
University of Pennsylvania
ScholarlyCommons

Center for Human Modeling and Simulation Department of Computer & Information Science

7-2009

Achieving Good Connectivity in Motion Graphs
Liming Zhao
University of Pennsylvania, liming@seas.upenn.edu

Alla Safonova
University of Pennsylvania, alla@cis.upenn.edu

Follow this and additional works at: http://repository.upenn.edu/hms

Part of the Engineering Commons, and the Graphics and Human Computer Interfaces
Commons

This articles is part of a Special Issue of ACM SIGGRAPH / Eurographics Symposium on Computer Animation 2008.

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/hms/179
For more information, please contact repository@pobox.upenn.edu.

Recommended Citation
Zhao, L., & Safonova, A. (2009). Achieving Good Connectivity in Motion Graphs. Graphical Models, 71 (4), 139-152.
http://dx.doi.org/10.1016/j.gmod.2009.04.001

http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fhms%2F179&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/hms?utm_source=repository.upenn.edu%2Fhms%2F179&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis?utm_source=repository.upenn.edu%2Fhms%2F179&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/hms?utm_source=repository.upenn.edu%2Fhms%2F179&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=repository.upenn.edu%2Fhms%2F179&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/146?utm_source=repository.upenn.edu%2Fhms%2F179&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/146?utm_source=repository.upenn.edu%2Fhms%2F179&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1016/j.gmod.2009.04.001
http://repository.upenn.edu/hms/179
mailto:repository@pobox.upenn.edu

Achieving Good Connectivity in Motion Graphs

Abstract
Motion graphs have been widely successful in the synthesis of human motions. However, the quality of the
generated motions depends heavily on the connectivity of the graphs and the quality of transitions in them.
Achieving both of these criteria simultaneously though is difficult. Good connectivity requires transitions
between less similar poses, while good motion quality requires transitions only between very similar poses.
This paper introduces a new method for building motion graphs. The method first builds a set of interpolated
motion clips, which contains many more similar poses than the original data set. The method then constructs
a well-connected motion graph (wcMG), by using as little of the interpolated motion clip frames as necessary
to provide good connectivity and only smooth transitions. Based on experiments, wcMGs outperform
standard motion graphs across different measures, generate good quality motions, allow for high
responsiveness in interactive control applications, and do not even require post-processing of the synthesized
motions.

Keywords
motion graph, motion synthesism interpolation, motion capture, human animation

Disciplines
Computer Sciences | Engineering | Graphics and Human Computer Interfaces

Comments
This articles is part of a Special Issue of ACM SIGGRAPH / Eurographics Symposium on Computer
Animation 2008.

This journal article is available at ScholarlyCommons: http://repository.upenn.edu/hms/179

http://repository.upenn.edu/hms/179?utm_source=repository.upenn.edu%2Fhms%2F179&utm_medium=PDF&utm_campaign=PDFCoverPages

Eurographics/ ACM SIGGRAPH Symposium on Computer Animation (2008)
M. Gross and D. James (Editors)

Achieving Good Connectivity in Motion Graphs

Liming Zhao and Alla Safonova

University of Pennsylvania

Abstract
Motion graphs provide users with a simple yet powerful way to synthesize human motions. While motion graph-
based synthesis has been widely successful, the quality of the generated motion depends largely on the connectivity
of the graph and the quality of transitions in it. However, achieving both of these criteria simultaneously in motion
graphs is difficult. Good connectivity requires transitions between less similar poses, while good motion quality
results only when transitions happen between very similar poses. This paper introduces a new method for building
motion graphs. The method first builds a set of interpolated motion clips, which contain many more similar poses
than the original dataset. Using this set, the method then constructs a motion graph and reduces its size by
minimizing the number of interpolated poses present in the graph. The outcome of the algorithm is a motion graph
called a well-connected motion graph with very good connectivity and only smooth transitions. Our experimental
results show that well-connected motion graphs outperform standard motion graphs across a number of measures,
result in very good motion quality, allow for high responsiveness when used for interactive control, and even do
not require post-processing of the synthesized motions.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Three-Dimensional Graphics and Realism]:
Animation

Walk Run Jump Walk Duck

Figure 1: Using graph wcMG to synthesize a smooth motion
consisting of 4 different behaviors (walking, running, jump-
ing and ducking). Poses shown in blue belong to the original
dataset, poses in red are interpolated poses introduced dur-
ing the construction of graph wcMG.

1. Introduction

Automatic methods for synthesizing human motion are use-
ful in a variety of applications including entertainment ap-
plications (such as games and movies), educational applica-
tions, and training simulators. Motion graphs emerged as a

Figure 2: Using graph wcMG to synthesize smooth transi-
tions between walks with different step lengths. Color coding
is the same as in Figure 1.

very promising technique for automatic synthesis of human
motion [AF02, KGP02, LCR∗02, PB02]. A motion graph is
constructed by taking as input a set of motion capture clips
and adding transitions between similar frames in these clips.
Once constructed, a path through this graph represents a
multi-behavior motion.

A number of papers [RP07, SH07, GSKJ03] that use mo-

c© The Eurographics Association 2008.

Liming Zhao & Alla Safononva / Achieving Good Connectivity in Motion Graphs

Figure 3: Poses from a walk with a long step length (above)
and from a walk with a short step length (below)

tion graphs for new motion synthesis note that the results de-
pend largely on the quality of the graph. To synthesize good
motions, motion graphs require smooth transitions and good
connectivity. A transition is smooth if it does not introduce
visual discontinuity to the motion. Connectivity is a measure
of how quickly one can transition from a pose in one be-
havior to a pose in another behavior. Good connectivity is
important for both interactive control applications where the
quick transitions provide real-time user control, and for off-
line motion synthesis where the generated motion can follow
a user sketch without suffering from long intermediate mo-
tion segments. Unfortunately, it is often difficult to achieve
both smooth transitions and good connectivity at the same
time. Reitsma and Pollard [RP07] did an extensive evalua-
tion of motion graphs for character animation and demon-
strated that motion graphs have poor responsiveness to user
control. For example, changing from a running motion to an
evasive action (ducking) in their motion graph took an av-
erage of 3.6s. In industry, hand-constructed blend trees are
often used [RenderWare 2001]. They have better connectiv-
ity, but require a long time to set up.

