A Risk Comparison of Ordinary Least Squares vs Ridge Regression

Paramveer S. Dhillon
University of Pennsylvania

Dean P. Foster
University of Pennsylvania

Sham M. Kakade
University of Pennsylvania

Lyle Ungar
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/statistics_papers

Part of the [Computer Sciences Commons](https://repository.upenn.edu/statistics_papers)

Recommended Citation

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/statistics_papers/135
For more information, please contact repository@pobox.upenn.edu.
A Risk Comparison of Ordinary Least Squares vs Ridge Regression

Abstract
We compare the risk of ridge regression to a simple variant of ordinary least squares, in which one simply projects the data onto a finite dimensional subspace (as specified by a principal component analysis) and then performs an ordinary (un-regularized) least squares regression in this subspace. This note shows that the risk of this ordinary least squares method (PCA-OLS) is within a constant factor (namely 4) of the risk of ridge regression (RR).

Keywords
risk inflation, ridge regression, pca

Disciplines
Computer Sciences
A Risk Comparison of Ordinary Least Squares vs Ridge Regression

Paramveer S. Dhillon
Department of Computer and Information Science
University of Pennsylvania
Philadelphia, PA 19104, USA
DHILLON@CIS.UPENN.EDU

Dean P. Foster
Department of Statistics
Wharton School, University of Pennsylvania
Philadelphia, PA 19104, USA
FOSTER@WHARTON.UPENN.EDU

Sham M. Kakade
Microsoft Research
One Memorial Drive
Cambridge, MA 02142, USA
SKAKADE@MICROSOFT.COM

Lyle H. Ungar
Department of Computer and Information Science
University of Pennsylvania
Philadelphia, PA 19104, USA
UNGAR@CIS.UPENN.EDU

Editor: Gabor Lugosi

Abstract

We compare the risk of ridge regression to a simple variant of ordinary least squares, in which one simply projects the data onto a finite dimensional subspace (as specified by a principal component analysis) and then performs an ordinary (un-regularized) least squares regression in this subspace. This note shows that the risk of this ordinary least squares method (PCA-OLS) is within a constant factor (namely 4) of the risk of ridge regression (RR).

Keywords: risk inflation, ridge regression, pca

1. Introduction

Consider the fixed design setting where we have a set of n vectors $X = \{X_i\}$, and let X denote the matrix where the i^{th} row of X is X_i. The observed label vector is $Y \in \mathbb{R}^n$. Suppose that:

$$Y = X\beta + \epsilon,$$

where ϵ is independent noise in each coordinate, with the variance of ϵ_i being σ^2.

The objective is to learn $\mathbb{E}[Y] = X\beta$. The expected loss of a vector $\hat{\beta}$ estimator is:

$$L(\hat{\beta}) = \frac{1}{n} \mathbb{E}_Y[\|Y - X\hat{\beta}\|^2],$$

Let $\hat{\beta}$ be an estimator of β (constructed with a sample Y). Denoting

$$\Sigma := \frac{1}{n}X^T X,$$
we have that the risk (i.e., expected excess loss) is:

$$\text{Risk}(\hat{\beta}) := \mathbb{E}_{\hat{\beta}}[L(\hat{\beta}) - L(\beta)] = \mathbb{E}_{\hat{\beta}}\|\hat{\beta} - \beta\|^2_2,$$

where \(\|x\|_\Sigma = x^T \Sigma x\) and where the expectation is with respect to the randomness in \(Y\).

We show that a simple variant of ordinary (un-regularized) least squares always compares favorably to ridge regression (as measured by the risk). This observation is based on the following bias variance decomposition:

$$\text{Risk}(\hat{\beta}) = \underbrace{\mathbb{E}\|\hat{\beta} - \bar{\beta}\|^2_2}_{\text{Variance}} + \underbrace{\|\bar{\beta} - \beta\|^2_2}_{\text{Prediction Bias}},$$

(1)

where \(\bar{\beta} = \mathbb{E}[\hat{\beta}]\).

