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The 1985 Wald Memorial Lectures: An Ancillarity Paradox Which Appears in
Multiple Linear Regression

Abstract
Consider a multiple linear regression in which Yj, i=1,-==, n, are independent normal variables with variance

o?and E (Y) = a+V'jB, where V; € R"and B € R'. Let @*denote the usual least squares estimator of a.
Suppose that V;jare themselves observations of independent multivariate normal random variables with
mean 0 and known, nonsingular covariance matrix 6. Then a*is admissible under squared error loss if r
= 2. Several estimators dominating a* when r = 3 are presented. Analogous results are presented for the
case where o or @ are unknown and some other generalizations are also considered. It is noted that
some of these results for r=3 appear in earlier papers of Baranchik and of Takada. {Vj} are ancillary

statistics in the above setting. Hence admissibility of a* depends on the distribution of the ancillary
statistics, since if {V} is fixed instead of random, then a”is admissible. This fact contradicts a widely held

notion about ancillary statistics; some interpretations and consequences of this paradox are briefly
discussed.
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THE 1985 WALD MEMORIAL LECTURES

AN ANCILLARITY PARADOX WHICH APPEARS
IN MULTIPLE LINEAR REGRESSION'

By LAWRENCE D. BROWN

Cornell University

Consider a multiple linear regression in which Y;, i =1,...,n, are
independent normal variables with variance o2 and E(Y)=a+ VB,
where V; € R” and B € R". Let & denote the usual least squares estimator
of a. Suppose that V; are themselves observations of independent multi-
variate normal random variables with mean 0 and known, nonsingular
covariance matrix 6. Then & is inadmissible under squared error loss if
r=2.

Several estimators dominating & when r > 3 are presented. Analogous
results are presented for the case where o2 or 6 are unknown and some
other generalizations are also considered. It is noted that some of these
results for r > 3 appear in earlier papers of Baranchik and of Takada.

{V,} are ancillary statistics in the above setting. Hence admissibility of &
depends on the distribution of the ancillary statistics, since if {V;} is fixed
instead of random, then & is admissible. This fact contradicts a widely held
notion about ancillary statistics; some interpretations and consequences of
this paradox are briefly discussed.

1. Introduction. This paper introduces a general variety of admissibility
paradox. It then continues with a more detailed study of this paradox as it
operates in multiple linear regression. The paper concludes with some remarks
about ancillary statistics. It is noted that the admissibility results of this paper
contradict the widely held notion that statistical inference in the presence of
ancillary statistics should be independent of the distribution of those ancillary
statistics.

The general form of the paradox is presented in Section 2. The application
to multiple linear regression is presented in Section 3 and some extensions of
these results are presented in Section 4. Remarks about ancillary statistics are
in Section 5.

Multiple linear regression. In multiple linear regression the dependent
variables are assumed to be independent normal with mean a linear function
of the vector V of predictor variables. The principal problem to be discussed is
that of estimating the y-intercept value a, i.e., the population mean of the
dependent variables when the predictor variables are all zero.

If the predictor variables take on any prespecified constant values (assuming
only that o is estimable), then the least squares estimator & is admissible
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472 : L. D. BROWN

under squared error loss. However, if the predictor variables are independent
normal vectors with mean 0 and known nonsingular covariance matrix, then &
is not admissible. Admissibility of & thus depends on whether the ancillary
statistic V has a degenerate distribution or a nondegenerate normal distribu-
tion.

Precursors: Stein’s paradox. Probably the best known paradox in estima-
tion theory was discovered by Charles Stein. It involves the simultaneous
estimation of at least three normal means or other location parameters. [See
Stein (1956) and James and Stein (1961), or see Berger (1985) for a contempo-
rary survey.] The current paradox also involves at least three normal means or
other location parameters. But in other respects the two paradoxes are struc-
turally quite different. It is essential for Stein’s paradox that one be interested
in simultaneously estimating three (or more) parameters, whereas the current
results involve estimation of just one. Also, ancillary statistics play no role in
Stein’s results, whereas here their presence is essential; and as has already
been noted, the presence of the paradox depends on a certain feature of their
distribution.

