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FiG. 1. The “no decision” region, as a function of 1, for testing Hy: 6 = 1 versus H;: 6 = 2 under equal
prior probabilities.

where I'(n, t) = (1/T\(n)) f; y"~lexp{—y}dy is the incomplete Gamma function.

Consider, first, the effect of /, the loss ratio /; /l. For the special case n = 1,
Fo(b) = (b,),)l/(l -7 and Fl(b) - (b’y),y/(l _ ,y).

From these and (2.4) and (2.5), r; , and a;,, can be explicitly obtained. When
p=1and v =  for instance (say, when testing Hy: 6 = 1 versus H;: = 2 with
equal prior probabilities),

rl,1=min{z,2(1-l/2)2} and al,1=max{z,2(1~z/2)1/2}

if0<1<2;whenl > 2, r;;=0anda;; = 2. (Note that the range of B here is
0 < B < 2.) These are plotted in Figure 1(a).

From Figure 1(a), it is apparent that [ can have a dramatic effect. First of
all, unless 0 <[ < 2, the “no decision” region is the entire space. And for / small
or near 2, the “no decision” region is most of the space. Note that, at I = /5 — 1
= 1.24, the “no decision” region is empty. The resulting test Ty o4 1 is thus the
test T defined in Section 1.1 and could beneficially be used by a frequentist
instead of the minimax test (which has critical value B = 1.24).

Turning to large n, three cases can be distinguished. Technical details are
given in the Appendix.

Casel. p>1. Then,asn — o, a;,=1, and

T, = exp{(l —~v71-log Y)n

(2:11) 1
+ (1 - 'Y_l) [Z(l—p‘l)\/ﬁ*’ §(Z(21—p—1) - 1)] }(1 +O(1))’



A UNIFIED FREQUENTIST AND BAYESIAN TEST 1797

where z, denotes the ath quantile of the standard normal distribution. Note
that (1 — v~ —log y) < 0 (recall that 0 < v < 1), so that r,, decreases to 0
exponentially fast as n — co.

CASE 2. p < 1. Then, asn — oo, r,, =1lpand

(212) a;, = exp{(’y —1-logy)n+(y—1) [zp\/r_i+ %(2,2, - 1)} }(1 +0(1)).

Note that (y — 1 —log ) > 0 (for 0 < v < 1), so that a;, , increases to co expo-
nentially fast as n — oo.

Case3A. p=1,1>—(1+g(v)). Here
(2.13) 8(7) = (1-)log7)/(1 -~ +~log~).

Then, as n — oo, a;,1 = and

(2.14) r=1[-1/(1 +g(7))]g(") +o(1).

If v = 1, then the condition on / is [ > 1.258, and ri1 ¥ (1.679)I(-1-258) Note
that, if [ = 1.258, then the “no decision” region is (asymptotically) empty.

Case3B. p=1,1<—(1+g(y)). Thenr;; =1and, as n — oo,

—£M/A+g(y)
] +o(1).

(2.15) a1 =11/ (1+&()
Ify = 3, thena; 1 & (1.510)/"%. For the “objective” choice = 1, note that this
asymptotic “no decision” region of (1, 1.510) is quite close to the corresponding
region (1,2 )whenn = 1, seemingly indicating a stability of the “no decision”
region with respect to sample size (in this case).

Discussion oF EXAMPLE 3. When p # 1, (2.11) and (2.12) show that the
“no decision” region grows enormously as n — co. Furthermore, it can be shown
in Cases 1 and 2, respectively, that, as n — oo,

Py, (“no decision”) — 1 — p~1, Py (“no decision”) — 1 — p.

Hence the “no decision” region is even nonnegligible probabilistically.

The story is very different when p = 1. Then (2.14) and (2.15) show that r1
and q;,; stay bounded. Indeed, as shown in Figure, 1(b) for the case v = %, the
“no decision” region for n = oo is remarkably similar to that for n = 1, unless I
is extreme. And the probabilities of the “no decision” region under 8, and 6, go
to 0 exponentially fast as n — co.

