1996

Economic Development

Clark L. Erickson

University of Pennsylvania, cerickso@sas.upenn.edu

Follow this and additional works at: https://repository.upenn.edu/anthro_papers

Part of the Archaeological Anthropology Commons, Growth and Development Commons, Social and Cultural Anthropology Commons, and the Work, Economy and Organizations Commons

Recommended Citation (OVERRIDE)

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/anthro_papers/180
For more information, please contact repository@pobox.upenn.edu.
Economic Development

Abstract
The earth's landscapes have a long history of intensive use by indigenous peoples and small farmers. These peoples have utilized agricultural technologies that permit them to make a living from what is often considered to be marginal farmland, despite pressures from the world economy, urbanism, civil unrest, and top heavy national development. Indigenous knowledge systems can provide models for sustainable uses of landscapes and a viable alternative to the economic development commonly promoted by national and international institutions.

Disciplines
Anthropology | Archaeological Anthropology | Growth and Development | Social and Behavioral Sciences | Social and Cultural Anthropology | Work, Economy and Organizations

This book chapter is available at ScholarlyCommons: https://repository.upenn.edu/anthro_papers/180
DEVELOPMENT, Economic. The earth’s landscapes have a long history of intensive use by indigenous peoples and small farmers. These peoples have utilized agricultural technologies that permit them to make a living from what is often considered to be marginal farmland, despite pressures from the world economy, urbanism, civil unrest, and top heavy national development. Indigenous knowledge systems can provide models for sustainable uses of landscapes and a viable alternative to the economic development commonly promoted by national and international institutions.

What is often forgotten is that these indigenous knowledge systems have long histories. The deep trajectories result from dynamic, long-term interaction between humans and local environments. Indigenous knowledge systems are often fragmentary or transformed. Often they have been abandoned, as in the case of raised field agriculture in the upper Amazon of Bolivia, in the higland Andes, and the Maya lowlands of Guatemala, Belize, and Mexico. The same is true of irrigation and terrace agriculture throughout much of Latin America. Archaeology can provide a “window” into the history of indigenous knowledge systems. Ancient agricultural systems often were based on the massive transformation of local and regional landscapes. Embedded in these landscapes are the physical structure, patterning, and designs of agricultural engineering and expertise, resulting in a palimpsest of land-use strategies and knowledge systems. Many of these long-used landscapes in Latin America are presently underproductive or abandoned. Archaeological techniques, combined with a multidisciplinary approach, can provide information on the crops grown, tools utilized, field morphology, and patterning, functions, prehistoric demography, and the technical knowledge used. This long-term perspective also provides the political, demographic, social, and economic context of the ancient farming system and its evolution over time.

A small group of prehistorians are practicing what has been referred to as an “applied archaeology.” Through the study of ancient indigenous knowledge systems and landscapes, archaeology can provide a practical contribution to rural economic development in the contemporary situation. Despite drastic changes in the social, economic, political, and natural environment, many ancient technologies have been demonstrated to be appropriate in contemporary rural society.

Raised Fields in Peru and Bolivia. Traces of an impressive agricultural system referred to as raised fields (waru waru, suka kollus) are found throughout the Lake Titicaca region at 12,500 feet (3,810 m) in the Andes. Raised fields are large, elevated planting platforms constructed of earth taken from adjacent canals, which improve planting conditions by doubling topsoil, aerating the soil, and providing local drainage. In addition to irrigation, the deep canals capture, produce, and recycle nutrients in the form of organic matter, algae and green manure and act as a heat sink to protect fields from frosts. Although once a highly productive landscape, the ancient fields now lie abandoned and little agriculture is practiced here because of poor soils, seasonal inundation, and harsh frosts. A number of indigenous communities in the region have worked with two archaeological projects in the rehabilitation of raised fields. In 1981, raised fields were rebuilt for experimental purposes in Huatta using information recovered from excavations of ancient fields. The results were so impressive that a number of projects have begun to promote raised fields as a
sustainable alternative to capital-based western models of agriculture being introduced into the region. An estimated 741 acres (300 ha) of fields have been put back into production and over fifty communities are participating in the rehabilitation projects. A similar raised-field rehabilitation project based on the study of ancient fields has begun with native communities in the Amazon region of Bolivia.

Prehispanic Terracing in Peru. An estimated 12 million acres (5 million ha) of mountain slope were once farmed using stone-faced terrace platforms. Many of these now abandoned fields were part of elaborate irrigation canal networks which distributed water over long distances. Traditionally attributed to the Incas, archaeologists now know that these agricultural works have a long history in the Andean region. In the recent years, various multidisciplinary projects have begun to promote the rehabilitation of pre-Hispanic terraces to put these lands back into production for the benefit of local communities.

Desert Agriculture in the Negev. Archaeological investigations of the Negev Desert region of Israel located numerous large settlements in areas that today are deserted arid wastelands. A long multidisciplinary study by Michael Evenari and colleagues of the landscapes around these sites discovered engineering works which show us how these areas were farmed in the past. A sophisticated network of stone lines, ditches, and barriers above the sites were used to capture the limited rainfall in this area and the runoff was funneled into artificially leveled fields where it provided the moisture necessary to farm these marginal regions. Experiments based on the ancient design proved successful and a development project has put some of these lands back into use.

[See also ARCHAEOLOGY IN THE CONTEMPORARY WORLD; FUTURE OF THE PAST.]