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ABSTRACT 

The performance of a parallel algorithm depends in part on how well the interconnection topology of 
the target parallel system matches the communication patterns of the algorithm. We describe how to gen- 
erate a topology for a network that can be configured into any r-regular topology. The topology generated 
has small total expansion with respect to a given task graph. The expansion of an edge in a task graph is 
the length of the shortest path that the edge maps to in the processor graph. The algorithm used to generate 
the topologies is analyzed and its average case behavior is determined. In addition, this synthesis method is 
compared to the conventional approach of mapping a task graph onto a fixed processor topology. 
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1. Introduction 

The performance of a parallel algorithm depends on how well its communication characteristics 

match the interconnection topology of the parallel system. Since dfferent algorithms exhibit different 

communication patterns, it is important to build a parallel system with an interconnection network that is 

suitable for various communication requirements. One common approach is to connect processors using a 

reconfigurable network. An interconnection network is called reconfigurable if its topology can be altered 

between different algorithm executions or even between different phases of the same algorithm execution. 

Several architectures using reconfigurable networks have been proposed or built, which include the 

MPP [I], CHiP [2], and polymorphic [3] computers. These architectures directly support a variety of com- 

munication topologies and thus provide faster communication for a wider variety of parallel algorithms 

than fixed interconnected architectures such as a hypercube [3]. Each of these architectures, however, 

have limited reconfiguration ability that restricts the class of algorithms that they can effectively execute. 

The class of effectively executed algorithms can be increased by connecting the processors with a r- 

reconfigurable network. A reconfigurable network is called r-reconfigurable if its topology can be config- 

ured into an arbitrary r-regular topology [51. That is, each processor has r communication channels, and 

each channel can be connected to another processor's channel before the execution of the current parallel 

algorithm. We assume that the setup times of communication links are slow compare the execution speeds 

of processors. Thus, once the network has been configured, it remains in that configuration throughout the 

execution of the parallel algorithm. The network can, however, be reconfigured ktween different parallel 

algorithm executions or different phases of the same algorithm execution. 

Given such a r-reconfigurable network, the problem is how to utilize it effectively; that is, how to 

find a network topology that matches the communication requirements of a parallel algorithm. We note 

that there is some debate as to what it means for a network topology to match the communication require- 

ments of an algorithm [6]. In this paper, a parallel algorithm is represented by a task graph. A parallel sys- 

tem with its interconnection network configured to a particular topology is also represented by a processor 

graph. This paper investigates the synthesis problem of finding a processor graph for a give task graph so 

that the total expansion of the given task graph with respect to the processor graph is minimized. The 

expansion of an edge in a task graph is the length of the shortest path that the edge maps to in the processor 

graph. The expansion of an edge is what Rosenberg [7] terms dilation. The total expansion of a task graph 

with respect to a processor graph is the sum of expansions for each edge in the task graph. Minimizing the 

total expansion helps reduce the average delay a message encounters while traversing the network. To 

simplify the problem, we assume that the amount of communication between tasks is uniform and the 



processors of the parallel system are homogeneous. 

Another approach to solve the minimum total expansion problem is to fur the interconnection topol- 

ogy of the parallel system to have a short path between every two processors. Then, the corresponding 

mapping problem is to assign the nodes of a task graph to the nodes of a fixed processor graph so as to 

minimize total expansion [7]. The mapping problem to minimize total expansion is NP-complete [7]. 

Furthermore, even if an optimum mapping from task to processor graph is used, the total expansion might 

be large [a]. In this paper, we also compare the performance of the synthesis approach to that of the map- 

ping approach. 

The paper is organized into four major sections. The next section defines the minimum total expan- 

sion problems and gives complexity and lower bound results. Section 3 presents an algorithm that finds 

sub-optimum solutions to the synthesis problem. Section 3 also describes a set of simulation experiments 

and gives an analysis of the results. Section 4 then compares the synthesis approach to the mapping 

approach. Section 5 describes several different r-reconfigurable networks and Section 6 discusses other 

criteria that can be considered when synthesizing topologies. 

2. Minimizing Total Expansion 

Let G=(V(G),E (G)) be a graph with node set V(G) and edge set E(G). The degree of a node v, 

denoted dc(v), is the number edges in E (G) that are incident with v. A graph G is called r-bounded and r- 

regular if, for every node ve V(G), dG(v)Sr and dG(v)=r respectively. For two nodes u , v ~  G, the length of 

a shortest path between them is denoted IG(u,v). A graph is connected if every pair of nodes are joined by 

a path. For a connected graph G, the total forwarding distance of G, TFD (G), is dcfincd as 

Note that each pair of nodes is counted twice to simplify the discussion in the rest of the paper. The aver- 

age forwarding distance of a n-node graph G, AFD (G), is TFD (G) divided by n (n-1). 

