<tr>
<td>Auto Value</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>Gender (1=Female)</td>
<td>0.0213</td>
<td>0.0706</td>
</tr>
<tr>
<td>Married</td>
<td>-0.0585</td>
<td>0.0831</td>
</tr>
<tr>
<td>Two Incomes</td>
<td>-0.1351</td>
<td>0.1799</td>
</tr>
<tr>
<td>Married with Two Incomes</td>
<td>-0.0116</td>
<td>0.1957</td>
</tr>
<tr>
<td>Employment: Professional</td>
<td>-0.0438</td>
<td>0.1174</td>
</tr>
<tr>
<td>Employment:Non-Professional</td>
<td>0.0853</td>
<td>0.1041</td>
</tr>
<tr>
<td>Merchant</td>
<td>-0.1709</td>
<td>0.1124</td>
</tr>
<tr>
<td>Bank Relationship</td>
<td>-0.2184</td>
<td>0.1041</td>
</tr>
<tr>
<td>Number of Observations</td>
<td>4,867</td>
<td></td>
</tr>
<tr>
<td>Adjusted R-squared</td>
<td>0.1004</td>
<td></td>
</tr>
</tbody>
</table>
Table 7: This table reports the estimated coefficients from a regression of the APR for small business credit cards on a spline with the business owner’s age as its argument and other control variables (dummies for years in business, log(FICO) credit risk score, number of cards, total card balance, and total card limit).

10.2 Results

Table 7 reports the results of regressing the APR for small business credit cards on an age-based spline and control variables. As with individual credit card accounts, we control for the FICO score of the business owner, the total number of cards, card balance, and card limit. We also include dummy variables for the number of years the small business has been operating – we expect APRs to fall for businesses with longer operating histories. All control variables are statistically significant and have the expected sign, though only the dummies for years in business have substantial magnitudes.

APRs are decreasing in the age of the borrower through age 60 and increasing thereafter. Figure 15 plots the fitted values on the spline for age. The graph shows a pronounced U-shape.
Figure 15: Small business credit card APR by borrower age. The figure plots the residual effect of age, after controlling for other observable characteristics, such as log(income) and credit-worthiness.

11 Credit Card Fee Payments: Late Fees

11.1 Overview

Certain credit card uses involve the payment of a fee. Some kinds of fees are assessed when terms of the credit card agreement are violated. Other fees are assessed for use of services.

In the next three sections, we focus on three important types of fees: late fees, over limit fees, and cash advance fees. We describe the fee structure for our data set below.

1. Late Fee: A late fee of between $30 and $35 is assessed if the borrower makes a payment beyond the due date on the credit card statement. If the borrower is late by more than 60 days once or by more than 30 days twice within a year, the bank may also impose ‘penalty pricing’ by raising the APR to over 24 percent. The bank may also choose to report late payments to credit bureaus, adversely affecting consumers’ FICO scores. If the borrower does not make a late payment during the six months after the last late payment, the APR

---

17 Other types of fees include annual, balance transfer, foreign transactions, and pay by phone. All of these fees are relatively less important to both the bank and the borrower. Few issuers (the most notable exception being American Express) continue to charge annual fees, largely as a result of increased competition for new borrowers (Agarwal et al., 2005). The cards in our data do not have annual fees. We study balance transfer behavior using a separate data set below. The foreign transaction fees and pay by phone fees together comprise less than three percent of the total fees collected by banks.
will revert to its normal (though not promotional) level.

2. **Over Limit Fee**: An over limit fee — also between $30 and $35 — is assessed the first time the borrower exceeds his or her credit limit. Over limit violations generate penalty pricing that is analogous to the penalty pricing that is imposed as a result of late fees.

3. **Cash Advance Fee**: A cash advance fee — which is the greater of 3 percent of the amount advanced, or $5 — is levied for each cash advance on the credit card. Unlike the first two fees, this fee can be assessed many times per month. It does not cause the imposition of penalty pricing. However, the APR on cash advances is typically greater than the APR on purchases, and is usually 16 percent or more.

Payment of these fees is not generally a mistake. For example, if a card holder is vacationing in Tibet, it may not be optimal to arrange a credit card payment for that month. However, payments of fees are sometimes mistakes, since the fee payment can often be avoided by small and relatively costless changes in behavior. For instance, late fees are sometimes due to memory lapses that could be avoided by putting a reminder in one’s calendar.

We use the same data set as that used for the credit card APR case study discussed above.

### 11.2 Results

Table 8 presents panel regressions for each type of fee. In each of the three regressions, we regress a dummy variable equal to one if a fee is paid that month on an age-based spline and control variables. Hence the coefficients give the conditional effects of the independent variables on the propensity to pay fees.

The control variables differ from those of the preceding six examples. Now we control for factors that might affect the propensity to pay a fee, which are not necessarily the same as factors that might lead borrowers to default or otherwise affect their borrowing terms. “Bill Existence” is a dummy variable equal to one if a bill was issued last month; borrowers will only be eligible to pay a late fee if a bill was issued. “Bill Activity” is a dummy variable equal to one if purchases or payments were made on the card; borrowers will only be eligible to pay over limit or cash advance fees if the card was used. “Log(Purchases)” is the log of the amount purchased on the card, in dollars; we would expect that the propensity to pay over limit and cash advance fees would be increasing with the amount of purchases. “Log(FICO)” is the credit risk score, and “Log(Behavior)” is an internal risk score created by the bank to predict late and delinquent payment beyond that predicted by the FICO score. Higher scores mean less risky behavior. The scores are lagged three months because they are only updated quarterly. We would expect the underlying behavior leading to lower credit risk scores would lead to higher fee payment. “Debt/Limit” is the ratio of the balance
Table 8: This table reports coefficients from a regression of dummy variables for credit card fee payments on a spline for age, financial control variables (log(FICO) credit risk score, internal bank behavior risk score, debt over limit) and other control variables (dummies for whether a bill existed last month, for whether the card was used last month, dollar amount of purchases, account- and time-fixed effects).

of credit card debt to the credit limit; we would expect that having less available credit would raise the propensity to pay over limit fees, and possibly other fees.