While generalization from a single example is hazardous, we expect the above
pattern to hold for other distributions. Thus, for large n and p # 1, the “no
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decision” region might be too large to make T} , attractive. But for p = 1 (which,
of course, is the natural “balanced” or “noninformative” assumption) we expect
the “no decision” region to be small, even for large sample sizes.

From a theoretical perspective, there are various oddities here. Perhaps the
most interesting is that the loss ratio, /, and prior odds ratio, p, have very
different effects, in contrast to usual Bayesian reasoning. Selecting p = 1 seems
to be important, while / = 1 has no special effect.

3. Symmetry and optimality.

3.1. Likelihood ratio symmetry. A particularly attractive situation arises
when the following is satisfied.

LRS ProPERTY. The testing problem is said to possess likelihood ratio sym-
metry (LRS) if fo(X)/f1(X) has the same distribution under f; as f1(X)/fo(X) has
under f3.

ExamPLE 4. If X = (X3, ..., X,,) arises from a coordinatewise symmetric
location density f(x | 8) =g(|x1 — 9|, . . ., |x» — 6|) and it is desired to test Hy: 6 =6,
versus Hy: 6 =0q,thenitis straightforward to show that the LRS property holds.

One benefit from the LRS property is indicated in the following lemma.

LEMMA 1. If the LRS property holds, then Fo(1) = 1 — F1(1); hence the “no-
decision” region for the test T} in Section 1.2 is empty and a =r = 1. (Clearly,
T is then equivalent to T.)

Proor. Clearly,
Fo(b) =Py(B < b)=P,(1/B <b) =P1(1/b <B)=1-F;(1/b).
Setting b = 1 yields the result. O

Thus, under the LRS property, the Bayesian (with p = 1 and [ = 1) and the
conditional frequentist using T, always report identical numbers. This was no-
ticed by Kiefer (1977), who seemed quite happy with T in this case, in part
because it also then corresponds with his “equal probability continuum” proce-
dure (see Section 2.1).

3.2. Optimality. Consider the general conditional frequentist testing sce-
nario defined in Section 2.1. Any partition {X;: s € 8} of X corresponds to a
possible conditional frequentist test T'. A natural question to ask (from a fre-
quentist perspective) is whether an optimal T (i.e., optimal partition) exists.

Brown (1978) studied this problem and proposed the following approach for
simple versus simple hypothesis testing. Let A(-) be a nondecreasing, convex
function [e.g., A(v) = v?] and define the B-utility of a conditional frequentist test
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T to be the pair (Ur(0), Up(1)), where
UT(i) = Eﬁ [h(l - max{aT(S), ,BT(S)})J s

with ap(s) and Br(s) being the conditional error probabilities defined in (2.1) and
(2.2). It is desirable to have the Ur(i) large, because of the following two points:

(i) Since A is nondecreasing, reducing both conditional error probabilities
(clearly desirable) will cause the Ur(i) to increase.
(ii) Since % is convex, making the conditional error probabilities more variable
in s will cause the Uz(i) to increase; variability in ar(s) and Bz(s) is desirable,
because it allows for reflection of varying evidentiary strength for different data.

As an illustration of this last point, the following lemma shows that, under
the LRS property, the conditional frequentist test T'; is superior to the classical
Neyman—Pearson test with equal error probabilities.

LEMMA 2. Suppose the LRS property holds and let Ty denote the classical
Neyman—-Pearson test with rejection region {B < 1}. Then

Ur, (@) > Ur, @), i=0,1,
with strict inequality if h is strictly convex.

Proor. The LRS property implies that oy, (B) = 8r,(B) and ar, = fr,. Thus
Jensen’s inequality yields

Un,(@) = B [h(1- or,(B)]
> (1~ B [or,B)))
=h(l-ar,) [using (2.3)]
= Ur, (@),
with strict inequality if & is strictly convex. O

Furthermore, it is clear that the same reasoning applies to any other symmet-
ric conditional frequentist test, that is, any test for which each X; is defined as

Xs = {x € X: B(x) € A; or 1/B(x) € A},

for some set A;. If ap(-) for such a test differs from ar;(-) with positive probability
and A is strictly convex, then Ur, (i) > Ur(i).