In this paper, we present an algorithm that automatically
constructs an unstructured motion graph with very smooth
transitions and much better connectivity than offered by
standard motion graphs (Figures 1 and 2). We call this graph
wcMG (well-connected motion graph). To illustrate the main
idea, consider two motions M1 and M2, with different step
lengths (Figure 3). They consist of poses which are similar,
but not similar enough to create smooth transitions. If we
construct a motion graph from M1 and M2, there will be no
transitions between them. On the other hand, a set of mo-
tions computed by interpolating M1 and M2 with different
weights contain many more similar poses. These poses al-
low for smooth transitions between M1 and M2 (Figure 2).

In general, our algorithm first computes a set of interpo-
lated poses that are interpolations of the original poses from
the motion data. It then creates graph wcMG from all origi-
nal poses and a subset of the interpolated poses. The choice
of this subset affects the quality and the size of the motion
graph. Our algorithm constructs this subset in such a way as

to: (a) guarantee the physical correctness of the transitions in
the motion graph; (b) grow the overall graph size as little as
possible while maintaining the best connectivity among the
original poses. Moreover, the user can pick an upper bound
µ on the amount by which the connectivity is sacrificed to
trade for further decrease in graph size. The resulting graph
wcMG uses exactly the same representation as a standard
motion graph, a well studied data-structure with a variety of
applicable motion synthesis algorithms.

Our experimental results show that graph wcMG achieves
much better connectivity and generates much smoother mo-
tions than standard motion graphs. These results are based
on visual perceptions as well as computing several met-
rics, some of which were previously proposed by other re-
searchers. In addition, the motions generated from graph
wcMG require no post-processing, a tedious and often im-
perfect task of removing visual artifacts such as foot sliding.
Finally, the evaluation of graph wcMG in an interactive char-
acter control scenario demonstrates better responsiveness to
user control and better visual quality of generated motions
than standard motion graphs.

2. Background

Inspired by the technique of Schödl and his colleagues
[SSSE00] that allowed a long video to be synthesized from
a short clip, motion graphs were developed simultaneously
by several research groups in 2002 and were extended in
subsequent years. Motion graphs emerged as a very promis-
ing technique for automatic synthesis of human motion
for both interactive control applications [LCR∗02, KG03,
PSS02,PSKS04,KS05] and for off-line sketch-based motion
synthesis [AF02, LCR∗02, KGP02, AFO03, IAF07, WK88,
LP02, FP03, SHP04, SHP04, SH07]. The motion graph con-
struction technique we present in this paper is therefore ben-
eficial for both interactive control and off-line sketch-based
motion synthesis applications.

The interpolated motion graph (IMG) introduced
by [SH07] is created by taking a “product” of two iden-
tical standard motion graphs. The quality of graph IMG,
therefore, depends highly on the quality of the standard
motion graph. If the standard motion graph does not contain
quick and smooth transitions between different behaviors
(from walking to picking, for example), graph IMG will not
contain them either. Our method adds quick and smooth
transitions to a standard motion graph (resulting in graph
wcMG). If desired, graph IMG can then be computed by
taking a “product” of two graphs wcMG. Our method is,
therefore, complimentary to the method of [SH07].

A number of other approaches have been developed over
the past few years that combine motion graphs and inter-
polation techniques [PSS02, PSKS04, KS05, SO06, HG07,
TLP07]. These techniques pre-process motions into similar
behaviors (for example, walk cycles that all start from the

c© The Eurographics Association 2008.

Liming Zhao & Alla Safononva / Achieving Good Connectivity in Motion Graphs

same leg or martial arts motion segments with similar rest
poses [SO06]). Similar segments are then grouped together
to create interpolation spaces and smooth transitions are cre-
ated insides these spaces. In such structured, behavior-based
graphs, behaviors can only connect at the end of the motion
clips. Moreover, transition blending requires a large amount
of motion capture data with good variations for accurate user
control [TLP07]. In our work, we also try to find transitions
in the interpolated space, however, we do it for standard and
unstructured motion graphs. Therefore, our graph can tran-
sition from different places inside behaviors. In addition, we
construct our motion graphs from a small set of representa-
tive motions with a mixture of behaviors.

Ikemoto and her colleagues [IAF07] presented another
relevant work for creating quick (1 second long) transitions
between all frames in the motion database. They split the
motions into short segments (1 second long) and separate
them via clustering by similarity. To synthesize a transition
from frame i to frame j, they find motion segments that are
similar to the motion segments right after frame i and right
before frame j. They then search over all possible interpo-
lations of these segments to find the most natural transition
from frame i to frame j. To find natural motion segments,
they define discriminative classifiers to distinguish natural
and unnatural motions. In our work, we also construct a
graph that allows for quick transitions between frames, but
our construction process is simple, fully automatic, and very
similar to the standard motion graph construction process.
We do not require a classifier to distinguish natural motions,
just a similarity measure commonly used in standard motion
graphs. In addition, the transition lengths are not fixed. They
evolve naturally from the dynamics of the motion data.

An additional difference between graph wcMG and other
variants of motion graphs that were introduced in recent
years([PSKS04, KS05, SO06, HG07, IAF07]), is that graph
wcMG has exactly the same representation as a standard mo-
tion graph. A standard motion graph is a well studied data-
structure with a variety of existing motion synthesis algo-
rithms applicable to it.