Throughout the paper, G denotes a task graph that represents a parallel algorithm to be exec~lted on 

the parallel system. The nodes in the task graph correspond to individual tasks and an edge between two 

nodes signifies that communication occurs between these two tasks. The parallel system is also 

represented as a graph with nodes corresponding to processors and edges to communication lirks. We say 

that the network of a parallel system with n processors is r-reconfigurable if the processors can be con- 

nected in an arbitrary r-regular graph definable on n nodes. 

Given a task graph and a parallel system with r-reconfigurable network, we describe how to find a 



topology of the network and a mapping from tasks to processors so that the sum of expansions of the edges 

in the task graph is minimized. We assume that r22 to ensure that a connected processor graph can be con- 

structed. Since we assume that the parallel system consists of homogeneous processors, the mapping part 

of the synthesis problem is trivial and therefore an arbitrary mapping is used. We also assume that the 

number of nodes in a task graph equals the number of processors in a parallel system. This problem is 

called the minimum total expansion (MTE) synthesis problem which can be stated as follows: 

Given 

A connected graph G=(V(G) ,E(G))  with n nodes; 

A set of n nodes V ( P ) ;  

A bijective function g : V ( G )  + V ( P ) ;  and 

An integer r 2 2 

Find 

A set of edges E ( P ) ,  where P = (V(P) ,E  ( P ) ]  is a r-regular connected graph, such that 

is minimized. lp(g (u),g ( v ) )  is the expansion of an edge (u,v) in G with g mapping G to P. Note 

that the expansion of an edge is counted twice to be consistent with the definition of TFD. 

An edge ( u , v ) ~  E  ( G )  is called matched if (g (u),g ( v ) ) c E  (P) .  We note that if G is a complete graph, then 

TE (G,P)  = TFD ( P )  for any processor graph P and thus the MTE synthesis problem for complete graphs is 

that of finding an optimal mean distance graph defined by Cerf et a1 [9]. 

As an example of the MTE synthesis problem, consider three graphs G ,  P  and P' in Figure 1. 

Graphs P and P' are 3-regular graphs. Graph P' has a total expansion of 32 with respect to G ,  whereas P 

has a total expansion of 30 which can be shown to be optimal. Therefore, an algorithm for solving the 

MTE synthesis problem should either construct P or fmd another 3-regular graph with total expansion 30 

given graph G as input. 

In contrast to the synthesis problem of finding edges for a processor graph, the mapping problem is 

to assign the nodes of a task graph to the nodes of a processor graph. Given a task graph and a processor 

graph, the problem of finding a mapping that minimizes total expansion is called the MTE mapping prob- 

lem. Briefly stated, the M E  mapping problem is defined as follows: Given two connected graphs G and 

P ,  find a bijective function g : V ( G )  + V ( P )  such that TE (G,P)  is minimized. 



To illustrate the difference between the synthesis and mapping approaches, consider two graphs in 

Figure 2. The left hand graph represents the communication structure of a parallel algorithm where each 

task exchanges information with its two nearest left and right neighbors. A parallel algorithm performing a 

one dimensional convolution would have such a communication structure. The right hand graph 

represents the communication topology of a processor system interconnected in a four nearest neighbor 

toroid. The nodes in this graph are labeled according to a mapping from the task to processor graph. For 

example, node 3 in the task graph is mapped to the processor in row 2, column 1. This particular mapping 

has a total expansion of 36. If the processors were connected with a 4-reconfigurable network, the network 

can be configured to exactly match the task graph since no node in the task graph has more than four 

incident edges. Here, the total expansion is 30 since each edge in the task graph has expansion one. 

2.1. Complexity of the MTE Synthesis Problem 

If r is restricted to 2, any solution to the MTE synthesis problem is a ring graph. Hence, an optimum 

solution to the MTE synthesis problem for a graph G with r restricted to 2 is equivalent to a bijective map- 

ping f from G onto a ring with the property that 

is minimized. Finding a function f that minimizes Eq. (1) is a variant of the NP-complete Optimal Linear 

Arrangement problem [lo] and is also NP-complete [5]. Thus, the MTE synthesis problem is NP-complete 

for fixed r =2. 