For late fee payments – column one of the table – all control variables have the expected signs and are statistically significant, though they are also small in magnitude. Note that some control variables may partly capture the effects of age-related cognitive decline on fees. For example, if increasing age makes borrowers more likely to forget to pay fees on time, that would both increase the propensity to pay late fees and decrease credit and behavior scores. Hence the estimated coefficients on the age splines may understate some age-related effects.

Coefficients on the age splines are uniformly negative for splines through age 50, negative or weakly positive for the spline between age 50 and 60, and positive with increasing slope for splines above age 50.

The top line in Figure 16 plots fitted values for the age splines for the late fee payment regression.¹⁸

¹⁸In Agarwal, Driscoll, Gabaix and Laibson (2006), we study this propensity of paying fees as the interaction of learning from the payment of past fees, and forgetting.
Figure 16: Frequency of fee payment by borrower age. The figure plots the residual effect of age, after controlling for other observable characteristics, such as log(income) and credit-worthiness.

12 Credit Card Fee Payments: Over Limit Fees

The second column of Table 8 presents regression results for the over limit fee, on the same controls and age splines that were used for the late fee. Results are similar to those generated in analysis of the late fee.

The bottom line in Figure 16 plots fitted values of the age splines for the over limit fee payment regression.

13 Credit Card Fee Payments: Cash Advance Fees

The second column of Table 8 presents regression results for the cash advance fee, on the same controls and age splines that were used for the late fee. Results are similar to those generated in analysis of the late fee and the over limit fee.

The middle line in Figure 16 plots fitted values of the age splines for the cash advance fee payment regression.
14 The Peak of Performance

14.1 Locating the Peak of Performance

Visual inspection of the age splines for the ten case studies suggests that financial mistakes are at a minimum in the late 40s or early 50s. To estimate the minimum more precisely, we re-estimate each model, replacing the splines between 40 and 50 and 50 and 60 with a single spline running from 40 to 60, and the square of that spline. This enables us to more precisely estimate the local properties of the performance curve.

In other words, we run the following regression, where $F$ is the outcome associated respectively with each of the 10 studies:

$$ F = \alpha + \beta \times \text{Spline}(Age)_{Age \in [40, 60]} + \gamma \times \text{Controls} + \epsilon $$

$$ + a \times \text{Spline}(Age)_{Age \in [40, 60]} + b \cdot \text{Spline}(Age)^2_{Age \in [40, 60]}.$$

Here $\text{Spline}(Age)$ is a piecewise linear function that takes consumer age as its argument (with knot points at ages 30, 40, 60 and 70). $\text{Spline}(Age)_{Age \in [40, 60]}$ represents the splines outside of the [40, 60] age range, while $\text{Spline}(Age)_{Age \in [40, 60]}$ is the linear spline with knot points at 40 and 60. Hence, for age between 40 and 60, the above formulation is implicitly quadratic in age:

$$ F = \text{Controls} + a \times Age + b \times Age^2. $$

The peak of performance is defined as the value that minimizes the above function:

$$ \text{Peak} = -a / (2b). $$

We calculate the asymptotic standard errors on $\text{Peak}$ using the delta method, so that the standard error of $\text{Peak}$ is the standard error associated with the linear combination: $-1/(2b) \cdot \text{(Coefficient on age)} + a/(2b^2) \cdot \text{(Coefficient on age}^2).$

In Table 9, we report the location of the ‘age of reason’: the point at which financial mistakes are minimized. The mean age of reason appears to be at 53.3 years. The standard deviation calculated by treating each study as a single data point is 4.3 years.

Formal hypothesis testing ($H_0: a + 2b \times 53 = 0$) shows that only the location of the Eureka moment is statistically different from 53 years. Interestingly, the Eureka task is arguably the most dependent on analytic capacity and least dependent on experience (since the kinds of balance transfer offers that we study were new financial products when our data was collected). It is not surprising that the peak age for succeeding at that task would be earlier than the peak age for the other tasks. However, since we do not have a rigorous measure of the “difficulty” of a task, the interpretation of the Eureka case remains speculative.
### Table 9: Age at which financial mistakes are minimized, for each case study

<table>
<thead>
<tr>
<th>Type of Loan</th>
<th>Age of Peak Performance</th>
<th>Standard Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Home Equity Loans—APR</td>
<td>55.9</td>
<td>4.2</td>
</tr>
<tr>
<td>Home Equity Lines—APR</td>
<td>53.3</td>
<td>5.2</td>
</tr>
<tr>
<td>Eureka Moment</td>
<td>45.8</td>
<td>7.9</td>
</tr>
<tr>
<td>Credit Card—APR</td>
<td>50.3</td>
<td>6.0</td>
</tr>
<tr>
<td>Auto Loans—APR</td>
<td>49.6</td>
<td>5.0</td>
</tr>
<tr>
<td>Mortgage—APR</td>
<td>56.0</td>
<td>8.0</td>
</tr>
<tr>
<td>Small Business Credit Card—APR</td>
<td>61.8</td>
<td>7.9</td>
</tr>
<tr>
<td>Credit Card Late Fee</td>
<td>51.9</td>
<td>4.9</td>
</tr>
<tr>
<td>Credit Card Over Limit Fee</td>
<td>54.0</td>
<td>5.0</td>
</tr>
<tr>
<td>Credit Card Cash Advance Fee</td>
<td>54.8</td>
<td>4.9</td>
</tr>
<tr>
<td>Average over the 10 Studies</td>
<td>53.3</td>
<td></td>
</tr>
</tbody>
</table>

14.2 Formal Test of a Peak of Performance Effect

Table 9 allows us do a formal test for a peak effect. In regression (2), the null hypothesis of a peak effect is: (i) $b > 0$, and (ii) $Peak = -a / (2b) \in [40, 60]$. Together these conditions imply that mistakes follow a U-shape, with a peak that is between 40 and 60 years of age.