A number of on-line methods that use variants of motion
graphs together with reinforcement learning [BEL57,Nil71]
have been recently proposed. Lee and Lee [LL04] precom-
pute policies that indicate how the avatar should move for
each possible control input and avatar state. Their approach
allows interactive control with minimal run-time cost for a
restricted set of control input. McCann and Pollard [MP07]
achieve better immediate control of the character by in-
tegrating a model of user behavior into the reinforcement
learning. Treuille and his colleagues [TLP07] use reinforce-
ment learning to learn from the continuous control signals.
They use basis functions to represent value functions over
continuous control signals and show that very few basis
functions are required to create high-fidelity character con-
trollers. This permits complex user navigation and obstacle-

avoidance tasks. Using these reinforcement learning tech-
niques, we evaluate the performance of our graph wcMG for
on-line interactive control.

3. Standard Motion Graphs (MG)

Standard motion graphs (MG) are constructed by taking as
input a set of motion capture clips. Each frame in these mo-
tion clips is treated as a graph node and two nodes are con-
nected by a directed edge if there exists a smooth transition
from one node to the other.

First, one needs to define a metric for computing smooth
transitions between the nodes in the graph. Current popular
approaches compare the similarity of two nodes i and j, and
if the similarity is lower than a user specified value, node
i can be connected to node j + 1 and node j can be con-
nected to node i + 1 (where node i + 1 and node j + 1 are
the successors of node i and node j respectively in their own
motion clips). There are a number of approaches to measure
this similarity. We adopt Kovar et al.’s [KGP02] point cloud
metric with weights on different joints from Wang and Bo-
denheimer’s work [WB04].

After thresholding the similarity value by a user specified
value for naturalness, a dense transition matrix is obtained
(Figure 4), where rows and columns are the frames from
the motion clips. The transition value at row i and column
j is t = exp(−s/σ), where s is the similarity value between
frame i and frame j− 1. A standard process is then to leave
only transitions that represent local maxima in the transition
matrix and compute the largest strongly connected compo-
nent (SCC) of the graph to remove dead ends.

1 2 3 4 5

6 7 8 9

(a) (b)

Figure 4: Motion Graph construction. (a): Transition ma-
trix. The entry at (i,j) contains the transition value from
node i to node j. Bright values indicate good transitions and
dark values indicate poor transitions. (b): A simple motion
graph. Black edges are from the motion clips and gray edges
are created through the similarity measurement. The largest
strongly connected component is {1,2,3,4,7,8,9}.

Nodes in the motion graph are naturally connected to
their successor nodes according to the clip sequence. Mo-
tion graphs become more interesting and useful if nodes can
be connected in an order other than just the original motion
sequence, for example, connections that create loops inside
a clip and transitions between different clips. Usually the

c© The Eurographics Association 2008.

Liming Zhao & Alla Safononva / Achieving Good Connectivity in Motion Graphs

Original
Nodes

Interp.
Nodes

Large
Steps

Small
Steps

w = 0.8

w = 0.5

w = 0.2

Original
Nodes

Original
Nodes

Interp.
Nodes

Large
Steps

Small
Steps

w = 0.8

w = 0.5

w = 0.2

Original
Nodes

Original
Nodes

Interp.
Nodes

Large
Steps

Small
Steps

w = 0.8

w = 0.5

w = 0.2

Original
Nodes

(a) (b) (c)

Figure 5: A simple example illustrating the construction steps. (a) Interpolation Step. (b) Transition Creation Step. (c) Node
Reduction Step. All original nodes are kept. Interpolated nodes and edges outside the best paths set are removed.

denser the connectivity, the better the performance of motion
graphs, because quick transitions become possible between
different behaviors. However, to achieve denser connectivity,
we need to introduce transitions between less similar poses.
Therefore, there is a trade-off between good connectivity in
a motion graph and smoothness of the added transitions.

One major challenge in creating a good motion graph is
picking a threshold value that would result in both smooth
transitions and good connectivity between different behav-
iors. Usually a low threshold results in very few transitions,
most of which occur within the same behavior, but not across
behaviors. A high threshold, on the other hand, often results
in poor quality transitions. As we show in the experimental
section, to get good connectivity between different behaviors
in standard motion graphs, it is necessary to pick a thresh-
old that results in transitions with noticeable visual discon-
tinuity. Our approach on the other hand, achieves both good
connectivity and smooth transitions for a variety of motion
databases, including databases that are especially hard for
standard motion graphs. These databases contain motions of
different styles, from different people, and of many different
behaviors.

4. Well-connected Motion Graphs (wcMG)

In this section, we first describe the construction process for
our well-connected motion graph. We then extend our algo-
rithm to allow for trade-offs between degree of connectivity
and graph size.

4.1. Construction Process

The construction of graph wcMG is divided into three steps:
the interpolation step, the transition creation step, and the
node reduction step. We explain these three steps as follows.

Interpolation Step: Given a motion data set, we first sep-
arate the motions into segments based on contact with the
environment. We use the technique from Lee and his col-
leagues [LCR∗02] to identify the contacts. Contact informa-

tion could also be computed using one of the other published
techniques [IAF06,CB06].

The interpolation technique described by Safonova and
Hodgins [SH05] is then used to interpolate all pairs of seg-
ments with the same contact information. This interpolation
technique produces close to physically correct motions. We
denote the frames in the motion segments from the origi-
nal motion capture clips as original nodes and those from
the interpolated segments as interpolated nodes. The origi-
nal nodes , the interpolated nodes, and the natural transitions
between them are all added to graph wcMG(Figure 5(a)).

Transition Creation Step: At this stage, graph wcMG con-
tains only natural (original or interpolated) edges between
the original and the interpolated nodes. Additional edges are
added to the graph using the same process used in construct-
ing standard motion graphs (Figure 5(b)). The only differ-
ence is that graph wcMG contains both the original and the
interpolated nodes and the natural transitions between them.