2.2. Lower Bound on Total Expansion 

A lower bound on total expansion can be calculated by assuming that, for each node u, the nodes 

adjacent to u in G are at minimal distances from u in P. For instance, if a node in G has degree 11 and P is 

3-regular, then the lower bound is realized if three of the edges have expansion 1, six have expansion 2, 

and the remaining two edges have expansion 3. If this situation holds for every node in the graph, then the 

total expansion is equal to the lower bound. Thus, for each V E  V ( G ) ,  if we let 

k ( v )  
k ( v )  be the least integer such that r C (r-1)' L dG(v) 

and let 

k ( v F 1  
i? ( v )  = dG(v) - r C (r-l)('-') 



then the total expansion of graph G with respect to P is greater than or equal to 

TE,, (G ) = C expansion ( v )  
v e V ( G )  

where 

k(v)-l 
expansion (v) = r C i (r-l)('-') + k ( v )  R (v ) .  

Similarly, a lower bound for TFD (P) can be defined [9]. This is done by defining k ( v )  with respect 

to the number of nodes in the graph instead of the degree of v. Thus, the lower bound on total forwarding 

distance from all the nodes to all other nodes in the graph, TFDb(P), can be expressed as 

where 

k 
k is the least integer such that r C(r-1) '  2 n-1 

i=O 

and 

3. A Heuristic Algorithm for the MTE synthesis Problem 

In a previous paper [6], we investigated how to generate a processor graph that maximizes the 

number of communicating tasks that fall on pairs of directly connected processors. Such a processor graph 

maximizes the number of edges of expansion one. This problem is called the cardinality problem. We 

showed that t!e cardinality problem is NP-complete. In addition, we presented a heuristic algorithm to 

solve the cardinality problem. The algorithm first finds a degree bounded subgraph of the task graph such 

that the subgraph has a maximum number of edges over all degree bounded subgraphs. The degree 

bounded subgraph is found using a graph factoring algorithm [I 11 with complexity 0 (6 l E ( G )  I). The 

subgraph, however, is not necessarily connected and therefore we use an 0 (n I E ( G )  I) heuristic to connect 

the subgraph while insuring that no node has degree greater than r. We showed that the average case per- 

formance of the algorithm was close to optimum. 



We now present a heuristic algorithm for the solution of the MTE synthesis problem. The algorithm 

is based on a hill climbing technique and is outlined in Figure 3. The algorithm starts on a connected 

graph generated by the cardinality synthesis algorithm mentioned above. The algorithm then searches for 

edges in G that have maximum expansion. It chooses randomly one of these edges, call it (x ,y) ,  and adds it 

to P. Since P is regular, an edge incident with x and another edge incident with y must be removed from 

E (P). These edges are also randomly chosen. This process of adding and deleting edges is called a reduc- 

tion step. 

The starting topology is saved as the best topology synthesized so far. After each reduction step, if 

the resultant topology has a TE less than the one stored in best-graph, it becomes the best topology. Oth- 

erwise, a variable poorer is incremented. This hill climbing process is repeated on the topology stored in 

best-graph until poorer reaches a predetermined limit of no-of-tries. It may appear that after the first 

time that the algorithm fails to decrease the TE, subsequent reduction steps would be futile. This, however, 

is not the case since both the added and deleted edges are chosen randomly. Therefore, while one random 

reduction step may not decrease the TE any more, another might. Hence, further reduction steps are tried 

up to a limit defined by no-of-tries. 

The time complexity of the algorithm is bounded by the calculation of fp(g (u),g (v)), that is, the 

shortest path between nodes g (u) and g (v) in P for every edge (u,v) in G. Using a breadth first search 1121 

rooted at each node in P, this can be done in 0 (n IE (P) I )  time. The calculation must be performed after 

every reduction step. 

3.1. Simulation 

To determine the effectiveness of the algorithm, simulation studies were conducted. The algorithm 

was given as input connected random graphs. A random graph is a graph in which the probability of an 

edge between two nodes is fixed. A connected random graph is obtained by generating random graphs 

until a connected one is found. The average number of edges per node in a n node random graph with edge 

probability p is np. Since the algorithm is heuristic, we evaluate its performance with respect to three 

parameters: the number of nodes in a task graph (n), the edge density of a task graph (p) and the degree 

bound of a processor graph (T).  