For criterion (i), we note that the $b$ coefficients are positive for all 10 studies. For 9 of the 10 studies, $b$ is significantly different from zero (the credit card APR study is the exception). For criterion (ii), Table 9 shows that a peak in the 40-60 age range can not be rejected for all ten studies.

14.3 A Possible Interpretation of the Location of the Performance Peak

What determines the age of peak performance? If peak performance reflects a trade-off between experience (that is accumulated with diminishing returns) and analytic ability (that declines linearly after age 20), the sooner people start experimenting with the product, the earlier peak of performance should be. For instance, take the simple functional forms presented in section 2. Suppose Analytic Capital declines linearly with age, so that Analytic Capital $= \alpha - age / \beta$. Suppose that Experiential Capital is accumulated with diminishing returns – for instance, Experiential Capital $= \ln(age - \gamma age_0)$, where $age_0$ is the actual age at which people start using the product, and $\gamma age_0 < age_0$ is the effective age at which people start using the product (so $\gamma < 1$). The effective age is less than the actual age since consumers get indirect experience (observation and advice) as a result of their interactions with slightly older individuals who use the product. The

---

19To save space, we only report the $t$–statistics associated with the $b$ coefficients. Following the order of Table 9, they are: 2.20, 4.55, 7.80, 8.77, 17.05, 1.61, 4.57, 2.91, 3.08, 2.67.
model implies that peak performance occurs at $Peak = \beta + \gamma age_0$. Hence, peak performance is later when people start using the product later in life.

To evaluate this hypothesis for each financial product, we first construct the distribution of the ages of the users of this product in our data set and calculate the age at the 10th percentile of the distribution, which we call “age\textsubscript{10%}”. It is a crude proxy for the age at which people start using the product. We then regress the location of the peak of performance on age\textsubscript{10%}. We find: $Peak = 33 + 0.71 \times age_{10\%}$, ($R^2 = 0.62, n = 10$; the s.e. on the coefficients are respectively 5.7 and 0.19).\textsuperscript{20} We reject the null hypothesis of no relationship between $Peak$ and age\textsubscript{10%}. Products that are first used later in life tend to have a later performance peak.

This minimal analysis only provides suggestive evidence. It would be desirable to explore this correlation and the hypothesized mechanism with other data sets.

15 Discussion and Related Work

15.1 Alternative Explanations

Age effects offer a parsimonious explanation for our findings. However, our cross-sectional evidence does not definitively support this interpretation. In the current section, we review some alternative explanations.

Risk: Some of our results could be driven by unobserved variation in default risk. For instance, the U-shape of APRs could be due to a U-shape of default by age. We test this alternative hypothesis by regressing default rates on age splines for credit cards, auto loans, and home equity loans and credit lines. We plot fitted values in Figure 17. None of the graphs is U-shaped. On the contrary, home equity loans and lines show a pronounced inverted U-shape, implying that the young and old have lower default rates. Credit cards and auto loans also show a slight inverted U-shape. Hence, Figure 17 contradicts the hypothesis that our results are driven by an unmeasured default risk. Also, note that age-dependent default risk could not explain the observed patterns in credit card fee payments or suboptimal use of balance transfers.

Opportunity Cost of Time: Some age effects could be generated by age-variation in the opportunity cost of time (Aguiar and Hurst, forthcoming). However, such opportunity-cost effects would predict that retirees make fewer mistakes, which is not what we observe in our data. Nevertheless, our findings and those of Aguiar and Hurst do not contradict one another. Shopping for a familiar commodity, like a gallon of milk, is less analytically demanding than shopping for a complicated and somewhat unfamiliar product that can differ across many dimensions, like a

\textsuperscript{20}The effect is robust to the choice of the 10th percentile. For instance, the correlation between Peak age and Median age (of users for the product, in our data set) is 0.83.
mortgage. Hence, we should expect to see older adults sustain or even improve their ability to shop for food at the same time that they lose ground in the domain of financial decision-making. In addition, shopping at stores and supermarkets may be a more pleasant activity than shopping at banks and other lenders, leading consumers to do more comparison shopping for food than for loans.

**Medical Expenses:** Older consumers may need to borrow to meet higher medical expenses. This increased demand for borrowing may worsen their borrowing terms; it may also lead them to be less attentive to terms and fee payments.

Using individual credit card transactions data, we look at the average fraction of monthly spending on medical categories. The fraction is 1.18 percent for borrowers between ages 20 and 39; 1.19 percent for borrowers between ages 40 and 59; and 1.06 percent for borrowers between ages 60 and 79. Thus, it does not appear that older consumers are disproportionately using credit card borrowing to finance medical expenditures.

**Discrimination:** The presence of age effects might also be interpreted as evidence for some kind of age discrimination. We believe this to be unlikely, for two reasons. First the U-shaped pattern shows up in contexts such as fee payments and failures to optimally use balance transfer offers in which discrimination is not relevant (since all card holders face the same rules). Second,
firms avoid age discrimination for legal reasons. Penalties for age discrimination from the Fair Lending Act are substantial (as would be the resulting negative publicity).

Sample Selection: Measured age effects could also be attributable to differences in the pool of borrowers by age group: a selection effect. Older consumers using home equity loans and lines of credit may, on average, be a less financially savvy group that the pools of 40-to-50-year-old borrowers, since more savvy borrowers may instead choose to use their savings to finance expenditures.\footnote{While they may in principle also be riskier, we have discussed that possibility above.}

Three reasons lead us to doubt that this effect is quantitatively large. First, the pool of borrowers in their 20s through 40s should not be on average financially less savvy than other groups, since most people in these age groups will use at least one of the financial products we study. Yet that group does worse in all ten domains than slightly older individuals.