From our experiments, a large number of smooth tran-
sitions can be added to graph wcMG with the help of the
interpolated nodes. The interpolated nodes provide connec-
tions between poses that are similar, but not similar enough
to create smooth transitions, such as poses from walks with
different step lengths. The interpolated nodes also provide
transitions between different behaviors even if such transi-
tions are not explicitly captured. For example, a transition
from jumping to ducking is possible, because the landing
steps from jumping and the steps that lead to ducking can be
interpolated, even when no such motion capture data exists.
Therefore, it is possible to choose a very low threshold for a
variety of behaviors to create a graph with very good connec-
tivity. Section 5 gives a detailed analysis of the connectivity
and threshold choices for graph wcMG.

Node Reduction Step: Theoretically, the number of nodes
in graph wcMG equals to N = n × n × w, where n is the
number of frames in the motion database and w is the num-
ber of interpolation weights used. The number of nodes and
edges grow quadratically with the size of the original data

c© The Eurographics Association 2008.

Liming Zhao & Alla Safononva / Achieving Good Connectivity in Motion Graphs

set. However, assuming that the choice of the initial data set
reflects the user’s application need, we can remove all nodes
and edges from the graph that are not necessary for connect-
ing the original nodes.

Therefore, in this step we compute a subset of nodes and
edges, S and E respectively, that best connect the original
nodes. To find this subset, we compute the best paths be-
tween the original nodes. The measure of best can be ap-
plication based. For example, if quick responsiveness is the
goal, we look for the shortest transitions; if motion quality
is the goal, we look for the smoothest transitions. In our im-
plementation, we used a weighted average of length and the
smoothness of the transitions.

First, S is initialized to include all the original nodes.
Next, for each of the original nodes, we find the best tran-
sition paths to all other original nodes in graph wcMG. This
is done by setting the transition cost according to the metric
described above and running a Dijkstra’s shortest path al-
gorithm for each of the original nodes iteratively (we use
the Dijkstra algorithm instead of the Floy-Warshall algo-
rithm because we do not want to waste time computing best
paths between the interpolated nodes). All nodes and edges
that belong to the best transition paths between the original
nodes are added to S and E respectively (Figure 5(c)). By
only keeping the nodes and edges in S and E , we do not
change the connectivity between the original nodes. More-
over, this node reduction step makes the final motion graph
size increase linearly with the size of the motion data set as
shown in Section 5.5.

In conclusion, graph wcMG offers a fully automatic way
to construct a motion graph from a set of representative mo-
tion capture data with good connectivity and responsiveness.
The low similarity threshold only introduces smooth transi-
tions (FIgure 2) and the size of the graph grows linearly with
the size of the data set.

4.2. Trade-off between Size and Graph Quality

In this section, we extend our algorithm to allow a user to
further decrease the size of graph wcMG obtained from the
previous section at the expense of the best transition path
quality between the original nodes.

We denote the motion graph generated in the previous
section as the optimal graph, because it includes nodes and
edges that belong to the best paths among the original nodes.
We then introduce a suboptimality scalar µ to the previous
best path search process. µ allows us to compute suboptimal
graphs with a smaller number of nodes and edges but at the
expense of the optimal paths between the original nodes.

First, S is initialized to include only the original nodes as
in the previous section. However, during each iteration of the
Dijkstra’s shortest path search, the cost c of each edge e is

computed differently now:

c =
{

t, if i, j ∈ S, (1a)

µ · t, otherwise. (1b)

where i and j are the nodes that edge e connects and t is the
base cost of the edge as described before. After each itera-
tion, the nodes along the shortest path are added to the set S
and this process repeats for every original node.

This suboptimality scalar µ compromises between graph
quality and graph size. As µ increases, it forces the search
to reuse the nodes which are already in S, even though paths
that pass through these nodes have worse quality than those
paths outside S. As a result, the size of S decreases as µ
increases. This process does not affect the reachability be-
tween the original nodes, but will reduce the quality of tran-
sition (smoothness and responsiveness) since paths outside
of S are penalized by µ times, even if they are of lower tran-
sition cost or shorter length. Fortunately, graph wcMG’s low
similarity threshold gives a nice upper bound on the transi-
tion discontinuity. Section 5.6 gives a detailed analysis on
the suboptimality trade-off and shows that the size of the
graph decreases drastically as µ increases.

5. Experimental Analysis

In this section, we analyze the performance of graph wcMG.
Table 1 shows the motion data sets we used in our analy-
sis. Dataset1 contains walking motions from one person
with different step lengths, ranging from small steps to ex-
aggerated large strides. Dataset2 contains walking motions
from four different people with approximately the same step
length. We chose these two data sets, because generating
well connected motion graphs between different styles and
for different people is known to be difficult. Dataset3 con-
tains a large set of motions commonly used to construct
motion graphs for interactive control applications and for
off-line motion synthesis applications. Each motion in the
data set contains a series of different behaviors and natural
transitions between the behaviors. For example, in a single
capture, the actor walks, jumps, walks again, ducks and so
on. Even though each motion contains natural transitions be-
tween behaviors, the standard motion graph computed from
this database has poor connectivity. Our graph wcMG on the

Table 1: Data Set Description

Name Frames Content
Dataset1 194 walks with different step lengths
Dataset2 264 walks from four different people
Dataset3 2721 a mixture of behaviors: walk-

ing, idling, jumping, running,
turning, ducking and picking up
objects and captured transitions
between them.

c© The Eurographics Association 2008.

Liming Zhao & Alla Safononva / Achieving Good Connectivity in Motion Graphs

Table 2: Connectivity vs. Similarity Threshold
Data1 Data2 Data3

Thre wcMG MG wcMG MG wcMG MG
0.2 42% 1% 84% 21% 96% 7%
0.4 70% 19% 91% 21% 98% 10%
0.6 77% 24% 94% 21% 99% 64%
0.8 81% 40% 95% 21% 99% 86%
1.0 84% 59% 96% 21% 99% 92%
2.0 91% 64% 96% 81%
5.0 92% 80% 97% 92%
6.0 96% 92% 98% 92%

other hand, achieves much better connectivity. All data is re-
sampled to 30 frames per second.