~ Being “best” among all symmetric conditional tests is quite compelling, but
Brown (1978) also establishes two optimality properties of T (under the LRS
property) among all conditional frequentist tests. First, he shows that T is the
unique test that is U-admissible for all h; thus, for any other test T*, one can



1800 J. 0. BERGER, L. D. BROWN AND R. L. WOLPERT

find a nondecreasing convex A and another test 7** such that Up..() > Up- (i),
with strict inequality for i = 0 or 1.

The second global property that Brown establishes is that T} is the unique
test that is totally maximin, that is, for which

min{Ur,(0), Ur, (D} = sup min{Ur(0), Ur(1)}

holds for all nondecreasing convex A. [Brown’s uniqueness result applies be-
cause, here, B(X) is assumed to have a nonatomic distribution.]

Brown further suggests that, among monotone procedures, T is probably
strictly optimal [i.e., minimizes both Ur(0) and Ur(1)]. These optimality results
are all particularly compelling because of the great generality allowed in choice
of k. The bottom line is that, using reasonable frequentist criteria alone, T4
appears to be best, in a variety of ways, among all valid (conditional) frequentist
tests, at least when the LRS property holds. It does not seem to be possible to
establish such strong optimality of T'; if the LRS property does not hold, but 7
undoubtedly remains admissible and reasonable even then.

4. Sequential tests.

4.1. The general conditional sequential test. Suppose X = (X;,X5,...)is a
sequential sample and that it is desired to test Ho: X ~ f; versus Hy: X ~ f1. By
this we mean that, fori = 0,1, f; = { f 1, fi,2, - - .} withX™ = (X, ..., X,,) having
density f; ,(x™) for n > 1. Define

(4.1) B, = fo,n(x™) /fi,n (x™);

let N denote the stopping time of the sequential experiment (a proper stopping
rule being assumed) and let F;(-) be the c.d.f. of By under f;,i =0, 1.

The situation is slightly more complicated than that discussed previously in
the paper, because F; is typically not invertible. Usually, however, the following
condition is satisfied.

CONDITION S. The stopping rule is such that By ¢ (R, A),whereR <1 <A;
the rejection and acceptance regions are {By < R} and {By > A}, respectively;
and, for i = 0, 1, Fy(b) is invertible for b ¢ (R, A), with Fy(R) = F;(A).

ExAMPLE 5 (The sequential probability ratio test). The famous Wald SPRT
is defined by: '

if B, < R, stop sampling, reject H, and report error probability
a=PyBy <R); '

if B, > A, stop sampling, accept H; and report error probability
B =P1(By > A).

It is immediate that By ¢ (R, A) and that the rejection and acceptance regions
are as stated in Condition S. (Note that stopping and rejecting or accepting
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when {B, < R} or {B, > A} is considerably stronger than the Condition S
assumption {By < R} and {By > A}; the former actually states that one stops
and rejects or accepts upon crossing R or A, while the latter only states that,
if one happens to stop and has crossed R or A, then one must reject or accept,
respectively). It is virtually always the case that R < 1 < A for the SPRT.

Under Condition S, the appropriate generalization of T} in Section 1.2 is
defined as is T} but with B(x) replaced by By and r and a defined by

r=Rand a=F;'(1-Fi(4)) ifFoR)<1-Fyi(A),
r=F;'(1-Fo(R)) anda=A if Fo(R) > 1— Fi(A).

It is straightforward to show that the conditional frequentist interpretation of
this test is still valid. Note, however, that this generalized T'; does not specify
the stopping rule; it merely gives the conclusion to report, upon stopping.

There are two difficulties with T'}. First, computing F; Lor FT ! can be quite
challenging in sequential settings. Second, it is somewhat troubling if the “no
decision” region (r,a) is larger than the initial (R, A), since the latter is often,
in a sense, constructed to be the desired “no decision” region.