Second, measurable financial characteristics do not show a pattern consistent with a worsening pool by age. Figure 17 above showed that default rates are lower for older borrowers. Figure 18 shows that credit risk (FICO) scores on home equity loans and lines decline by about 5 points over the age distribution — an amount too small to either change lending terms or represent a substantial change in riskiness. Figure 19 shows that loan to value ratios decline substantially with age, indicating that borrowers are devoting a smaller fraction of their assets to servicing this particular kind of debt.

Third, Figure 20 below shows the results of re-estimating the regressions for home equity loans and lines of credit, but dropping data on all borrowers over the age of 60. There is less reason to believe that the pool of borrowers below 60 are subject to the sample selection issues discussed above. The results still show a U-shape, albeit a somewhat less pronounced one.\footnote{This graph also reinforces the arguments above that potential higher riskiness of borrowers above age 60 is likely not responsible for the results.}

Cohort Effects: Older borrowers in the cross-section may make less sophisticated financial choices not because they are older, but because they belong to a cohort that is less familiar with current financial products. Although we cannot eliminate the possibility that cohort effects are driving the patterns that we observe, several facts make us skeptical of this explanation.

First, one leading cohort story would imply that borrowers currently in their 20s, 30s and 40s would be best positioned to understand new financial products. However, we find that younger borrowers are prone to make less sophisticated financial choices than borrowers in middle-age.

Second, we observe the U-shaped pattern over a broad range of products; while some of these products, such as mortgages, have seen substantial changes in their institutional characteristics over time, others, such as auto loans, have not.

Third, if cohort effects were dominant, we might expect to see differences in APRs between male and female borrowers on the grounds that the current cohort of older female borrowers has tended
Figure 18: This figure plots the FICO (creditworthiness) scores of home equity loan and line of credit borrowers by age. A high FICO score means a high creditworthiness.

Figure 19: This figure plots the loan-to-value (LTV) ratio of home equity loan and line of credit borrowers by borrower age.
Figure 20: This figure plots the residual effect of age on home equity loan and line APRs, after controlling for other observable characteristics, such as log(income) and credit-worthiness. Observations on borrowers over age 60 have been dropped.

to be less involved in financial decision making than their male contemporaries. Figures 21 and 22 plot the residual effects of age on home equity line and loan APR for female and male borrowers, respectively. Both show a U-shaped pattern by age, with no substantive difference between the two groups.

Finally, for two products—auto loans and credit cards—we have data from 1992, ten years earlier than the data used for our other studies. Figures 23 and 24 replicate the plots of the fitted values of the effects of age on APR for this earlier dataset. Both plots show the same pronounced U-shape, with the minimum in the early 50’s (like our results using later cross-sections). If our findings were driven by cohort effects, the U-shape should not reproduce itself in cross-sections from different years.

15.2 Market Equilibrium

The markets we describe may seem paradoxical. First, they look competitive, since there are many competing firms selling commodity credit products. However, consumers with identical risk characteristics fare differently, implying that somehow the good being sold is being de-commodified.

Markets like this have been described in the industrial organization literature. A first generation of models (e.g. Salop and Stiglitz 1977, Ellison 2005, and the citations therein) emphasizes different
Figure 21: This figure plots the residual effect of age on home equity loan and line APRs for women, after controlling for other observable characteristics, such as log(income) and credit-worthiness.

Figure 22: This figure plots the residual effect of age on home equity loan and line APRs for men, after controlling for other observable characteristics, such as log(income) and credit-worthiness.
Figure 23: Auto loan APR by borrower age. The figure plots the residual effect of age, after controlling for other observable characteristics, such as log(income) and credit-worthiness. Data is from 1992.

Figure 24: Credit card APR by borrower age. The figure plots the residual effect of age, after controlling for other observable characteristics, such as log(income) and credit-worthiness. Data is from 1992.
“search costs,” which are costs of discovering the products of different firms. A second generation (sometimes under the name of “behavioral industrial organization”, e.g. Gabaix and Laibson 2006, Ellison 2005) emphasizes different levels of rationality and farsightedness by consumers. For instance, a balance transfer offer provides a rent that only some consumers are smart enough to exploit. Some consumers unravel the shrouded attribute – the “catch” that they should transfer balances to the card but make no purchases with it – and some consumers never get it. In the market equilibrium (with competition and free entry), the naive consumers end up paying above marginal cost, subsidizing the sophisticated consumers, who pay below marginal cost. From an ex ante point of view, the market is fully competitive, since expected profits of the firm are zero.\textsuperscript{23}

Most of the other markets work in similar ways. In equilibrium, sophisticated consumers get subsidies from the unsophisticated consumers. Since the markets are competitive, the financial institutions themselves break even.

\subsection*{15.3 On the Economic Magnitude of the Effects}

The effects we find are sometimes large and sometimes small. For instance, for a home-equity line of $60,000 (the mean value, see Table A1), and a duration of 5 years, a difference in the loan interest rate of 1 percentage point means a difference in total payments of $3000. For other quantities, say credit card fees, the implied age differentials are much smaller – roughly $10-$20 per year for each kind of fee.\textsuperscript{24} We do not claim that each of the economic decisions that we study is of significant economic relevance on its own, but rather that there is a U-shape pattern of mistakes that may merit economists’ attention become it points to a phenomenon that applies to all decision domains (large and small). We have studied credit decisions in the current paper. An important question is whether the U-shape of mistakes translates into other decision domains, including savings choices, asset allocation choices and health care choices.

\subsection*{15.4 Related Work}

Other authors have studied the effects of aging on the use of financial instruments. Korniotis and Kumar (2007) examine the performance of investors from a major U.S. discount brokerage house. They use census data to impute education levels and data from the Survey of Health, Aging

\textsuperscript{23} One may ask how such a potentially inefficient equilibrium can persist in a competitive environment. An answer is proposed in Gabaix and Laibson (2006): the cross-subsidy from naives to sophisticates makes the market more “sticky.” The sophisticates may not have an incentive to switch from the firms with shrouded attributes (at which they are getting cross-subsidies). Such stickiness explains why these equilibria are robust even when the equilibria are inefficient.