The computation time for each construction step of graph
wcMG in Section 4.1 is as follows: 7 seconds for Interpo-
lation Step, 4.5 hours for Transition Creation Step and be-
tween 0.5 to 1 hour for Node Reduction Step (depending on
the suboptimal parameter value). The computation times are
for Database3, our largest data set, and are spent only once
as a pre-processing step for graph wcMG.

In the experiments shown in Section 5.1, we synthesize
a number of motions consisting of a mixture of behav-
iors using graph wcMG. We show that even with no post-
processing the motions computed using graph wcMG are
very smooth and natural-looking. In Sections 5.2, 5.3, 5.4
we analyze the connectivity of graph wcMG and compare it
with the standard motion graph (MG). As most motion graph
construction algorithms go through the process of comput-
ing the largest strongly connected component (SCC), in Sec-
tions 5.2, we compare the size of the largest SCC for both
graphs, MG and wcMG, at varying threshold values. In Sec-
tions 5.3 and 5.4, we analyze and compare the responsive-
ness of graph MG and graph wcMG to interactive user input
by computing the time it takes to transition between differ-
ent frames in the motions and between different behaviors.
In Section 5.5, we analyze the size of graph wcMG and in
Section 5.6 we show that one can decrease the size of graph
wcMG at the cost of its responsiveness.

5.1. Motion Smoothness

We generated a variety of motions using graph wcMG to vi-
sually evaluate its quality. We generated these motions by
computing the best paths between user selected poses in a
specified order. The best metric is defined as in Section 4.1.
The resulting animations are shown in the accompanying
movie. Figure 1 shows a smooth motion consisting of 4 dif-
ferent behaviors (walking, running, jumping and ducking).
Figure 2 shows smooth transitions between a walk with a
short step length and a walk with a long step length.

This experiment was done solely to show the visual qual-
ity of the motion. We do not claim this to be a useful applica-
tion. In Section 6 we demonstrate the applicability of graph

Data1 Data2 Data3

wcMG

MG

(a) (b) (c)

(d) (e) (f)

Figure 6: Transitive Closure Matrix. Ideally, we would like
to have a plain white image which indicates that every frame
can transition to every other frame. The coverage of white
area gives an estimate of the connectivity.

wcMG to interactive control applications by generating mo-
tions in real-time according to user input. The resulting an-
imations shown in the accompanying movie are responsive
and smooth.

5.2. Size of the Largest Strongly Connected Component

In this section, we analyze the size of the largest strongly
connected component (SCC) as a percentage of the origi-
nal data set size for both graphs MG and wcMG at vary-
ing threshold values. This shows how well the nodes in the
data set are connected to each other and how well the motion
graphs are utilizing the motion data set.

Table 2 shows the percentage of largest SCC size for
both graphs wcMG and MG at different similarity thresh-
olds. The first column shows the similarity threshold. Exper-
iments show that, the best paths computed according to Sec-
tion 5.1 almost always produce smooth motions with no vi-
sual discontinuity, when the threshold is below 0.6 (colored
in green), and often contain visually noticeable discontinuity
when the threshold is above 0.6 (colored in red). The results
are shown for all three data sets. Graph MG requires 3 to
12 times higher threshold values than graph wcMG does in
order to achieve over 90% data set utilization. These entries
are highlighted in blue in the table.

Figure 6 shows the transitive closure matrix for both
graphs wcMG and MG for all three data sets at a 0.4 thresh-
old. The transitive closure matrix is a square matrix in which
element (i, j) is 1 (shown in white) if there is a path be-
tween pose i and pose j and 0 otherwise (shown in black). As
shown in the figure, graph wcMG has paths between the ma-
jority of nodes for all databases at a low similarity threshold
that always results in smooth transitions. Graph MG, on the
other hand, has very poor connectivity at the same threshold

c© The Eurographics Association 2008.

Liming Zhao & Alla Safononva / Achieving Good Connectivity in Motion Graphs

1.8
1.6
1.4
1.2
1.0

0.2 0.4 0.6 0.8
Threshold

Se
co

nd
swcMG

Thre Res(s)
0.2 1.68
0.4 1.28
0.6 1.18
0.8 1.12

MG
Thre Res(s)
0.8 2.59
1.0 1.94
1.2 1.79
1.4 1.63

(a) (b) (c)

Figure 7: Average Transition Time vs. Threshold.
(a)Average Transition Time of graph wcMG at differ-
ent similarity thresholds. (b) Plot of Average Transition
Time vs. threshold for graph wcMG shows an exponential
decrease. (c)Average Transition Time of graph MG at
different similarity thresholds.

for all three databases. The results for Dataset1 and Dataset2
show that it is hard to connect motions of different styles in
graph MG. For Dataset2, graph MG only contains transitions
between the frames from the same person, but not across
frames from different people. As a result, Figure 6e shows
no white area outside the diagonal blocks. Graph wcMG on
the other hand, can transition between styles from different
people, as Figure 6b is almost fully covered by white dots.
Dataset3 contains a mixture of behaviors. Graph wcMG is
able to create transitions between them (almost all white in
Figure 6c). At the same threshold value, graph MG is only
able to explore transitions within the motions from similar
behaviors such as walks and turns. These similar behaviors
are indicated by the clustered off diagonal white areas in Fig-
ure 6f. In conclusion, graph wcMG offers better data set uti-
lization with low similarity thresholds.

5.3. Time Between Frames

In this section, we compute the average transition time be-
tween all pairs of the original nodes. This measure provides
insight into how quickly it is possible to transition between
different poses in the data set. Quick transitions are impor-
tant for both interactive user control and off-line motion syn-
thesis. We present results at different similarity thresholds
for Dataset3, but similar results are achieved for all three
data sets. For graph wcMG, we vary the threshold from 0.2
to 0.8. For graph MG, we vary the threshold from 0.8 to
1.4, because below the 0.8 threshold, not every behavior
present in the data set is connected to every other behaviors.
Figure 7 shows the comparison. Transition time decreases
monotonically as the similarity threshold increases, because
lower quality transitions become possible (Figure 7b). Graph
wcMG obtains as good a transition time at the 0.2 thresh-
old as graph MG at the 1.4 threshold (A 7 times increase in
threshold value).

