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Background: Relevant to trauma induced coagulopathy (TIC) diagnostics, microfluidic assays allow 
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Methods: Hemodilution or hyperfibrinolysis was studied under flow with modified healthy whole blood. 
Furthermore, platelet function was also measured using whole blood from trauma patients admitted to a 
Level 1 Trauma center. Platelet deposition was measured with PPACK-inhibited blood perfused over 
collagen surfaces at a wall shear rate of 200 s-1, while platelet/fibrin deposition was measured with corn 
trypsin inhibitor (CTI)-treated blood perfused over TF/collagen. 

Results: In hemodilution studies, PPACK-treated blood displayed almost no platelet deposition when 
diluted to 10% Hct with saline, platelet poor plasma (PPP), or platelet rich plasma (PRP). Using similar 
dilutions, platelet/fibrin deposition was essentially absent for CTI-treated blood perfused over TF/
collagen. To mimic hyperfibrinolysis during trauma, exogenous tPA (50 nM) was added to blood prior to 
perfusion over TF/collagen. At both venous and arterial flows, the generation and subsequent lysis of 
fibrin was detectable within 6 min, with lysis blocked by addition of the plasmin inhibitor, [epsilon]-
aminocaproic acid. Microfluidic assay of PPACK-inhibited whole blood from trauma patients revealed 
striking defects in collagen response and secondary platelet aggregation in 14 of 21 patients, while 
platelet hyperfunction was detected in 3 of 20 patients. 

Conclusions: Rapid microfluidic detection of (i) hemodilution-dependent impairment of clotting, (ii) clot 
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novel diagnostic opportunities to predict TIC risk. 
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BACKGROUND 

Trauma is the leading cause of death in people under the age of 36 years old (1). Many severely 

injured patients exhibit trauma induced coagulopathy (TIC), a hemorrhagic state that accounts for 

40% of trauma deaths (1). TIC is multifactorial and associated with tissue injury, inflammation, 

shock, hemodilution, acidosis, hypoxia, and hypothermia (1). Tissue injury and shock result in 

hyperfibrinolysis due to the acute release of tissue plasminogen activator (tPA) from endothelial 

cells. Systemic fibrinolysis results in fibrinogen consumption and limits clot formation and 

stability at the site of vascular injury, resulting in increased bleeding risk (2). Furthermore, blood 

loss followed by resuscitation with colloids or packed red blood cells (PRBCs) leads to the 

hemodilution of clotting factors. 

 

Most research in TIC has focused on coagulation factors and proteases, with the role of platelet 

function during trauma not as well studied (3,4). Platelet function studies of trauma patients have 

been difficult to implement due to the technical complexities of current platelet function tests. 

Although recent advances in platelet aggregometry and thromboelastography (TEG) have enabled 

important studies of platelet function and clot strength in trauma patients (5–9). These techniques, 

however, are closed systems lacking flow or presenting poorly defined flow fields. 

 

Microfluidic systems are open systems where blood flows over a zone of defined procoagulant 

surface, thereby recreating the unique spatial and compositional attributes of blood clotting found 

in vivo (10). Microfluidic technology in conjunction with micropatterning techniques enable low 

volume and high throughput testing of platelet function and fibrin generation over a range of 

physiological shear stresses (11–15).  Microfluidic whole blood assays have been previously used 
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to evaluate platelet and clotting function in hemophiliacs and healthy donors taking antiplatelet 

therapeutics (10,16–18).  

 

In regards to current resuscitation strategies, the administration of PRBCs with or without fresh 

frozen plasma (FFP) and the optimal FFP:PRBCs ratio remain active areas of investigation (19). 

Prospective studies have shown that platelets may serve as the third component of resuscitation 

strategy (19–22). PRBC administration not only increases hemoglobin, but also contributes 

biorheologically by driving platelet margination towards the vessel wall.    