These difficulties disappear and, indeed, turn into a delightful advantage if
the stopping rule is chosen so that

(4.2) Fy(R)=1 - Fy(A).

This is equivalent to the condition that the classical sequential test is con-
structed to have equal error probabilities, o = 5. Then the conditional frequen-
tist test can be written as follows:

if By < R, reject Hy and report the conditional error probability
a(By) = By/(1+ By);

(4.3) if By > A, accept Hy and report the conditional error probability

,B(BN) = 1/(1 + BN)

This is the analogue of the test T defined in Section 1.1. Again note, however,
that this does not specify when to stop, just what to do upon stopping.

It is of considerable interest that the conditional error probabilities are avail-
able explicitly here, while classical (unconditional) error probabilities are typi-
cally very hard to compute. Even for the SPRT, computation of o and § usually
requires difficult analysis of the “overshoot,” the amount by which By over-
shoots R or A [cf. Siegmund (1985)]. The conditional error probabilities are not
only trivially computable, but, interestingly, incorporate the overshoot into the
error statement; the more the overshoot, the less the stated error.

4.2. Symmetric sequential tests. In Section 4.1 it was assumed that stop-
ping is governed by a stopping rule separate from T';. In this section we explore
the extent to which that assumption can be relaxed.
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We will consider the situation in which X;,Xy, . .., arise asi.i.d. observations
from fy(x;) or fi(x;), with Y; = fo(X;)/f1(X;) having the LRS property (i.e., the
distribution of Y; under f; is the same as that of 1/Y; under f;). We also as-
sume that the stopping rule 7 = {7y, 7,...} depends only on Y;,Y5,... and is
symmetric in the sense that

(44) 'Ti(Yl,...,Yi)=Ti(1/Y1,...,1/Y,')

for all ¢ > 1. (As usual, 7; gives the probability, typically 0 or 1, of stopping
sampling upon observing Yy, ..., Y;. More general stopping rules involving other
chance mechanisms could be allowed, so long as they are “noninformative”—
see Berger and Wolpert (1988) for definition—but the generality here suffices
to make the basic point.)

EXAMPLE 6. A common class of symmetric stopping rules is given by

n
1 (i.e., stop), if Z log Y;| > g(n),
Tn(Yl,-wan): i::l
0 (i.e., continue), if Z log Y;| < g(n),
i=1

where g(n) is any arbitrary function for which 7 is a proper stopping rule (i.e.,
is guaranteed to eventually result in “stop”). The SPRT with symmetric bound-
aries, A = R~!, corresponds to g(n) = log A.

For this symmetric situation, it is straightforward to verify that (4.2) holds, so
that (4.3) defines T'}; note that it is not even necessary here to explicitly calculate
the quantities in (4.2). That (4.3) defines a valid conditional frequentist test, in
this situation, was already recognized by Kiefer (1977). Finally, note that if T is
restricted to be as above (i.e., depends only on the Bayes factors B, = II"_,Y;),
then Brown (1978) applies and shows that 7% in (4.3) defines the “optimal”
conditional frequentist test. To understand the practical ramifications of this
situation, consider the following example.

EXAMPLE 7. A sequential experiment is conducted involving i.i.d. N(4, 1)
data for testing Hy: 6 = 0 versus H;: 6 = 1 under a symmetric stopping rule
(or at least a rule for which o = ). Suppose the report states that sampling
stopped after 20 observations, with X3p = 0.7. One can then “replace” whatever
sequential test was used by T'; in (4.3). Computing

20
1
By = H [f(xi 10) /f (: ll)] = exp{~20(5c'20 - 5)} =0.018,

i=1
.it follows that your conclusion should be to reject H, with associated conditional
error probability a(Bgg) = Bgg /(1 + Byy) =0.018. This will be a “better” conclusion
than that reached in the study (unless they also used T%}). Note that you do not
need to explicitly know the stopping rule used in order to perform the optimal
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analysis. This is quite attractive in practice because, all too often, the exact
stopping rule is incompletely specified and, perhaps, even incompletely known
to the experimenters! For instance, if the experimenters had not prespecified
the stopping rule, but simply monitored the data stream and stopped when they
wished, analysis with T} would still be possible (under the weak assumption of
symmetry).