Table 3: Local Maneuverability
MG

Thre LM Size
0.8 1.33 2334
1.0 0.98 2516
1.2 0.88 2617
1.4 0.79 2645

wcMG
Thre LM
0.2 0.79
0.4 0.54
0.6 0.49
0.8 0.45

5.4. Local Maneuverability Measurement(LM)

An alternative way to measure the graph connectivity is the
local maneuverability measurement (LM) proposed by Re-
itsma and Pollard [RP07]. Instead of computing the transi-
tion time between any two frames, they compute the average
minimum time needed to transition to a particular behavior:

LMk =
1

‖C‖ ∑
c∈C

(0.5∗Dc +MDMPCc,k) (2)

where C is the set of all the motion segments in the motion
graph, MDMPCc,k is the minimum time to transition from
the end of motion segment c to any instance of behavior k,
and Dc is the motion segment length.

In addition, we compute an average of local maneuver-
ability measurement over all behaviors:

LM =
1

‖K‖ ∑
k∈K

(LMk) (3)

where K is all the behaviors in the motion graph.

Table 3 shows the LM measure change with respect to the
similarity threshold change for both graphs MG and wcMG
on Dataset3. For graph MG, as the similarity threshold in-
creases, the size of the largest SCC increases (Table 3(left
column)). For graph wcMG, the size of the largest SCC prac-
tically does not change, as it contains almost all the neces-
sary data even at the lowest threshold.

For both graphs MG and wcMG, as the graph size
increases, the LM measure decreases (Reitsma and Pol-
lard [RP07] obtained similar results). Even at a very low
similarity threshold (0.2), graph wcMG is able to produce
an LM value as low as 0.79 seconds. We could not com-
pute the LM value for graph MG at the same threshold, be-
cause behaviors are not fully connected to each other. At the
0.8 similarity threshold, graph wcMG has an LM value of
0.45 seconds which is three times smaller than the LM value
for graph MG at the same threshold. This shows that graph
wcMG provides very responsive transitions between differ-
ent behaviors while preserving good motion quality. There-
fore, it is much better suited for interactive applications. We
present results for Dataset3 in this section, but similar results
are achieved for all three data sets.

Table 4 shows the behavior to behavior LM measure for
both graphs wcMG and MG at the similarity threshold = 0.8.

c© The Eurographics Association 2008.

Liming Zhao & Alla Safononva / Achieving Good Connectivity in Motion Graphs

Table 4: Behavior to Behavior LM measure
wcMG

idle walk jump run duck pick
idle 0.00 0.03 0.27 0.53 0.03 0.13
walk 0.03 0.00 0.03 0.03 0.03 0.03
jump 0.73 0.03 0.00 0.50 0.17 0.20
run 1.60 0.90 0.03 0.00 1.17 1.23

duck 0.07 0.03 0.17 0.20 0.00 0.07
pick 0.17 0.03 0.20 0.27 0.07 0.00

MG
idle walk jump run duck pick

idle 0.00 0.03 1.73 1.40 0.03 1.37
walk 0.03 0.00 0.03 0.03 0.03 0.03
jump 0.90 0.03 0.00 1.73 1.07 0.63
run 2.70 0.90 0.03 0.00 2.83 2.70

duck 0.37 0.03 0.87 0.60 0.00 0.40
pick 0.97 0.03 0.90 0.67 0.07 0.00

Each entry is the average minimum time in seconds to tran-
sition from the behavior in row to the behavior in column. In
general, highly dynamic motions connect poorly to low dy-
namic motions, for example, running to idle. The table is not
symmetric, because the motion capture data does not contain
transitions in symmetric directions. Graph wcMG introduces
interpolated poses and transitions to help find extra connec-
tions, and therefore, outperforms graph MG in all cases.

The LM measure we compute in this section is a theoreti-
cal measurement. Some of the minimum-duration transitions
may become impossible when the motion graph is unrolled
into the environment. In addition to theoretical LM measure,
Reitsma and Pollard compute practical LM measure which
takes the environment into account. As Reitsma and Pollard
show in their work, practical LM measure is usually higher
than the theoretical measure. However, they also note that
poor theoretical LM values typically indicate poor practical
LM values.

5.5. Graph Size

In this section, we analyze the number of nodes and edges in
graph wcMG with respect to the size of the data set used to
compute the graph. For this experiment, we use Dataset3 and
vary the amount of motion data used. Figure 8 shows that
before the node reduction step, the number of nodes (blue
empty squares) and the number of edges (orange empty dia-
monds) grow quadratically as the motion data size increases.
However, after the node reduction step, which fully pre-
serves the connectivity among the original nodes, the num-
ber of nodes (red filled diamonds) and the number of edges
(green filled squares) grow linearly as the motion data size
increases. The linear coefficients for the node and edge in-
crease are 15.4 and 19.3 respectively. In conclusion, the node
reduction step provides a nice linear bound to the size of
graph wcMG.

0
10
20
30
40
50
60
70
80
90

150 300 450 600 750

x103

Theoretical Nodes
Theoretical Edges
Actual Nodes
Actual Edges

Figure 8: Graph Size vs. Motion Data Size. The horizontal
axis is the total number of frames in the database and the
vertical axis is the number of nodes and edges.