\textsuperscript{24} A difference in fee probability of 3% per month, and and a fee amount $35, leads to a total extra yearly expense of $12. Note, however, that some of these fees, if paid too often, can trigger “penalty pricing,” in which interest rates ten percentage points or higher are levied on card balances, thus greatly increasing the cost of fee payment. See Agarwal et. al. (2006) for further discussion.
and Retirement in Europe to estimate a model of cognitive abilities. They find that investors with cognitive declines earn annual returns between 3-5 percentage points lower on a risk adjusted basis.

In their work on financial literacy, Lusardi and Mitchell find evidence consistent with an inverse-U shape of financial proficiency. Lusardi and Mitchell (2006) find a decline in financial knowledge after age 50. Lusardi and Mitchell (2007) also find an inverse U-shape in the mastery of basic financial concepts, such as the ability to calculate percentages or simple divisions.

After some of our presentations other researchers have offered to look for age patterns of financial mistakes in their own data sets. Lucia Dunn has reported to us that the Ohio State Survey on credit cards shows a U-shaped pattern of credit card APR terms by age (Dunn, personal communication). Fiona Scott Morton has reported that in her data set of indirect auto loans (made by banks and finance companies using the dealer as an intermediary; see Scott Morton et al., 2003), loan markups show a U-shaped pattern (Scott Morton, personal communication). Luigi Guiso finds that, when picking stocks, consumers achieve their best Sharpe ratios at about age 43, and this effect appears to be entirely driven by the participation margin (Guiso, personal communication). Ernesto Villanueva finds that mortgage APRs in Spanish survey data (comparable to the U.S. Survey of Consumer Finances) are U-shaped by age (Villanueva, personal communication).

A relationship between earning and performance has been noted in many non-financial contexts. Survey data suggests that labor earnings peak around age 50 (Gourinchas and Parker, 2002) or after about 30 years of experience (Murphy and Welch, 1990). Shue and Luttmer (2006) find that older and younger voters disproportionately make more errors in voting.

Aguiar and Hurst (2007, forthcoming) demonstrate that older adults find lower prices for everyday items by spending more time shopping around. In contrast, we find that older adults seem to make more mistakes in personal financial decision-making. We reconcile these findings by noting that financial products require more analytic ability than everyday items (like food or clothing). Moreover, financial products may generate a less pleasurable shopping experience.

Turning to purely noneconomic domains, there is a literature on estimating performance peaks in professional athletics and other competitive areas. Fair (1994, 2007) estimates the effects of age declines in baseball and chess, among other sports. Simonton (1988) is a useful survey.

A new literature in psychology and economics reports systematic differences in “rationality” between groups of people. Benjamin, Brown and Shapiro (2006) find that subjects with higher test scores, or less cognitive load, display fewer behavioral biases. Frederick (2005) identifies a measure of “analytical IQ”: people with higher scores on cognitive ability tasks tend to exhibit fewer/weaker psychological biases. While this literature is motivated by experimental data (where it is easier to control for unobservables), we rely on field data in our paper. Similarly, Massoud, Saunders and Schnolnick (2006) find that more educated people make fewer mistakes on their credit cards, and Stango and Zinman (2007) find evidence that more naive consumers make mistakes across a range of financial decisions.
Several researchers have looked at the response of consumers to low, introductory credit card rates (‘teaser’ rates) and at the persistence of otherwise high interest rates. Shui and Ausubel (2004) show that consumers prefer credit card contracts with low initial rates for a short period of time to ones with somewhat higher rates for a longer period of time, even when the latter is ex post more beneficial. Consumers also appear ‘reluctant’ to switch contracts. DellaVigna and Malmendier (2004) theorize that financial institutions set the terms of credit card contracts to reflect consumers’ poor forecasting ability over their future consumption.

Many of those effects are discussed in “behavioral industrial organization,” a literature that documents and studies markets with behavioral consumers and rational firms: DellaVigna and Malmendier (2004), Gabaix and Laibson (2006), Heidhues and Koszegi (2006), Malmendier and Devin Shanthikumar (2005), Mullainathan and Shleifer (2005), Oster and Scott Morton (2005), Spiegler (2006). In some of those papers, it is important to have both naive and sophisticated consumers (Campbell 2006). The present paper suggests than those naive consumers will disproportionately be younger or older adults.

Bertrand et al. (2006) find that randomized changes in the “psychological features” of consumer credit offers affect adoption rates as much as variation in the interest rate terms. Ausubel (1991) hypothesizes that consumers may be over-optimistic, repeatedly underestimating the probability that they will borrow, thus possibly explaining the stickiness of credit card interest rates. Calem and Mester (1995) use the 1989 Survey of Consumer Finances (SCF) to argue that information barriers create high switching costs for high-balance credit card customers, leading to persistence of credit card interest rates, and Calem, Gordy, and Mester (2005) use the 1998 and 2001 SCFs to argue that such costs continue to be important. Kerr and Dunn (2002) use data from the 1998 SCF to argue that having large credit card balances raises consumers’ propensity to search for lower credit card interest rates. Kerr, Cosslett and Dunn (2004) use SCF data to argue that banks offer better lending terms to consumers who are also bank depositors and about whom the bank would thus have more information.

A literature analyzes heuristics and biases in financial decision making. For instance, Benartzi and Thaler (2002) show that investors prefer the portfolios chosen by other people rather than the ones chosen by themselves, a pattern which suggests that task difficulty prevents people from reaching an optimal decision. Benartzi and Thaler (forthcoming) also document the use of a number of sometimes inappropriate heuristics. Our findings imply that the U-shape pattern of financial mistakes should also be found in the examples that Bernatzi and Thaler document.