For the number of nodes, we arbitrarily choose graphs with 24, 48, 64 and 100 nodes. The 

0  FIE (G) I) complexity of factoring combined with the 0 (n IE (P) I )  complexity of the hill climbing 

part of the algorithm limited the maximum size to approximately 100 nodes (approximately 45 minutes of 

CPU time for a 100 node graph on a HF'9000-300 workstation). For the degree bound, we used r=3,6 and 



To determine performance with respect to the density or number of edges in the task graph, a wide 

range of edge probabilities was used starting at ri(n-1). This starting probability insured that the average 

degree of a node in the graph was greater than or equal to r. Tasks graphs in which all nodes have degree 

less than r have trivial optimal solutions. For dense task ,mphs, i.e., p > > r / ( n  -I) ,  the performance of the 

algorithm increases monotonically a sp  approaches 1 as explained in Section 3.2. However, when the aver- 

age degree of a node in the task graph was close to the de,me of a node in the processor graph, the perfor- 

mance is difficult to predict since it f i s t  decreases and then increases as p increases. Therefore, we used 

small increments in probability when the average degree of the task graph was close to r, the degree of a 

node in the processor graph. The actual edge probabilities were chosen to be .15, .2, .25, .35, ... ,.95 for 24 

nodes. .065, .09, .115, .140, .165, .190, .2, .3, ... ,.9 for 38 nodes, .05, .075, . l ,  .125, .15. .175, .2, .3, ... ,.9 

for 64 nodes and .@I, -05, .06, . l ,  .2, ... ,.9 for 100 nodes. 

The algorithm was run on each of the graphs with the consunt no-of-tries set to 3. For each combi- 

nation of n and p, 10 different graphs were used as input and two statistics were collected and averaged. 

The statistics collected were as follows: 

( 1 )  The lower bound on TE given in Eq. (2). 

( 2 )  The TE of the graph generated by the hlTE synthesis algorithm with respect to an input graph. 

The ratio of these two values, (I)/(?),  is plotted in Figure 1 for all combinations of n and r. The ratio 

for r=3 is plotted as a solid line, r=6 as a dotted line and r=8 as a dashed line. 

3.2. Expected Performance 

This section explains the performance of the MTE synthesis algorithm by assuming that all 

unmatched edges in the task graph have expansion equal to the AFD of the synthesized gnph. n u s ,  if the 

AFD of the synthesized graph and the number of matched edges can be predicted, then the performance of 

the algorithm can also be predicted. 

Given G and r ,  let TE,,(G) be the TE of thz graph generated by an optimal hIT'E synthesis algorithm 

with respcct to G. To evaluate the goodness of our algorithm, we wish to determine the value of the ratio 

TE,,(G)/TE(G,P) for thc gnph P synthesized by the XI?F; synthesis algorithm. The value of TE,,(G) is 

boundcd below by TEQ(G) given in Eq. (2). The expected value for thc denominator can be estimatcci as 

follows: 



Proposition 

The expected value of the denominator is 

- 
E [TE(G,P)] = 2(E[IE,(G,P)I] +AFD(P)(IE(G) I-E [IE,(G,P)I])). 

where 

is the total forwarding distance attributable to those edges that are not in P, 

and E [ I  E,(G,P) I ]  is the expected number of matched edges. 

Justification 

Each matched edge in E,(G,P) increases the TE by one. Each edge (u,v)€E(G) such that 

(g (u),g ( v ) ) ~  E (P) defines a random variable L(u,,)=k(u,v). Since G is random, the random vari- 

ables L(, , )  are independent. Using the central limit theorem, it can be shown that the mean of the 
- 

LC,,) random variables is AFD(P). Since expected values sum linearly, the expected value of the 

sum of these expansions is 

E(P)(IE(G) I-E [IE,(G,P)I]). 

Hence, the ratio of the lower bound on TE to that actually achieved can be expressed as 

3.2.1. AFD of Synthesized Topologies 

The value of Eq. (5) depends in part on the AFD of the synthesized graph. To determine an expected 

value for AFD, we compared the AFD of the graphs synthesized by our algorithm to the AFD of random 

regular graphs. The average AFD of a random regular graph was determined by generating 100 random 

regular graphs [13] and averaging their AFD. Results for the r-8 case were not obtained since the random 



graph generating algorithm was slow due to its time complexity which is exponential in r. Using a 

HP9000-300 workstation, 12 hours of CPU time was required to generate one 8-regular random graph on 

100 nodes. 

The results of the study showed that the ratio of the AFD of the graphs synthesized by the MTE syn- 

thesis algorithm to the AFD of random regular graphs is not higher than 1.007 for low edge probability task 

graphs and not lower than .93 for high edge probability graphs. Therefore, we assume that the AFD of a 

graph synthesized by the MTE synthesis algorithm can be approximated by the AFD of a random regular 

graph. 

3.2.2. Random Regular Graphs 

Since the AFD of the synthesized topologies is close to that of random regular graphs, we studied the 

AFD of random regular graphs. In this study, random regular graphs with a relatively large number of 

nodes were generated and the AFD of each graph was calculated. More specifically, 3.4 and 6-regular 

graphs with n ranging from 24 to 1000 were generated using the algorithm described by Wormald [13] and 

their AFD calculated. Table 1 shows the average and variance of the AFD. The 24,48,64 and 100 node 

graphs were generated to predict the expected performance of the synthesis algorithm; the graphs with 

greater than 100 nodes were generated to determine how the AFD of random regular graphs increased with 

graph size. 