While the current paradox is structurally very distinct from Stein’s, it is
mathematically very closely related. From the mathematical perspective the
current results are merely a slight variant of Stein’s. Some of the current
results, such as Theorem 2.1.2 and Lemma 3.3.3, are direct adaptations of the
theory of Stein estimation to the current context. Other principal results of
the paper, such as Theorem 2.2.1, Theorem 3.2.1, Lemma 3.3.4 and Lemma
3.3.5, etc., while not direct adaptations, are based on techniques of proof
familiar in the theory of Stein estimation. The general theory in Section 2 and
the organization of Section 3.3 have been planned so as to emphasize this close
mathematical relation.

Two other remarks are relevant concerning the relation to Stein estimation:

On the structural side: Some of the improved estimators constructed in this
paper are unbiased, whereas improved estimators of multivariate normal
means must be biased. [Construction of unbiased dominating estimators for
our problem requires that there be at least four (instead of three) unknown
means. See Section 3.3 for some unbiased dominating estimators in the
multiple regression problem.]

On the mathematical side: Stein (1960) considers the problem of prediction
in multiple linear regression. The principal results there can be viewed as an
adaptation of his earlier results in the multiple normal means problem. Most
of the results in our Section 3.3 can then be viewed as a further adaptation of
his results in prediction. Remark 2.1.3 discusses this mathematical connection.
There does not appear to be a similar direct mathematical connection with
respect to our results in Sections 2.2 and 3.2.

Priority: Baranchik’s prediction results. Baranchik (1964, 1973) further
develops the prediction formulation presented in Stein (1960). Several of the
results in our paper are already present in Baranchik’s papers. Our key



ANCILLARITY PARADOX IN MULTIPLE LINEAR REGRESSION 473

Lemma 3.3.1 appears as part of the proof of Theorem 2 of Baranchik (1973).
His Theorem 2 involves only simultaneous estimation of both « and B, rather
than estimation of « alone. However a referee has pointed out that Section 3.4
of the technical report [Baranchik (1964)] upon which the later paper was
based, does present an inadmissibility result for a alone which is much like
our Lemmas 3.3.1 and 3.3.5 combined. (Apparently Baranchik failed to realize
the significance of this result and so omitted it from his later paper.)

Other precursors. There are some earlier, rather pathological, results in
which admissibility of an estimator depends on the distribution of the ancillary
statistic.

There is, first of all, a rather trivial observation concerning a one parameter
location problem with ancillary statistic. (It holds in other problems as well.)
The customary procedure can have everywhere finite risk conditional on the
value of the ancillary statistic and yet have identically infinite risk uncondi-
tionally. Whether this occurs obviously depends in part on the distribution of
the ancillary statistic. When this occurs the customary estimator is inadmissi-
ble.

Even when the unconditional risk is finite, the customary estimator can be
inadmissible in the unusual situation that certain mild moment conditions are
violated. This moment paradox was first observed by Brown (1966, page 1113)
and Perng (1970). See also Fox (1981).

2. General theory.

2.1. A simple paradigm. Let X ~ N(u,2), 3 known. Let w € R?, with
T P_,w? > 0 and define

b
(2.1.1) 0=Y wp,=wny.
i=1

Consider the problem of estimating § under ordinary squared error loss
(2.1.2) L(p,d) =(d—-0)°, deR.

The customary estimator for this problem is defined by §,(x) = w'x. As a
preliminary result we note:

ProposITION 2.1.1. In the problem formulated above, §, is minimax and
admissible.

Proor. This fact implicitly appears in Stein (1959) and explicitly appears
in Cohen (1965), and was perhaps known as early as Blyth (1951)-or Hodges
and Lehmann (1951). O

Now assume that the values of (w,...,w,) appearing in (2.1.1) are ob-
served coordinate values of a random variable W € R?. The simplest case
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occurs when the distribution of W is known and W is independent of X. This
is the case treated in Theorem 2.1.2. More complex situations are discussed in
the next subsection.