1.1 The Risk of Ridge Regression (RR)

Ridge regression or Tikhonov Regularization (Tikhonov, 1963) penalizes the \(\ell_2\) norm of a parameter vector \(\beta\) and “shrinks” it towards zero, penalizing large values more. The estimator is:

$$\hat{\beta}_\lambda = \arg\min_{\beta} \{\|Y - X\beta\|^2 + \lambda \|\beta\|^2\}.$$

The closed form estimate is then:

$$\hat{\beta}_\lambda = (\Sigma + \lambda I)^{-1} \left(\frac{1}{n} X^T Y\right).$$

Note that

$$\hat{\beta}_0 = \hat{\beta}_{\lambda=0} = \arg\min_{\beta} \{\|Y - X\beta\|^2\},$$

is the ordinary least squares estimator.

Without loss of generality, rotate \(X\) such that:

$$\Sigma = \text{diag}(\lambda_1, \lambda_2, \ldots, \lambda_p),$$

where the \(\lambda_j\)’s are ordered in decreasing order.

To see the nature of this shrinkage observe that:

$$[\hat{\beta}_\lambda]_j := \frac{\lambda_j}{\lambda_j + \lambda} [\hat{\beta}_0]_j,$$

where \(\hat{\beta}_0\) is the ordinary least squares estimator.

Using the bias-variance decomposition, (Equation 1), we have that:

Lemma 1

$$\text{Risk}(\hat{\beta}_\lambda) = \frac{\sigma^2}{n} \sum_j \left(\frac{\lambda_j}{\lambda_j + \lambda}\right)^2 + \sum_j \beta_j^2 \frac{\lambda_j}{(1 + \frac{\lambda_j}{\lambda})^2}.$$

The proof is straightforward and is provided in the appendix.
2. Ordinary Least Squares with PCA (PCA-OLS)

Now let us construct a simple estimator based on λ. Note that our rotated coordinate system where Σ is equal to $\text{diag}(\lambda_1, \lambda_2, \ldots, \lambda_p)$ corresponds the PCA coordinate system.

Consider the following ordinary least squares estimator on the “top” PCA subspace — it uses the least squares estimate on coordinate j if $\lambda_j \geq \lambda$ and 0 otherwise

$$\hat{\beta}_{\text{PCA}, \lambda} = \begin{cases} \hat{\beta}_j & \text{if } \lambda_j \geq \lambda \\ 0 & \text{otherwise} \end{cases}.$$

The following claim shows this estimator compares favorably to the ridge estimator (for every λ)—no matter how the λ is chosen, for example, using cross validation or any other strategy.

Our main theorem (Theorem 2) bounds the Risk Ratio/Risk Inflation\(^1\) of the PCA-OLS and the RR estimators.

Theorem 2 (Bounded Risk Inflation) For all $\lambda \geq 0$, we have that:

$$0 \leq \frac{\text{Risk}(\hat{\beta}_{\text{PCA}, \lambda})}{\text{Risk}(\hat{\beta}_\lambda)} \leq 4,$$

and the left hand inequality is tight.

Proof Using the bias variance decomposition of the risk we can write the risk as:

$$\text{Risk}(\hat{\beta}_{\text{PCA}, \lambda}) = \sigma^2 \frac{1}{n} \sum_j 1_{\lambda_j \geq \lambda} + \sum_{j: \lambda_j < \lambda} \lambda_j \beta_j^2.$$

The first term represents the variance and the second the bias.