In addition to calculating the AFD, a lower bound on AFD was calculated. The lower bound on 

AFD, AFDlb(P), is equal to TFDlb(P) divided by n (n -l), the number of edges in a complete graph. Table 

1 gives this bound for each n and r that a random regular graph was generated for. The fourth row of the 

table is the ratio of the AFD for the generated random regular graphs to the lower bound on AFD. 

Table 1 shows that the ratio of the AFD of a random regular graph to the lower bound on AFD is less 

than 1.135. The variance ~f order implies that the ratio is typical of random regular graphs. This 

result shows that random regular graphs have a AFD that is within 14% of a lower bound for AFD. Thus, 

if one wants a r-regular topology with small AFD, simply generate a random regular graph. Much work in 

the field of interconnection network design has centered on the problem of designing such graphs [14]; this 

result shows that random regular graphs are very good interconnection networks with respect to AFD. 

The reasons why random regular graphs have an AFD close to the lower bound on AFD can be 

explained as follows. We note that if a graph has an AFD equal to the lower bound, then each node in the 

graph looks like the root of a r-tree [15]. In this way a maximum number of nodes can be packed at a 

minimum distance from a given node. Edges must be added to the leaf nodes of the tree to make it into a 



r-regular graph. The added edges must ensure that every node in the graph have the same tree Iike struc- 

ture. This tree Iike structure implies that the smallest cycle in a minimum AFD graph is size 0 (log,n). If 

the graph has a cycle smaller than this, there exist nodes in the graph that do not have the tree structure. At 

these nodes, fewer nodes are packed at a minimal distance away and hence the graph has a larger AFD. 

Therefore, for a fmed n and r, the AFD of a regular graph increases with the number of small cycles. 

To determine the expected AFD of a random regular graph, the expected number of small cycles 

must be known. BoIlobas [l6] and Wormald [17] have independently studied the expected number of 

small cycles in random regular graphs. They showed that, for any fixed i, the expected number of i-cycles 

in a random r-regular graph is Poisson distributed with mean (r-1)'/2i as the number of nodes in the graph 

approaches infinity. This number is independent of n, assuming that n is large. Therefore, the number of i 

cycles remains constant as n increases. This implies that the ratio of the expected AFD t the lower bound 

should approach 1 as n increases. However, the simulation results given in Table 1 show that the ratio is 

neither strictly increasing nor decreasing as n is increased. This result can be partially explained by the 

asymptotic nature of the theorem of Bollobas and Wormald giving the expected number of small cycles. 

The theorem holds only as n approaches infinity. For instance, a 24 node graph may have zero 6-cycles 

whereas a 1000 node gnph may have the predicted number. Another factor that affects the AFD is the 

manner in which the cycles overlap [5]. Since we have not been able to predict the effects of cycle over- 

lap, a closed form equation for expected ratio of generated AFD to the lower bound on AFD has not been 

developed. 

3.2.3. Comparison of Predicted and Simulation Results 

- 
To compute E [TE (G,P)I and thus Eq. (5). we need to estimate E [ I E,(G,P) I ]  and AFD(P). Let c 

be defined as 

We note that E i i E,(G,P j i]I c since c is an upper bound on cardinaiity. As was shown using the cardinal- 

ity synthesis algorithm [6], c is almost always (probability approachs 1 as the number of nodes in the graph 

approaches infinity) [18] equal to El [E,(G,P) I]. The simulation results (those comparing the AFD of the 

synthesized topology to that of random regular graphs and Table 1) show that AFD (P) can be approxi- 

mated by z*AFDlb for a small constant z (where z is a function of n and r). Since 

- 
AFD (P) = 

n (n - 1)AFD (P)-nr 
n (n -1)-nr ' 



- 
AFD(P) can be estimated by 

- zn (n -l)AFDlb(P )-nr 
AFD ( P )  = 

n (n -1)-nr 

Figure 5 is a plot of Eq. (5)  for the graphs used in the 24 and 100 node simulation. For the r=3 plots 

z was set to 1.13. This was the ratio of the TFD of a random regular graph to the lower bound on TFD for 

both the 24 and 100 node cases. As was mentioned, generating random 8-regular graphs took 12 hours of 

CPU time on a HP9000-300 workstation due to the exponential complexity of the generation algorithm. 