5.6. Parameter µ

The suboptimality scalar µ allows one to decrease the size
of the graph further at the expense of the transition qual-
ity and the connectivity of the graph. In this experiment, we
construct a series of graphs wcMG by varying the parame-
ter µ from 1.0 to 100.0. We use Dataset3 and a similarity
threshold of 0.2 in all the cases. Table 5 shows the analy-
sis in terms of number of nodes (NodeSize), graph size in
comparison to graph MG (SizeFactor), LM measure in sec-
onds (LM), and memory requirement in mega-bytes (Mem).
The first row shows the values for the optimal graph. As µ
increases, the graph size and the memory requirement de-
crease exponentially, producing graphs with size from 35.7×
to 1.4× the size of graph MG. At the same time, the graph
quality (smoothness and connectivity) gets worse. On the
positive side, suboptimal graphs still contain smooth tran-
sitions because the similarity threshold is below 0.2 for all
graphs. The connectivity of the graph does become worse
but at a log scale. For comparison, graph MG constructed
from Dataset3 has 2721 nodes and requires 4 MB memory.

Table 5: The effects of the suboptimality parameter µ

μ NodeSize SizeFactor LM(s) Mem(MB)
Opt. 97201 35.7 0.79 190
1.1 71013 26.1 0.79 135
1.3 52967 19.5 0.80 98
1.5 44879 16.5 0.80 81
1.7 40419 14.9 0.81 73
2.0 36085 13.3 0.82 65
3.0 28646 10.5 0.85 51
5.0 16098 5.9 0.97 28
10.0 6950 2.6 1.24 11
20.0 4989 1.8 1.56 8
50.0 3940 1.4 1.88 6
100.0 3789 1.4 2.07 6

c© The Eurographics Association 2008.

Liming Zhao & Alla Safononva / Achieving Good Connectivity in Motion Graphs

In conclusion, the user can choose an appropriate value
for µ to balance between memory requirements and transi-
tion quality. µ = 5.0 was used in our interactive control ex-
periments in Section 6, as it provides the best compromise
between size and responsiveness.

6. Application to Interactive Control

In this section, we show the applicability of graph wcMG
to interactive control applications. We use value iteration
methods to learn good control policies following the rein-
forcement learning techniques proposed by [MP07, TLP07,
LL04]. The main advantage of the value iteration approach is
that the online operation reduces to a simple fast table lookup
for an action. The resulting animations shown in the accom-
panying movie are responsive and smooth.

We compare the performance of graphs wcMG and MG
for interactive control applications. We compute a graph
wcMG consisting of walks with different turns, jumps, and
a stopping motion. The user can control the character by
changing its yaw orientation around the vertical axis and
by changing its behavior among walking, jumping and stop-
ping. The orientation control happens only during the walk-
ing behavior.

To evaluate the performance of graphs wcMG and MG,
we use an approach similar to the one described in [MP07].
We train a control policy for both graphs wcMG and MG.
When computing graph wcMG, we use a very low thresh-
old (0.2), because it already provides good connectivity be-
tween the nodes. When computing graph MG, we set the
threshold very high to allow low quality transitions follow-
ing the observation made by McCann and Pollard [MP07]
, that low quality transitions are required for better interac-
tive user control. McCann and Pollard [MP07] show that if
all low quality transitions are removed from the graph, the
overall performance of the interactive control decreases. We
then train control policies using the value iteration technique
for both graph wcMG and graph MG.

Similar to McCann and Pollard [MP07], we first collect
desired user traces (i.e., a sequence of keyboard commands)
and then evaluate the performance of the policy trained for
both graph wcMG and graph MG on these traces. Table 6
shows the result. When evaluating a given trace from the
user, we compute both the transitions smoothness in the re-
sulting motion (Transition column in Table 6) and how well
the motion follows the user input (Control column in Ta-
ble 6) - similarly to [MP07]. The column labeled Total is
the multiplication of the two measures. As can be seen from
the table, even with a much lower threshold (15 to 50 times
lower than that for graph MG), our graph wcMG outper-
forms graph MG in terms of both transition quality and re-
sponsiveness to user control.

Table 6: Interactive Control Evaluation

wcMG
Thre Control Transition Total SCC Size
0.2 0.74 0.95 0.70 561

MG
Thre Control Transition Total SCC Size
0.2 0.22 0.99 0.22 36
1.0 0.24 0.92 0.22 244
5.0 0.50 0.84 0.42 524
10.0 0.51 0.87 0.44 552

7. Discussion

In this paper, we presented an algorithm for constructing
an unstructured motion graph with much better connectivity
than standard motion graphs. The method first builds a set
of interpolated motion clips, then constructs a motion graph,
and reduces its size by minimizing the number of interpo-
lated poses present in the graph. The outcome of the algo-
rithm is a standard motion graph, which can benefit from all
the standard research techniques for motion graphs. Our ex-
perimental results show that well-connected motion graphs
outperform standard motion graphs across a number of mea-
sures, result in very good motion quality, allow for high
responsiveness in interactive controls, and even require no
post-processing to the synthesized motions.

The current method for trading off size for graph qual-
ity (Section 4.2) is greedy, because the order in which the
original nodes are processed to compute the best paths to
other nodes affects the size of the final graph. In the fu-
ture, we would like to develop a more optimal algorithm.
Even though our current Interpolation Step (Section 4.1) tar-
gets the motions that contain changes in contact, we believe
that with better motion segmentation and appropriate inter-
polation techniques,our method can produce well-connected
motion graphs for other data as well.

In this paper we analyzed the performance of our graph
for interactive control applications. We believe that our
graph will also perform well for off-line search-based meth-
ods and plan to evaluate it for sketch-based synthesis appli-
cations. In addition, it is part of the future work to analyze
the performance of our graph when it is unrolled into the
environment (as was done by Reitsma and Pollard [RP07]).

8. Acknowledgement

The authors would like to thank Matt Kuruc, Joe Kider, Jan
Allbeck and Amy Calhoun for their help with our video
and paper, and the anonymous reviewers for their thought-
ful comments.

c© The Eurographics Association 2008.

Liming Zhao & Alla Safononva / Achieving Good Connectivity in Motion Graphs

References

[AF02] ARIKAN O., FORSYTH D. A.: Interactive motion
generation from examples. ACM Trans. on Graphics 21,
3 (2002), 483–490.