The ramifications for sequential testing of simple hypotheses are profound.
First, it appears to be possible to avoid the typically difficult classical computa-
tions involving the stopping rule. Second, and more importantly, it seems that
preexperimental analysis can be avoided; one can simply start collecting data
and stop whenever one desires, as long as T7 is then employed. This last fact
strongly refutes the usual frequentist argument against the stopping rule prin-
ciple, the argument which asserts that allowing one to monitor the data stream
and arbitrarily stop allows a “biasing” of the result.

It is interesting to consider why the stopping rule “disappears” here. If we
were to actually compute the conditioning partitions, X, corresponding to T7,
we would indeed need to know the stopping rule. But since we will choose the
partitions which guarantee «(B,) and 3(B,) as the conditional error probabili-
ties, there is no need to actually compute the X;.

5. Conclusions and generalization. For the simple versus simple test-
ing problem, we feel that the procedures proposed in this paper should become
standard statistical practice. They are easy to understand, interpret and use
(the sequential versions, for instance, often being much easier than, say, the
SPRT); they are correct from Bayesian and likelihood perspectives; and they
are valid (and often optimal) frequentist procedures.

A second conclusion from the paper is foundational: frequentist theory, itself,
seems to suggest that optimal conditional frequentist procedures will ignore
the stopping rule in sequential experimentation. At the very least, the classical
argument against the stopping rule principle is dramatically weakened by the
results here.

While the testing of simple hypotheses is often considered as a “practical”
approximation in sequential settings, it is admittedly very specialized. From a
Bayesian perspective, however, any problem of testing Hy: X has density fy(x|6,)
versus Hy: X has density fi(x|6;), where 6, and/or 6; are unknown, can be
reduced to simple versus simple testing: the Bayes factor of Hj, to H; is

B(x) = mgy(x)/m(x)

= [ fole160)motatn) / [ Aoy,

where 7; is the prior distribution of §;, i = 0,1, so that a Bayesian is implicitly
testing Hy: X has density mg versus Hy: X has density mj. As the latter test is
simple versus simple, T'; and/or T can be applied. The key question, however, is
whether or not these tests can be given a satisfactory (conditional) frequentist
interpretation in the original problem.



1804 J. 0. BERGER, L. D. BROWN AND R. L. WOLPERT

If Hy is simple (i.e., 6y is absent or, equivalently, assumes a specific value),
then the answer is—yes! The conditional Type I error probability is precisely
the posterior probability of Hy (assuming equal prior probabilities of the hy-
potheses), while the conditional Type II error probability (which for T'; or T7 is,
of course, the posterior probability of H;) has an interpretation as a (posterior)
expected frequentist Type II error. Clarification and discussion of this idea will
be presented elsewhere, but the preliminary indication is that Bayesian and
frequentist testing may be generally compatible; the severe conflicts that have,
in the past, been observed between the two are, perhaps simply due to use of
an inferior frequentist test, namely the unconditional test.

It is of interest that the “better” conditional frequentist tests will (in the
composite hypothesis case) depend on the prior distributions assigned to the
unknown parameters of the composite hypotheses. Robust Bayesian theory can
perhaps provide conditional frequentist tests that are guaranteed to be better
than the unconditional tests, but the preliminary indication for composite hy-
potheses is that some utilization of prior information will be necessary in defin-
ing good (conditional) frequentist tests. Note, however, that this use of prior
information will probably be no more severe than is the customary use of prior
information in selecting power levels for unconditional frequentist testing.

APPENDIX

Technical Details for Example 3.
LEMMA 3. For the incomplete Gamma function I'(n, t), the following hold:

@A) Ifec #1, then,as n — oo,

nexp{al(c‘1 - l)}

(A1) T'(n,cn+d+o0(1)) = L, oo)(c) + (ce' ~°) (1+0(1)).