Thus, for the r=8 plots we used an estimate for r of 1.05 for n=24 and z=1.035 for n=100. These values 

were obtained by extrapolating from the r=3,4 and 6 values. 

The predicted and generated plots in Figure 5 have the same shape. That is, the ratio decreases to a 

minimum as the edge probability increases, and then the ratio increases to the value used for z as the input 

graph approaches a complete graph. The value of r affects how far the ratio decreases. The differences 
- 

between the predicted and achieved values in the plots are caused by the estimate for AFD (P) .  

4. Mapping to Reduce TE 

The problem of finding mappings that minimize communication delay is an area of active research in 

the field of parallel processing. Rosenberg and Synder [7,19] defined the mapping problem in terms of 

total expansion and presented lower bound results together with specific mappings for a variety of task and 

processor graph topologies. Bokhari [20] presented a hill climbing algorithm for solving the cardinality 

mapping problem. Fukunaga, Yamada and Kasai [21] modeled the task and processor graphs as hyper- 

graphs and then used a relaxation technique to find maximum cardinality mappings. Napolitano 1221 used 

minimum bandwidth mappings to line graphs to find both minimum total and minimum maximum expan- 

sion mappings. In these last two papers the algorithms were compared to hill climbing as implemented by 

Bokhari for the respective optimization criteria. In both cases, the quality of the mappings found were 

approximately equal. The advantage of the algorithms over hill climbing were primarily speed. Therefore, 

to compare the TE of synthesis approach to the TE achievable through the mapping approach, we imple- 

mented a modified version of the algorithm developed by Bokhari [20]. It is similar to the MTE synthesis 

algorithm since both are based on a hill climbing heuristic. 

The algorithm starts with a randomly chosen mapping and then examines all pairwise exchanges of 

two nodes to see if any exchange decreases the TE. The exchange, if it exists, that reduces the TE the most 

is then selected. Exchanges occur until no further reduction in TE is possible. At this point the mapping is 

randomly perturbed and the hill climbing procedure repeats again. After the first perturbation, if the hill 



climbing procedure gets stuck in a local optimum with TE greater than the best mapping found so far, the 

algorithm terminates. 

4.1. Simulation 

The algorithm was used to map the 24.64 and 100 node random task graphs described in Section 3.1 

onto fixed topology processor graphs. The processor graphs for r -3  experiments had small TFD. For the 

n=24, r=3 case, the graph given by Cerf et. al. [15] was used. This graph has a TFD equal to the lower 

bound for TFD. For the 64 and 100 node, -3 cases, the graphs were generated using simulated annealing 

according to a procedure given in the fist author's dissertation [5] .  The TFD of the 64 node graph was 

1.4% higher than the lower bound on TFD, and the TFD of the 100 node graph was 2.8% higher. The r-8 

experiments used an 8-nearest neighbor torus as a processor graph. These graphs had TFDs that were 

10.6%, 45.7% and 48.4% higher than the lower bound for the n=24, 64 and 100 cases respectively. The 

algorithm was also used to map the 64 node task graphs onto a 64 node hypercube. The hypercube has a 

TFD that is 25.5% higher than the lower bound. 

The results of the simulation are plotted in Figure 6. The solid line is the ratio of the lower bound on 

TE to synthesized TE. The dotted line is the same ratio computed for the mapping algorithm. 

4.2. Comparison to Synthesis 

For the r-3 set of experiments, the mapping algorithm produces results that are approximately 5% to 

10% better in terms of TE for all but the lowest probability task graphs (p=ri(n -1)). At the low probabili- 

ties, more edges are matched by the synthesis algorithm and hence it performs better than the mapping 

method. As the task graphs became denser, however, the mapping algorithm outperforms the synthesis 

algorithm. This occurred since the processor graphs used for mapping have TFD that is only 0% to 2.8% 

higher than the lower bound on TFD, whereas the graphs synthesised by the synthesis algorithm have TFDs 

that were approximately 10% higher than the lower bound. 

For the r=6 and 8 mapping experiments, she graphs produced by ihe synthcsis algorithm had srndier 

TFD than those used for mapping for all probabilities. The TFD of the processor graphs used for the map- 

ping experiments ranged from 10.6% to 48.4% higher than the lower bound. Since thc TFD of the graphs 

synthesized by the MTE algorithm were always less than 10% higher than the lower bound, the TE of the 

synthesized topologies was less than that found by the mapping algorithm. 

In summary, if a network topology with a TFD within approximately 0% to 10% of the lower bound 

is known, the mapping algorithm will perform better than our blTE algorithm for all but sparse graphs. For 



sparse graphs, the synthesis algorithm performs better. However, graphs with small TFD are known for 

only a small subset of n and r [14,15]. Furthermore, the technique used for generating the processor 

graphs for the r=3, n=64, 100 cases requires an inordinate amount of computation time; for example, 36 

hours of CPU time on a HP9000-300 workstation were needed to generate a 100 node, r-3 graph. Thus, 

the technique is limited to relatively small graphs. 