A number of researchers have written about consumer credit card use. Our work most closely overlaps with that of Agarwal et al. (2005), who use another large random sample of credit card accounts to show that, on average, borrowers choose credit card contracts that minimize their total interest costs net of fees paid. About 40 percent of borrowers initially choose suboptimal contracts. While some borrowers incur hundreds of dollars of such costs, most borrowers subsequently switch
to cost-minimizing contracts. The results of our paper complement those of Agarwal et al. (2007), since we find evidence of learning to avoid fees and interest costs given a particular card contract. Other authors have used credit card data to evaluate more general hypotheses about consumption. Agarwal, Liu, and Souleles (2004) use credit card data to examine the response of consumers to the 2001 tax rebates. Gross and Souleles (2002a) use credit card data to argue that default rates rose in the mid-1990s due to declining default costs, rather than a deterioration in the creditworthiness of borrowers. Gross and Souleles (2002b) find that increases in credit limits and declines in interest rates lead to large increases in consumer debt. Ravina (2005) estimates consumption Euler equations for credit card holders and finds evidence for habit persistence.

Finally, from a methodological perspective our work is related to recent research that studies age variation along other dimensions. For example, Blanchflower and Oswald (2007) report that well-being is U-shaped over the lifecycle controlling for observable demographic characteristics. The trough occurs in the 40s.

### 15.5 Some Open Questions for Future Research

Our findings suggest several directions for future research.

First, it would be useful to study age effects in other decision domains. We have described a simple procedure for this: (1) identify the general shape of age effects, as in (1), using controls and age splines; (2) estimate a linear-quadratic form to localize the peak of performance, as in (2)-(3).

Second, it may be possible to develop models that predict the location of peak performance. There is a growing consensus that analytically intensive problems – like mathematics – are associated with younger peak ages (see Simonton, 1988, Galenson, 2005, and Weinberg and Galenson, 2005). Analogously, problems that require more experiential training have older peak ages. For instance, Jones (2006) finds that the peak age for scientists has drifted higher in the twentieth century. More knowledge now needs to be accumulated to reach the cutting edge of the field.

In our last case study, we found that what is arguably the most analytically demanding task – deducing the best way to exploit “interest-free” balance transfers – is associated with the youngest age of peak performance. It would be useful to assess the generality of this association between analytically demanding problems and young peak ages.

Third, it would be desirable to identify cost-effective regulations that would help improve financial decisions. Forced disclosure is not itself sufficient, since disclosing costs in the fine print will have little impact on distracted and boundedly rational consumers. Good disclosure rules will need to be effective even for consumers who do not take the time to read the fine print or who have limited financial education. We conjecture that effective regulations would produce comparable...
and transparent products. On the other hand, such homogenization has the dynamic cost that it may create a hurdle to innovation.

Fourth, studying cognitive lifecycle patterns should encourage economists to pay more attention to the market for advice. Advice markets may not function efficiently because of information asymmetries between the recipients and the providers of advice (Dulleck and Kerschbamer, 2006). It is particularly important to study the advice market for older adults who are now required to make their own financial decisions.

16 Conclusion

We find that middle-age adults borrow at lower interest rates and pay lower fees in ten financial markets. Our analysis suggests that this fact is not explained by age-dependent risk factors. For example, FICO scores show no pattern of age variation. Moreover, age variation in default actually predicts the opposite pattern from the one that we measure.

Age effects parsimoniously explain the patterns that we observe, but, other effects may also play a role – for instance, cohort effects or endogenous human capital accumulation. Whatever the mechanism, there appears to be a robust relationship between age and financial sophistication in cross-sectional data. Future research should untangle the different forces that give rise to these effects. If age effects are important, economists should analyze the efficiency of modern financial institutions – like defined contribution pension plans – that require retirees to make most of their own saving, dissaving, and asset allocation decisions.

References

Agarwal, Sumit, Brent Ambrose, and Souphala Chomsisengphet (forthcoming) “Information Asymmetry and the Automobile Loan Market.”