The ridge regression risk is given by Lemma 1. We now show that the j^{th} term in the expression for the PCA risk is within a factor 4 of the j^{th} term of the ridge regression risk. First, let’s consider the case when $\lambda_j \geq \lambda$, then the ratio of j^{th} terms is:

$$\frac{\sigma^2}{n} \left(\frac{\lambda_j}{\lambda_j + \lambda}\right)^2 + \beta_j^2 \frac{\lambda_j}{(1 + \frac{\lambda_j}{\lambda})^2} \leq \frac{\sigma^2}{n} \left(\frac{\lambda_j}{\lambda_j + \lambda}\right)^2 = \left(1 + \frac{\lambda_j}{\lambda}\right)^2 \leq 4.$$

Similarly, if $\lambda_j < \lambda$, the ratio of the j^{th} terms is:

$$\frac{\lambda_j \beta_j^2}{\sigma^2 \left(\frac{\lambda_j}{\lambda_j + \lambda}\right)^2 + \beta_j^2 \frac{\lambda_j}{(1 + \frac{\lambda_j}{\lambda})^2}} \leq \frac{\lambda_j \beta_j^2}{\lambda_j \beta_j^2 \left(1 + \frac{\lambda_j}{\lambda}\right)^2} = \left(1 + \frac{\lambda_j}{\lambda}\right)^2 \leq 4.$$

Since, each term is within a factor of 4 the proof is complete. \(\blacksquare\)

It is worth noting that the converse is not true and the ridge regression estimator (RR) can be arbitrarily worse than the PCA-OLS estimator. An example which shows that the left hand inequality is tight is given in the Appendix.

\(^1\) Risk Inflation has also been used as a criterion for evaluating feature selection procedures (Foster and George, 1994).

1507
3. Experiments

First, we generated synthetic data with $p = 100$ and varying values of $n = \{20, 50, 80, 110\}$. The data was generated in a fixed design setting as $Y = X\beta + \varepsilon$ where $\varepsilon_i \sim \mathcal{N}(0,1)$ $\forall i = 1, \ldots, n$. Furthermore, $X_{n \times p} \sim \text{MVN}(\mathbf{0}, \mathbf{I})$ where MVN(μ, Σ) is the Multivariate Normal Distribution with mean vector μ, variance-covariance matrix Σ and $\beta_j \sim \mathcal{N}(0,1)$ $\forall j = 1, \ldots, p$.

The results are shown in Figure 1. As can be seen, the risk ratio of PCA (PCA-OLS) and ridge regression (RR) is never worse than 4 and often its better than 1 as dictated by Theorem 2.

Next, we chose two real world data sets, namely USPS ($n=1500$, $p=241$) and BCI ($n=400$, $p=117$).

Since we do not know the true model for these data sets, we used all the n observations to fit an OLS regression and used it as an estimate of the true parameter β. This is a reasonable approximation to the true parameter as we estimate the ridge regression (RR) and PCA-OLS models on a small subset of these observations. Next we choose a random subset of the observations, namely $0.2 \times p$, $0.5 \times p$ and $0.8 \times p$ to fit the ridge regression (RR) and PCA-OLS models.

The results are shown in Figure 2. As can be seen, the risk ratio of PCA-OLS to ridge regression (RR) is again within a factor of 4 and often PCA-OLS is better, that is, the ratio < 1.

4. Conclusion

We showed that the risk inflation of a particular ordinary least squares estimator (on the “top” PCA subspace) is within a factor 4 of the ridge estimator. It turns out the converse is not true — this PCA estimator may be arbitrarily better than the ridge one.

Appendix A.

Proof of Lemma 1. We analyze the bias-variance decomposition in Equation 1. For the variance,

$$
\mathbb{E}_{Y} ||\hat{\beta}_\lambda - \bar{\beta}_\lambda||^2 \Sigma
= \sum_j \frac{\lambda_j}{(\lambda_j + \lambda)^2} \frac{1}{n^2} \mathbb{E} \left[\sum_{i=1}^{n} (Y_i - \mathbb{E}[Y_i]) [X_i]_j \sum_{i' = 1}^{n} (Y_{i'} - \mathbb{E}[Y_{i'}]) [X_{i'}]_j \right]
= \sum_j \frac{\lambda_j}{(\lambda_j + \lambda)^2} \frac{\sigma^2}{n} \sum_{i=1}^{n} \text{Var}(Y_i) [X_i]_j^2
= \sum_j \frac{\lambda_j}{(\lambda_j + \lambda)^2} \frac{\sigma^2}{n} \sum_{i=1}^{n} [X_i]_j^2
= \frac{\sigma^2}{n} \sum_j \frac{\lambda_j^2}{(\lambda_j + \lambda)^2}.
$$