[AFO03] ARIKAN O., FORSYTH D. A., O’BRIEN J. F.:
Motion synthesis from annotations. ACM Trans. on
Graphics 22, 3 (2003).

[BEL57] BELLMAN R.: Dynamic Programming.
Princeton University Press, 1957.

[CB06] CALLENNEC B. L., BOULIC R.: Robust kine-
matic constraint detection for motion data. In ACM
SIGGRAPH/Eurographics Symp. on Comp. Animation
(2006), pp. 281–290.

[FP03] FANG A. C., POLLARD N. S.: Efficient synthesis
of physically valid human motion. ACM Trans. on Graph-
ics 22, 3 (2003), 417–426.

[GSKJ03] GLEICHER M., SHIN H., KOVAR L., JEPSEN

A.: Snap-together motion: Assembling run-time anima-
tion. In ACM SIGGRAPH/Eurographics Symp. on Comp.
Animation (2003), pp. 181–188.

[HG07] HECK R., GLEICHER M.: Parametric motion
graphs. In ACM Symposium on Interactive 3D Graphics
(2007), pp. 129–136.

[IAF06] IKEMOTO L., ARIKAN O., FORSYTH D.: Know-
ing when to put your foot down. In ACM Symposium on
Interactive 3D Graphics (2006), pp. 49–53.

[IAF07] IKEMOTO L., ARIKAN O., FORSYTH D.: Quick
transitions with cached multi-way blends. In ACM Sym-
posium on Interactive 3D Graphics (2007), pp. 145–151.

[KG03] KOVAR L., GLEICHER M.: Flexible automatic
motion blending with registration curves. In ACM SIG-
GRAPH/Eurographics Symp. on Comp. Animation (Aug.
2003), pp. 214–224.

[KGP02] KOVAR L., GLEICHER M., PIGHIN F.: Motion
graphs. ACM Trans. on Graphics 21, 3 (2002), 473–482.

[KS05] KWON T., SHIN S. Y.: Motion modeling
for on-line locomotion synthesis. In ACM SIG-
GRAPH/Eurographics Symp. on Comp. Animation (July
2005), pp. 29–38.

[LCR∗02] LEE J., CHAI J., REITSMA P. S. A., HODGINS

J. K., POLLARD N. S.: Interactive control of avatars ani-
mated with human motion data. ACM Trans. on Graphics
21, 3 (2002), 491–500.

[LL04] LEE J., LEE K. H.: Precomputing avatar
behavior from human motion data. In ACM SIG-
GRAPH/Eurographics Symp. on Comp. Animation
(2004), pp. 79–87.

[LP02] LIU C. K., POPOVIĆ Z.: Synthesis of complex
dynamic character motion from simple animations. ACM
Trans. on Graphics 21, 3 (2002), 408–416.

[MP07] MCCANN J., POLLARD N. S.: Responsive char-
acters from motion fragments. ACM Trans. on Graphics
(SIGGRAPH 2007) (2007).

[Nil71] NILSSON N.: Problem-Solving Methods in Artifi-
cial Intelligence. McGraw-Hill, 1971.

[PB02] PULLEN K., BREGLER C.: Motion capture as-
sisted animation: texturing and synthesis. ACM Trans. on
Graphics 22, 2 (2002), 501–508.

[PSKS04] PARK S. I., SHIN H. J., KIM T. H., SHIN

S. Y.: On-line motion blending for real-time locomotion
generation. Computer Animation and Virtual Worlds 15,
3-4 (2004), 125–138.

[PSS02] PARK S. I., SHIN H. J., SHIN S. Y.: On-line
locomotion generation based on motion blending. In
ACM SIGGRAPH/Eurographics Symp. on Comp. Anima-
tion (July 2002), pp. 105–112.

[RP07] REITSMA P. S. A., POLLARD N. S.: Evaluat-
ing motion graphs for character animation. ACM Trans.
Graph. (2007), 18.

[SH05] SAFONOVA A., HODGINS J. K.: Analyzing the
physical correctness of interpolated human motion. In
ACM SIGGRAPH/Eurographics Symp. on Comp. Anima-
tion (2005), pp. 171–180.

[SH07] SAFONOVA A., HODGINS J. K.: Construction
and optimal search of interpolated motion graphs. In ACM
Trans. Graph. (2007), p. 106.

[SHP04] SAFONOVA A., HODGINS J. K., POLLARD

N. S.: Synthesizing physically realistic human motion in
low-dimensional, behavior-specific spaces. ACM Trans.
on Graphics 23, 3 (2004), 514–521.

[SO06] SHIN H. J., OH H. S.: Fat graphs: Construct-
ing an interactive character with continuous controls. In
ACM SIGGRAPH/Eurographics Symp. on Comp. Anima-
tion (Sept. 2006), pp. 291–298.

[SSSE00] SCHÖDL A., SZELISKI R., SALESIN D. H.,
ESSA I.: Video textures. In Proceedings of ACM SIG-
GRAPH 2000 (July 2000), Computer Graphics Proceed-
ings, Annual Conference Series, pp. 489–498.

[TLP07] TREUILLE A., LEE Y., POPOVIĆ Z.: Near-
optimal character animation with continuous control.
ACM Trans. Graph. (2007), 7.

[WB04] WANG J., BODENHEIMER B.: Computing the
duration of motion transitions: an empirical approach. In
ACM SIGGRAPH/Eurographics Symp. on Comp. Anima-
tion (2004), pp. 335–344.

[WK88] WITKIN A., KASS M.: Spacetime constraints.
Computer Graphics (Proceedings of SIGGRAPH 88) 22,
4 (1988), 159–168.

c© The Eurographics Association 2008.

	University of Pennsylvania
	ScholarlyCommons
	7-2009

	Achieving Good Connectivity in Motion Graphs
	Liming Zhao
	Alla Safonova
	Recommended Citation

	Achieving Good Connectivity in Motion Graphs
	Abstract
	Keywords
	Disciplines
	Comments

	tmp.1448058609.pdf.pcR7I