Appendix: Data Summary Statistics

Table A1: Home Equity Loans and Credit Lines

<table>
<thead>
<tr>
<th>Description (Units)</th>
<th>Loans</th>
<th>Credit Lines</th>
<th>Loans</th>
<th>Credit Lines</th>
</tr>
</thead>
<tbody>
<tr>
<td>APR(%)</td>
<td>7.96</td>
<td>1.16</td>
<td>4.60</td>
<td>0.88</td>
</tr>
<tr>
<td>Borrower Age (Years)</td>
<td>43</td>
<td>14</td>
<td>46</td>
<td>12</td>
</tr>
<tr>
<td>Income ($, Annual)</td>
<td>78,791</td>
<td>99,761</td>
<td>90,293</td>
<td>215,057</td>
</tr>
<tr>
<td>Debt/Income (%)</td>
<td>40</td>
<td>18</td>
<td>41</td>
<td>19</td>
</tr>
<tr>
<td>FICO (Credit Bureau Risk) Score</td>
<td>713</td>
<td>55</td>
<td>733</td>
<td>49</td>
</tr>
<tr>
<td>Customer LTV (%)</td>
<td>66</td>
<td>26</td>
<td>62</td>
<td>24</td>
</tr>
<tr>
<td>Appraisal LTV (%)</td>
<td>69</td>
<td>29</td>
<td>64</td>
<td>23</td>
</tr>
<tr>
<td>Borrower Home Value Estimate ($)</td>
<td>196,467</td>
<td>144,085</td>
<td>346,065</td>
<td>250,355</td>
</tr>
<tr>
<td>Bank Home Value Estimate ($)</td>
<td>186,509</td>
<td>123,031</td>
<td>335,797</td>
<td>214,766</td>
</tr>
<tr>
<td>Loan Requested by Borrower ($)</td>
<td>43,981</td>
<td>35,161</td>
<td>61,347</td>
<td>50,025</td>
</tr>
<tr>
<td>Loan Approved by Bank ($)</td>
<td>42,871</td>
<td>33,188</td>
<td>60,725</td>
<td>51,230</td>
</tr>
<tr>
<td>First Mortgage Balance ($)</td>
<td>79,496</td>
<td>83,560</td>
<td>154,444</td>
<td>112,991</td>
</tr>
<tr>
<td>Months at Address</td>
<td>92</td>
<td>122</td>
<td>99</td>
<td>129</td>
</tr>
<tr>
<td>No First Mortgage (%)</td>
<td>29</td>
<td>45</td>
<td>15</td>
<td>42</td>
</tr>
<tr>
<td>Second Home (%)</td>
<td>3</td>
<td>14</td>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>Condo (%)</td>
<td>8</td>
<td>18</td>
<td>6</td>
<td>17</td>
</tr>
<tr>
<td>Refinancing (%)</td>
<td>66</td>
<td>47</td>
<td>39</td>
<td>49</td>
</tr>
<tr>
<td>Home Improvement (%)</td>
<td>18</td>
<td>39</td>
<td>25</td>
<td>44</td>
</tr>
<tr>
<td>Consumption (%)</td>
<td>16</td>
<td>39</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>Self Employed (%)</td>
<td>7.9</td>
<td>27</td>
<td>7.8</td>
<td>27</td>
</tr>
<tr>
<td>Retired (%)</td>
<td>9.5</td>
<td>29</td>
<td>7.7</td>
<td>27</td>
</tr>
<tr>
<td>Homemaker (%)</td>
<td>1.4</td>
<td>12</td>
<td>1.3</td>
<td>11</td>
</tr>
<tr>
<td>Years on the Last Job</td>
<td>6.3</td>
<td>8.1</td>
<td>7.6</td>
<td>9.1</td>
</tr>
</tbody>
</table>
## Table A2: Credit Cards

<table>
<thead>
<tr>
<th>Account Characteristics</th>
<th>Frequency</th>
<th>Mean</th>
<th>Std. Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purchase APR</td>
<td>Monthly</td>
<td>14.40</td>
<td>2.44</td>
</tr>
<tr>
<td>Interest Rate on Cash Advances (%)</td>
<td>Monthly</td>
<td>16.16</td>
<td>2.22</td>
</tr>
<tr>
<td>Credit Limit ($)</td>
<td>Monthly</td>
<td>8,205</td>
<td>3,385</td>
</tr>
<tr>
<td>Current Cash Advance ($)</td>
<td>Monthly</td>
<td>148</td>
<td>648</td>
</tr>
<tr>
<td>Payment ($)</td>
<td>Monthly</td>
<td>317</td>
<td>952</td>
</tr>
<tr>
<td>New Purchases ($)</td>
<td>Monthly</td>
<td>303</td>
<td>531</td>
</tr>
<tr>
<td>Debt on Last Statement ($)</td>
<td>Monthly</td>
<td>1,735</td>
<td>1,978</td>
</tr>
<tr>
<td>Minimum Payment Due ($)</td>
<td>Monthly</td>
<td>35</td>
<td>52</td>
</tr>
<tr>
<td>Debt/Limit (%)</td>
<td>Monthly</td>
<td>29</td>
<td>36</td>
</tr>
</tbody>
</table>

### Fee Payment

<table>
<thead>
<tr>
<th>Fee Payment</th>
<th>Frequency</th>
<th>Mean</th>
<th>Std. Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Fees ($)</td>
<td>Monthly</td>
<td>10.10</td>
<td>14.82</td>
</tr>
<tr>
<td>Cash Advance Fee ($)</td>
<td>Monthly</td>
<td>5.09</td>
<td>11.29</td>
</tr>
<tr>
<td>Late Payment Fee ($)</td>
<td>Monthly</td>
<td>4.07</td>
<td>3.22</td>
</tr>
<tr>
<td>Over Limit Fee ($)</td>
<td>Monthly</td>
<td>1.23</td>
<td>1.57</td>
</tr>
<tr>
<td>Extra Interest Due to Over Limit or Late Fee ($)</td>
<td>Monthly</td>
<td>15.58</td>
<td>23.66</td>
</tr>
<tr>
<td>Extra Interest Due to Cash Advances ($)</td>
<td>Monthly</td>
<td>3.25</td>
<td>3.92</td>
</tr>
<tr>
<td>Cash Advance Fee Payments/Month</td>
<td>Monthly</td>
<td>0.38</td>
<td>0.28</td>
</tr>
<tr>
<td>Late Fee Payments/Month</td>
<td>Monthly</td>
<td>0.14</td>
<td>0.21</td>
</tr>
<tr>
<td>Over Limit Fee Payments/Month</td>
<td>Monthly</td>
<td>0.08</td>
<td>0.10</td>
</tr>
</tbody>
</table>

### Borrower Characteristics

<table>
<thead>
<tr>
<th>Borrower Characteristics</th>
<th>Frequency</th>
<th>Mean</th>
<th>Std. Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>FICO (Credit Bureau Risk) Score</td>
<td>Quarterly</td>
<td>731</td>
<td>76</td>
</tr>
<tr>
<td>Behavior Score</td>
<td>Quarterly</td>
<td>727</td>
<td>81</td>
</tr>
<tr>
<td>Number of Credit Cards</td>
<td>At Origination</td>
<td>4.84</td>
<td>3.56</td>
</tr>
<tr>
<td>Number of Active Cards</td>
<td>At Origination</td>
<td>2.69</td>
<td>2.34</td>
</tr>
<tr>
<td>Total Credit Card Balance ($)</td>
<td>At Origination</td>
<td>15,110</td>
<td>13,043</td>
</tr>
<tr>
<td>Mortgage Balance ($)</td>
<td>At Origination</td>
<td>47,968</td>
<td>84,617</td>
</tr>
<tr>
<td>Age (Years)</td>
<td>At Origination</td>
<td>42.40</td>
<td>15.04</td>
</tr>
<tr>
<td>Income ($)</td>
<td>At Origination</td>
<td>57,121</td>
<td>114,375</td>
</tr>
</tbody>
</table>