5. Implementation of r-reconfigurable Networks 

We have shown that through the use of a r-reconfigurable network, a better match between a parallel 

task and processor system can be achieved. Constructing a r-reconfigurable network for n processors 

requires r copies of a n line pernlutation network. If electronic components are used to implement the per- 

mutation networks, either n2 components (crossbar network) or complex wiring patterns (baseline net- 

work) are needed to implement the network. In contrast, we have investigated a r-reconfigurable network 

based on optical components [23]. The network has the potential for connecting up to 1,000 processors 

using only 0 (nr) components. A n  line permutation network consists of n optical sources, n electronically 

controllable optical deflectors (such as acousto-optic deflectors or mirrors mounted on servo motors) and n 

photosensitive detectors. Each processor sends data to its optical source for transmission and the address 

of the target processor to its deflector. The output of the optical source is directed to its corresponding 

deflector. The deflector steers the beam to the detector of the marget processor. The data received by the 

detector is demodulated and sent to the target processor. Since laser beams do not interfere, any permuta- 

tion of inputs to outputs can be formed. Due to the switching time of the deflectors reconfiguration time is 

limited to approximately 10 milliseconds for mirrors and 2 microseconds for acousto-optic deflectors. 

There are also other networks that could be used as a r-reconfigurable network. Sawchuk, Jenkins 

and Raghavendra [24] describe an optical crossbar based on a spatial light modulator. Like our network, 

this network has a reconfiguration time in the millisecond range and therefore could be used as a r- 

reconfigurable network. In addition, Meiko Incorporated 1251 is packaging the Inmos Transputer [26] in a 

cmpr?ter spsferr! that allows rnm.~a! ~ c e ~ f i g w a t i o ~  of the network topology. Since each mnspuiei has 

four i/o links, the processors in the system can be configured into any 4-regular graph. 

6. Discussion and Summary 



6.1. Dynamic Behavior 

Up to this point the synthesis algorithm has been defined with respect to the static graph property of 

total expansion. The next question is what effect total expansion has on average message delay at run time. 

To answer this question we developed a queueing model which was used to calculate the average message 

delay through the network given a particular routing procedure, a traffic load between processors, and the 

task and processor topologies [ 5 ] .  Using shortest path routing, the model showed that average message 

delay is a linear (unit slope) function of total expansion as long as the network was lightly loaded. 

As the traffic load to the network increases, one or more processors in the network are forced to for- 

ward many messages. Hence, messages passing through these heavily loaded processors incur large 

delays, even if the number of processors through which a message is forwarded is small. Therefore, under 

heavy loading conditions the average message delay through the network is no longer a linear function of 

total expansion but instead is dominated by the average delay through the most heavily loaded queue in the 

network. 

To minimize the delay caused by congestion, a more sophisticated routing scheme needs to be used. 

The problem of routing messages through a fixed network to minimize congestion is well stu- 

died [27,28,29]. Most of the algorithms to solve the routing problem start with a shortest path routing 

scheme. Therefore, it seems likely that a processor graph with small TE will provide smaller average mes- 

sage delays than processor graphs with larger TE. 

6.2. Other Optimization Techniques and Criteria 

In this paper we have taken the approach of generating a processor graph with small total expansion 

for a given task graph. The dynamic models show that routing is also an important factor in determining 

average message delay. Thus, an alternate means of synthesizing topologies would entail generating pro- 

cessor graphs for which messages could be routed evenly among the processors along with minimizing the 

total expansion. To be effective, such an approach would require that the amount of traffic between pro- 

cessors k known. This could be accomp5shed if the edges in t ! e  task graph we:e weighted accarding to 

the amount of traffic that passed between the tasks. Given the amount of traffic flowing between proces- 

sors, the problem of choosing the right combination of routing function and processor topology seems to be 

a difficult problem due to the complex interplay between topology and routing function. This problem 

might be formulated in terms of finding a minimum forwarding index routing [30]. For a given set of 

source-destination pairs, a minimum forwarding index routing is a routing that minimizes the maximum 

number of paths that pass through any given vertex. Further research is needed to determine whether such 



an approach can provide better results than the approach of f'ust synthesizing a small total expansion pro- 

cessor graph and then determining an optimum route through that graph. 