The customary estimator of 8 in this problem remains §,(x, w) = w'x. Let

(2.1.3) Q=E(WW).
(Assume () exists.)

THEOREM 2.1.2. Let X, W be independent. Suppose the p X p matrix () is
nonsingular and p > 3. Then §, is not admissible for loss (2.1.2). A better
estimate is given by 6*(x, w) = w'd*(x), where

p

(2.1.4) d*(x) =x - 251013 1

Q715
with 0 <p < 2(p — 2).

Proor. Observe that for any estimator of the form 8(x,w) = w'd(x),
d € R?,

R(n,8) = E(Wd(X) - W)
= E{(d(X) - p)WW(d(X) — p)}
= E{(d(X) —p)Q(d(X) — u)}.

since W and X are independent. This is the same as the risk of d(:) € R?
under the loss L(u,d) = (d — u)Q(d — w). It is known that for this loss the
estimator d* is minimax and dominates d(x) = x. See Stein (1960) for the
case () = ¢l and Berger (1976) or Hudson (1974) for the more general case. O

If Q is singular but of rank greater than or equal to 3 a similar inadmissibil-
ity result is valid: Just use a generalized inverse of ) in (2.1.4) and substitute
the rank of ) in place of p in that formula. If Q has rank 1 or 2, then §, is
admissible by an extension of the reasoning in Proposition 2.1.1. [When the
rank is 2 one also needs the two dimensional admissibility result in James and
Stein (1961) or Brown (1971).]

REMARK 2.1.3. A situation somewhat analogous to the above has already
been observed in the literature, first in Stein (1960). Consider a normal linear
model (e.g., a multiple linear regression) of the form

(2.1.5) Y ~ N,(Du, o).

Here ¢ > p, D is a (known) design matrix of full rank, o2 is known and
u € RP is the (unknown) parameter vector. Let X = i = (D'D)"'D'Y. Then
X ~ N,(u,3) with 3 = c*(D'D)"".

Now suppose W € R? and Z € R! are future random variables independent
of the vector Y and, given W = w, Z ~ N(w'u, 02). Suppose it is desired to
predict the value of Z after having observed X and W. Consider a prediction

2
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of the form 7(x, w) = w'd(x) and note that
E(m(X,W) - 2)?) = E(Wd(X) — Wy)*) + o?
=L(u,Wd(X)) +o0?

with L as defined in (2.1.2). When p > 3 inadmissibility of the usual predic-
tion 7, = w'x under quadratic loss therefore follows from a result like Theo-
rem 2.1.2. This result in prediction theory has more recently been noted and
exploited in, e.g., Baranchik (1973), Copas (1983) and Oman (1984).

Lemma 3.31 can be viewed as an application of Theorem 2.1.2 which
involves a multiple regression setup like that in (2.1.5); however, Theorem
2.1.2 is applied there in a quite different fashion than in the above example. In
particular, throughout Section 3 there are no future observations W, Z under
consideration and the problem is thus one of estimation rather than predic-
tion.

(2.1.6)

REMARK 2.1.4. The form of d* in (2.1.4) is analytically convenient. How-
ever somewhat better estimates can be defined by substituting other forms for
d*. For example, one could use

P
T o 2
x'z—ln—lz—lx} 2=
Sections 4.7.7, 4.7.10 and 5.4.3 of Berger (1985) contain a useful discussion of

alternate estimators including many which, while not minimax, have other
appealing properties.

(2.1.7) di(x)=x— min{maxeig(EQ),

2.2. A more complex result. In the simple setting of the previous subsec-
tion the covariance matrix 3, of X was assumed fixed and known. An inadmis-
sibility result is also valid when 3 is random with W either random or fixed.
This result is less satisfactory than the previous one in that we are unable here
to provide a useful formula for an estimator which dominates §,. This defect is
discussed below in more detail and also, indirectly, in the application of the
next section.