2. The details about the data sets can be found here: http://olivier.chapelle.cc/ssl-book/benchmarks.html.
A Risk Comparison of Ordinary Least Squares vs Ridge Regression

Figure 1: Plots showing the risk ratio as a function of λ, the regularization parameter and n, for the synthetic data set. $p=100$ in all the cases. The error bars correspond to one standard deviation for 100 such random trials.

Figure 2: Plots showing the risk ratio as a function of λ, the regularization parameter and n, for two real world data sets (BCI and USPS—top to bottom).
Similarly, for the bias,

\[\|\hat{\beta}_\lambda - \beta\|_2^2 = \sum_j \lambda_j ((\hat{\beta}_\lambda)_j - [\beta]_j)^2 \]

\[= \sum_j \beta_j^2 \lambda_j \left(\frac{\lambda_j}{\lambda_j + \lambda} - 1 \right)^2 \]

\[= \sum_j \beta_j^2 \frac{\lambda_j}{(1 + \frac{\lambda_j}{\lambda})^2}, \]

which completes the proof.

The risk for RR can be arbitrarily worse than the PCA-OLS estimator.

Consider the standard OLS setting described in Section 1 in which \(X \) is \(n \times p \) matrix and \(Y \) is a \(n \times 1 \) vector.

Let \(X = \text{diag}(\sqrt{1+\alpha}, 1, \ldots, 1) \), then \(\Sigma = X^T X = \text{diag}(1+\alpha, 1, \ldots, 1) \) for some \(\alpha > 0 \) and also choose \(\beta = [2+\alpha, 0, \ldots, 0] \). For convenience let’s also choose \(\sigma^2 = n \).

Then, using Lemma 1, we get the risk of RR estimator as

\[
\text{Risk}(\hat{\beta}_\lambda) = \left(\frac{1+\alpha}{1+\alpha+\lambda} \right)^2 + \left(\frac{p-1}{(1+\lambda)^2} \right) + (2+\alpha)^2 \times \frac{(1+\alpha)}{(1+\frac{1+\alpha}{\lambda})^2}.
\]

Let’s consider two cases

- **Case 1**: \(\lambda < (p-1)^{1/3} - 1 \), then \(II > (p-1)^{1/3} \).

- **Case 2**: \(\lambda > 1 \), then \(1 + \frac{1+\alpha}{\lambda} < 2 + \alpha \), hence \(III > (1+\alpha) \).

Combining these two cases we get \(\forall \lambda, \text{Risk}(\hat{\beta}_\lambda) > \min((p-1)^{1/3}, (1+\alpha)) \). If we choose \(p \) such that \(p - 1 = (1+\alpha)^3 \), then \(\text{Risk}(\hat{\beta}_\lambda) > (1+\alpha) \).

The PCA-OLS risk (From Theorem 2) is:

\[
\text{Risk}(\hat{\beta}_{\text{PCA},\lambda}) = \sum_j 1_{\lambda_j \geq \lambda} + \sum_{j: \lambda_j < \lambda} \lambda_j \beta_j^2.
\]

Considering \(\lambda \in (1, 1+\alpha) \), the first term will contribute 1 to the risk and rest everything will be 0. So the risk of PCA-OLS is 1 and the risk ratio is

\[
\frac{\text{Risk}(\hat{\beta}_{\text{PCA},\lambda})}{\text{Risk}(\hat{\beta}_\lambda)} \leq \frac{1}{(1+\alpha)}.
\]

Now, for large \(\alpha \), the risk ratio \(\approx 0 \).
References