V2rn(l -c)
(i) If, as n — oo,
(A2) T(n, t,) = éw(%)
for 0 < &£ <1, then
A3) o=tz + 5 (2~ 1) +o(1).

. ProOOF. First consider ¢ > 1 in part (i). A valid expansion of I'(, -) is

1 oy 4, =) n-1n-2) }
L(n,t)=1 I‘(n)t e t|1+ —+ 2 |
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Setting ¢, = cn +d +0(1), it is straightforward to show that

1 n-1 @n-1n-2) 1 1.1 R
Tt 2 Tl tetet | teot

Approximating I'(n) by Stirling’s formula then yields

(cn +d + 0(1))" - le—(cn+d+o(l))c
e—npn—1/2), /27m(c — 1)

T(n,t,) =1 — (1+0(1)).

Clearly,

(ecn+d+o(1))" ™} =cn_1(l+d+o(l)

n-1
) =c"~ 1e“l/c(l +0(1)),
cn

nn—1

from which the result follows. The proof of part (i) for ¢ < 1 is similar, but now
uses the expansion

T(n,t)=e™*y /R

k=n

Details are omitted.

To prove part (ii), we use the fact that I'(n, t) = F(2¢|2n), where F(-|v) is the
c.d.f. of the chi-squared distribution with v degrees of freedom. Thus (A2) can
be rewritten as

1
F(2tn|2n) = §+0<ﬁ> = fn.
But, as n — oo, the {,th quantile of the chi-squared (2n) distribution is
X2, =2n+2z¢,Vin + g(zgn —1) +0(1)
= 2n +2z¢VAn + ;(zg —1) +o(1).
This directly yields (A3). O

From (2.10), observe that

(A4) Fy(lp)=1—-T(n,con +dy), Filp)=1-T(n,cin +dy),
where

—log vy —log(lp)
A5 T Y d =TT = 3 d = d .
(A5) “=FT_ 0= G- €1 ="Co,, 1=17do

Since 0 < y < 1, it can be shown that ¢y > 1 and 0 < ¢; < 1. Itis then immediate,
from (A1) and the fact that cexp{1 —c¢} < 1forc # 1, that

1 1
(A6) Fo(lp)=o(—\7—ﬁ) and Fl(lp)=1—o<ﬁ>.
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Verification of (2.11) and (2.12). Consider, first, the case p > 1. It is clear
from (A6) that Fy(lp) > 1 — pFy(lp) for large n. Hence [see (2.5)], a;,, = p and

1 1
Fl(rl,p)= ;[1 —Fo(lp)] = ; +0(%>.

This can be rewritten as

_yloglm )y _, 1, (1
F(n,cln T >_1 p+o(\/ﬁ>'

Hence (A3) yields

7 log(ry, ,)
1-

Solving for r;, , yields (2.11). The derivation of (2.12) for p < 1is similar.

1
cin — =n+z(1_1/p)\/ﬁ+§(z(21_1/p)—1)+o(1).

Verification of (2.14) and (2.15). Since p = 1, the inequality defining ap-
plicability of (2.4) or (2.5) is Fo(I) > 1 — F1(l). Using (Al), (A4) and (A5), this
condition will be satisfied as n — oo only if I > —(1 + g(v)) [see (2.13)]. From
(2.5), we then know that a; 1 =1 and Fy(r; 1) = 1 — F(I), which can be rewritten,
using (2.10) and (A4), as

7 log(ry 1)
1-7)

The solution to this equation is given in (2.14). To show this, note that then

(A7) F(n,cln — ) =T'(n,con +dy).

)
log(r;,1) = log (l [—l/(l +g(7))]g h ) +0o(1),

so that (Al) can be applied to both sides of (A7); algebra then verifies
their equality.

Ifl < —(1 +g(v)), (2.4) applies. Thus r; ; = and an argument similar to that
above verifies (2.15).
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