For the following theorem let @ and 3 be observable (p X p) positive
semidefinite matrix valued random variables. Assume 3 is positive definite.
Let the joint distribution of (@, %) be known and define
(2.2.1) Q=E(3Q3).

‘

(Assume it exists.) Suppose X ~ N( &, %) and it is desired to estimate u under
the (random) loss
(2.2.2) L(p,d) =(d - un)Q(d — p).
The customary estimator here is 5,(x) = x.

To connect this formulation with that of the previous section aésume 3 is
ﬁxefi and let @ = WW'. Estimation of x by d € R? under loss (2.2.2) is
obviously equivalent to estimation of 9 = W'u by W'd under loss (2.1.2) since

(d = p)Q(d —u) = (d - w)WW(d - p) = (Wd — W) = (Wd — ).
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THEOREM 2.2.1. Let p > 3. Suppose Q) defined by (2.2.1) is nonsingular.
Then §, is inadmissible under loss (2.2.2).

Proor. If 3 =(o;;) let ||3|| = max{|o;;: 1 <i,j<p} Given B < let
Qp = EGQI| 2] < B, ||Q] < B). If Q = (), is nonsingular, as hypothesized,
there must be a B < « such that Qj is nonsingular. 3 and @ are ancillary
statistics; so it suffices to show that conditionally, given ||| < B and ||Q|| < B,
8o(x) = x is inadmissible. Accordingly we can now assume with no loss of
generality that ||2|| < B and ||@| < B with probability 1. We will do so and
omit explicit mention of B in the sequel.

Let d > 0 and

P

- - -1 —
(22.3) 8(x,Q,3) = (1 ——— 30 )x 0<p<2(p-2).
Applying Berger (1985, page 362) gives
A= R(/'La 80) - R(/-", 8)
QO 13Q3 p\ QTIXX'Q7ISQ3
E#[tr d+ XX _( _) @rxax)” |0

2
Write X =pu + Z, where Z ~ N(0,3). Expanding the error term as in
Brown (1966, pages 1122-1124) yields

= 2pE

Bl Q13Q3 s
Wiy xaix |
. 071303 220" + Z07Z
B rd +uwQ d+uQ
(2.2.4)

(220 % + 2072)
T@ T wT)(d 1 (Z + 0 NZ + )

o z]
Q7 13Q3 1
d+uQ (d +wQ u)d
The O(-) term above is uniform in 3,Q since ||| < B and ‘[|Q|| < B by
assumption. [One basic inequality used in verifying (2.2.4) is

(2Q W + 2’9‘12)2 d+uwQ
<
d+(z+p)Q Y z+pw) d

This can be verified by examining the simple expression s2/(d + (s + t)?)
which is maximized for fixed, d,¢ by the choice s = —(d + t?)/t.] Similar
reasoning yields

Q-1IXX'015Q3,
I
(d + X'Q71X)*

1

B Q lup3Qs
(d+wQ 'u)d

2 =tr—————— =
(d +wQ ')

E, |t

©w
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Taking expectations over @, 3, now yields

2p p W
A=— —|p-(2+|tr———|+0
d+uQ (p ( 2) rd + W Q

2p p
> [p-2-2|+
>d+#«'9‘1u(p 2) 0

1
(d+ u'ﬂ‘lﬂ)d)

1
(d+wQ 'u)d )
For any 0 < p < 2(p — 2) it is thus possible to choose sufficiently large d so
that A > O forall u. O

Note that although 8 does dominate §,, it is not shown above to be a
practically useful competitor since d may need to be chosen to be quite large,
in which case A is a quite small positive amount. The above proof does
however suggest one should be able to find a dominating estimator satisfying

p
(2.25) 5(x,Q,3) - (1— ot
0 < p < 2(p — 2). It may often be that an estimator such as
p—2
x'Q
dominates §,; however, results in Section 3.3 show that dominance of (2.2.6)

can depend on the joint distribution of @, 3. (2.2.6) is, of course, the obvious,
direct analog of d* as defined in (2.1.7) with p = p — 2.