Notes: The “Credit Bureau Risk Score” is provided by Fair, Isaac and Company. The greater the score, the less risky the consumer is. The “Behavior Score” is a proprietary score based on the consumer’s past payment history and debt burden, among other variables, created by the bank to capture consumer payment behavior not accounted for by the FICO score.
<table>
<thead>
<tr>
<th>Description (Units)</th>
<th>Mean</th>
<th>Std. Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>APR(%)</td>
<td>8.99</td>
<td>0.90</td>
</tr>
<tr>
<td>Borrower Age (Years)</td>
<td>40</td>
<td>21</td>
</tr>
<tr>
<td>Income ($, Monthly)</td>
<td>3416</td>
<td>772</td>
</tr>
<tr>
<td>LTV(%)</td>
<td>44</td>
<td>10</td>
</tr>
<tr>
<td>FICO (Credit Bureau Risk) Score</td>
<td>723</td>
<td>64</td>
</tr>
<tr>
<td>Monthly Loan Payment ($)</td>
<td>229</td>
<td>95</td>
</tr>
<tr>
<td>Blue Book Car Value ($)</td>
<td>11,875</td>
<td>4,625</td>
</tr>
<tr>
<td>Loan Amount ($)</td>
<td>4172</td>
<td>1427</td>
</tr>
<tr>
<td>Car Age (Years)</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Loan Age (Months)</td>
<td>12</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description (Units)</th>
<th>Mean</th>
<th>Std. Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>APR(%)</td>
<td>12.64</td>
<td>2.17</td>
</tr>
<tr>
<td>Borrower Age (Years)</td>
<td>40.54</td>
<td>9.98</td>
</tr>
<tr>
<td>Income ($)</td>
<td>2,624</td>
<td>2,102</td>
</tr>
<tr>
<td>Monthly Mortgage Payment/Income (%)</td>
<td>22.84</td>
<td>12.12</td>
</tr>
<tr>
<td>Veraz (Credit Bureau Risk) Score</td>
<td>686</td>
<td>253</td>
</tr>
<tr>
<td>LTV (%)</td>
<td>61</td>
<td>17</td>
</tr>
<tr>
<td>Loan Amount ($)</td>
<td>44,711</td>
<td>27,048</td>
</tr>
<tr>
<td>Years at Current Job</td>
<td>9.43</td>
<td>8.01</td>
</tr>
<tr>
<td>Second House (%)</td>
<td>15.54</td>
<td>5.18</td>
</tr>
<tr>
<td>Car Ownership (%)</td>
<td>73.56</td>
<td>44.11</td>
</tr>
<tr>
<td>Car Value ($)</td>
<td>5,664</td>
<td>13,959</td>
</tr>
<tr>
<td>Gender (Female=1)</td>
<td>30.96</td>
<td>46.24</td>
</tr>
<tr>
<td>Second Income (%)</td>
<td>20.44</td>
<td>40.33</td>
</tr>
<tr>
<td>Married (%)</td>
<td>71.32</td>
<td>45.23</td>
</tr>
<tr>
<td>Married with Two Incomes (%)</td>
<td>16.75</td>
<td>37.34</td>
</tr>
<tr>
<td>Self Employed (%)</td>
<td>13.87</td>
<td>34.57</td>
</tr>
<tr>
<td>Professional Employment (%)</td>
<td>15.78</td>
<td>36.46</td>
</tr>
<tr>
<td>Nonprofessional Employment (%)</td>
<td>52.78</td>
<td>49.93</td>
</tr>
<tr>
<td>Relationship with Bank (%)</td>
<td>10.40</td>
<td>30.52</td>
</tr>
</tbody>
</table>
### Table A5: Small Business Credit Cards APRs

<table>
<thead>
<tr>
<th>Description (Units)</th>
<th>Mean</th>
<th>Std. Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>APR(%)</td>
<td>13.03</td>
<td>5.36</td>
</tr>
<tr>
<td>Borrower Age (Years)</td>
<td>47.24</td>
<td>13.35</td>
</tr>
<tr>
<td>Line Amount ($)</td>
<td>9,623.95</td>
<td>6,057.66</td>
</tr>
<tr>
<td>Total Unsecured Debt</td>
<td>12,627.45</td>
<td>17,760.24</td>
</tr>
<tr>
<td>FICO (Credit Bureau Risk) Score</td>
<td>715.86</td>
<td>55.03</td>
</tr>
<tr>
<td>Mortgage Debt ($)</td>
<td>102,684.70</td>
<td>160,799.57</td>
</tr>
</tbody>
</table>

### Table A6: Age Distribution by Product

<table>
<thead>
<tr>
<th>Product</th>
<th>Age Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10%</td>
</tr>
<tr>
<td>Home Equity Loans</td>
<td>34</td>
</tr>
<tr>
<td>Home Equity Lines</td>
<td>32</td>
</tr>
<tr>
<td>“Eureka”</td>
<td>24</td>
</tr>
<tr>
<td>Credit Card</td>
<td>25</td>
</tr>
<tr>
<td>Auto Loans</td>
<td>27</td>
</tr>
<tr>
<td>Mortgage</td>
<td>34</td>
</tr>
<tr>
<td>Small Business Credit Card</td>
<td>37</td>
</tr>
<tr>
<td>Credit Card Late Fee</td>
<td>25</td>
</tr>
<tr>
<td>Credit Card Over Limit Fee</td>
<td>26</td>
</tr>
<tr>
<td>Credit Card Cash Advance Fee</td>
<td>25</td>
</tr>
</tbody>
</table>