We have attempted in this paper to reduce average message delay. An alternative would be to 

reduce the maximum delay that any one message might encounter. Here, an optimization criteria that 

minimizes the maximum length that any one edge gets expanded could be used. This problem is different 

than the total expansion problem since an optimum solution for one criteria is not necessarily an optimum 

solution for the other. Nevertheless, a hill climbing heuristic similar to the one given in this paper could 

be used to find a processor graph with small maximum expansion. We have implemented such a heuris- 

tic [5] and its simulation results are summarized as follows: For dense random task graphs, the synthesis 

approach produces smaller maximum expansion than the similar mapping approach unless a static regular 

processor graph with a diameter within 35% of the Moore bound [I41 is used. For sparse random task 

graphs, the synthesis algorithm generates smaller maximum expansion than mapping, even if the the pro- 

cessor graph used for the mapping approach has diameter close to the Moore bound. 

This paper used a hill climbing for finding small total expansion processor graphs. As an alternative, 

we could have used a probabilistic hill climbing technique known as simulated annealing 1311. Using 

simulated annealing, perturbations that do not improve the criteria function are made according to a time 

dependent parameter. In this manner, jumps out of local optima can be made. Simulated annealing has 

been shown be be more effective than hill climbing for the cardinality mapping problem [5].  Similar 

results might hold for the total expansion mapping problem but we have not conducted any such experi- 

ments since the cost of evaluating the effect of a perturbation precludes the use of simulated annealing, 

which requires the large number of trial perturbations. Therefore, in this paper we have chosen to compare 

the synthesis and mapping techniques through the use of a simple hill climbing algorithm. 

6.3. Summary 

We presented an algorithm to synthesize r-regular processor topologies that have small TE with 

respct to a given task graph. In addition, we compared the performance to a similar mapping algorithm. 

The performance of the MTE synthesis algorithm presented can be explained by assuming that all of the 

unmatched edges in the task graph have an expansion equal to the average forwarding distance of the syn- 

thesized topology. It appears that the synthesized topologies have TFD that are approximately equal to the 

TFD of random regular graphs. Simulation studies show that the TFD of random regular graphs is close to 

the lower bound on TFD, which explains why the MTE synthesis algorithm generates topologies that have 

TE close to the lower bound on TE. In comparison to mapping, the synthesis results are better unless a 



topology with a TFD within 10% of the lower bound is known. In this case, mapping is better except for 

sparse random graphs. We note that if an optimum synthesis algorithm for the MTE synthesis problem is 

known, it should always produce results at least as good as any mapping algorithm used with any fixed pro- 

cessor topology. 
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Figure 1. A S ythesis Example 



Figure 2. Synthesis vs. Mapping 



input = a connected graph G, and an integer r22 
output = a r-regular connected graph bestsaph 

bes tsaph := An r-regular connected graph generated by the cardinality algorithm 
poorer := 0 
while (poorer < no-of-tries) do 

P := bestzaph 
Calculate lp(g (u),g (v)) for all (U,V)E E (G) 
max-expansion := maximum lp(g (u),g (v)) for all (u,v)EE (G) 
max-edges := ((u,v):(u,v)~E (G) and lp(g (u),g (v))= max-expansion] 
(x,y) := an edge chosen with equal probability from max-edges 
x-edges := ((x,w):(x,w)~ E (P)) 
y-edges := {Ol,w):Ol,w>~E (PI} 
(x,x-delete) := an edge chosen with equal probability from x-edges 
b,y-delete) := an edge chosen with equal probability from y-edges 
P = {V(P),E (P)u(x,y)u(x-delete,y-delete)) 
P = (V(P),E (P)-(x,x-delete)-(y,y-delete)} 
if total-expansion(G,P) I total-expansion(G, bes tmph)  then 

bestxaph := P 
poorer := 0 

else 
poorer := poorer + 1 

end if 
end while 

Figure 3. A Hill Climbing Heuristic to Reduce TE 



Solid - Lower Bound TE / TE algorithm TE, r-3 
Dotted - Lower Bound TE / TE algorithm TE, 7=6 
Dashed - Lower Bound TE / TE algorithm TE, r-S 

Figure 4. Compxison of TE Ratios 





Solid - r =3, Predicted 
Dotted - r =8, Predicted 
Dashed - TE from Simulation 

Figure 5. Predicted vs. Simulated Ratios 



X axis - Probability 
Y axis - TElb(G) l TE (G,P) 
Solid - Synthesis Ratios 
Dotted - Mapping Ratios 

Figure 6. Synthesis vs. Mapping 



X axis - Probability 
Y axis - TElb(G) I TE (G,P) 
Solid - Synthesis Ratios 
Dotted - Mapping Ratios 

Figure 6. (Continued) 
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