EQ_I)x +o(llx[7!) as Jlxl| - o,

(2.26) 8(x,Q,2) =x-— min{mineig(QE_l), }EQ_lx

3. The multiple regression problem.

3.1. Setting for fixed regression constants. Consider the usual normal
multiple linear regression. Denote the (» + 1) unknown parameters by a € R,
B=(By,...,B8,) R Let Y=(Y,,...,Y,) denote the observable random
vector. Let o2 > 0 be a fixed, known constant. (See Section 4.1 for the case of
unknown o2) Let V, = (V,y,..., V), i = 1,...,n, denote the observed Gi.e.,
known) regression constants. The coordinates Y,,...,Y, are assumed to be
independent normal random variables with

(31.1) E(Y)=a+V/B, Var(Y) =02 i=1,...,n.

One may alternately write Y ~ N(1a + VB,0o?I) with V=(y;;) and 1=
(1,...,1Y € R*. Assume V is of full rank. It is desired to estimate the
y-intercept parameter a under ordinary quadratic loss:

(3.1.2) L((a,B),d) =(d —a)?, deR.

Some additional notation is needed in order to adequately describe the usual
estimator. Let Y=n"11Y, V=n"1Vand S=V-1V)Y(V-1V). [V is a
scalar, V is a (1 X r) row vector, and S is (r X r) and positive definite with
probability 1.] The usual estimator of « (as well as the usual estimator of B) is
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the BLUE which is of course also the MVUE and MLE. It is given by
B=8"v(y-Y1.

(Section 4.2 discusses estimation of linear contrasts other than «.)

Note that
[3)~((3)- =)

(V) = O_z(n—l +VS- W —Vs—l)_

(3.1.3)

(3.1.4)

-8~ St
Furthermore, Y is independent of .
Admissibility of & is immediate from Proposition 2.1.1, as follows.

ProposSITION 3.1.1. In the preceding problem & is an admissible estimator

of a.

Proor. Let X = (g), u= (;) and X =3(V) as in (3.14). Let w =

(1,0,...,0). Then apply Proposition 2.1.1. O
3.2. Random regression constants: Inadmissibility of & for r > 2.

Setting. In the preceding subsection the design variables v;; were assumed
to be fixed, known constants. This is realistic for applications where the v;; are
preset by the experimenter, perhaps in such a way that the experiment will
satisfy some classical optimality criterion. [For example, one can choose the v;;
subject to |v;;| < B to minimize tr(%(V)).] However, there are many other
situations where the v;; cannot be so closely controlled. Thus, in one broad
class of situations the vectors V, = (v, ..., v;,) are independent vector valued
random variables.

The remainder of this paper (except for parts of Section 4) concerns the
situation where the V, are observations of independent random variables in R”
with a known distribution. Here, we take this known distribution to be normal
with mean zero and covariance identity. (See Remark 3.2.1). Thus

(3.2.1) V=1 -1, V, ~N(0,I) (indep.), i=1,...,n,
\A
for given V,Y ~ N(1a + VB, d%I), 0% known. (See Section 4.1 for the case

where o2 is unknown and estimable.)

ReEMARK 3.2.1. The distributional assumptions on V can be somewhat
relaxed. Suppose that the V, are independent with V, ~ N(0,0), i =1,...,n
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DISCUSSION

JAMES BERGER
Purdue University

The paper presents an exciting and rich mix of foundational issues concern-
ing conditional reasoning and methodological developments involving im-
proved estimation in multiple linear regression. My discussion will focus on
the foundational issues, though certain features of the improved estimators
will be used to illustrate some of the issues.

My first attempt at understanding the fundamental issue raised by the
paper was along the following lines (sticking with the criterion of ‘“‘admissibil-
ity” for preciseness): ,

Ancillarity Paradox—A procedure which is conditionally
admissible for each value of an ancillary statistic can be
unconditionally inadmissible.

As I thought about it, however, this did not seem to capture the true novelty of
the paper, because this ancillarity paradox has long been known, going back at
least as far as the Cox example concerning testing with two randomly differing
sample sizes. Brown notes that there is a difference between tests and estima-