 

In this study, we applied microfluidic technology to investigate resuscitation-driven 

hemodilution, hyperfibrinolysis, and plasmin-inhibitor therapy, all topics relevant to TIC risk and 

treatment. Additionally, we evaluated platelet function under flow using whole blood from 

trauma patients.  
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METHODS 

Microfluidic evaluation of hemodilution and hyperfibrinolysis  

Following approval from the Internal Review Board approval at the University of Pennsylvania, 

healthy donors (n = 15) were recruited to donate whole blood using standard phlebotomy 

techniques. Donors were required to refrain from all oral medications for 7 days and abstain from 

alcohol for 48 hours prior to donation. Blood was drawn into corn trypsin inhibitor (CTI, 

Haematologic Technologies, Essex Junction, VT, 40 µg/ml final concentration) or FPR-

chloromethylketone (PPACK, Haematologic Technologies, Essex Junction, VT, 100 µM final 

concentration). CTI inhibits the contact pathway for studies of surface-triggered coagulation while 

PPACK inhibits thrombin generation in order to examine platelet function in the absence of 

thrombin in vitro. Blood samples were treated with fluorescently conjugated anti-CD61a antibody 

(clone VI-PL2, Becton Dickson, Franklin Lakes, NJ, 0.125 µg/ml final concentration) to label 

platelets and fluorescently conjugated fibrinogen (Invitrogen, Life Technologies, Carlsbad, CA, 

75 µg/ml) to label fibrin(ogen) 5 min prior to initiation of flow assays. All healthy donor 

microfluidic experiments were completed within 45 min of phlebotomy. 

  

Microfluidic fabrication methods and device specifications were previously described  (11,17,23). 

Microfluidic channels ran perpendicularly over a 250 µm wide strip of patterned equine fibrillar 

collagen type I (Chronopar, Chronolog) or Tissue factor (TF) bearing collagen type I surfaces 

(Dade Innovin, Siemens Healthcare USA, Malvern, PA). Epifluorescent microscopy and image 

acquisition were performed in real-time as previously described (10,17). Dilution of the hematocrit 

to simulate resuscitation-induced hemodilution was achieved with exogenous addition of HEPES 

buffered saline (HBS, 20 mM HEPES, 160 mM NaCl, pH 7.5), donor specific platelet poor plasma 
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(PPP) or platelet rich plasma (PRP). Isolation of PRP or PPP was previously described (17,24). 

HBS, PPP or PRP was added in 1:3, 1:1, 3:1 ratio to whole blood to obtain Hct levels of 30%, 

20%, 10% respectively 5 min prior to initiation of the flow assay. Fibrinolysis was promoted by 

exogenously adding 10X stock solutions of tPA (abcam, Cambridge, MA, 0-50 nM). Blood 

samples were perfused at an initial venous wall shear rate of 200 s-1 or arterial wall shear rate of 

1222 s-1 in a previously designed pressure relief mode for 20 min (12). Platelet and fibrin 

accumulation analysis was completed as previously described (17).  

 

Microfluidic Assessment of Trauma Patient Platelet Function 

Following Institutional Review Board approval, blood was collected from trauma patients (n = 20) 

who had sustained injuries requiring evaluation at the Hospital of University of Pennsylvania 

(HUP) Level 1 Trauma Center. Exclusion criteria included failure to obtain an initial blood draw 

and death within 24 hr of admission. Patient demographics, clinical laboratory test results, and 

outcomes were recorded (Table 1). All trauma patients had Hct levels and platelet counts within 

physiologic ranges (Table 1). All clinical laboratory tests were obtained at the same time as the 

microfluidic assessment of trauma patient platelet function. All trauma patient samples were 

collected within one hour of injury. A blood sample was drawn upon patient arrival using 21-guage 

or larger needle into a 10 ml plastic syringe (Becton Dickson, Franklin Lakes, NJ) containing no 

anticoagulant. Blood samples were aliquoted into vacationers for clinical assays and residual blood 

was transferred into a single vacutainer containing 100 µM PPACK. The effects of this collection 

method and the delay between phlebotomy and inhibition by PPACK (average ~ 3 min) were 

assessed and found to have negligible effects on platelet activation and thrombin generation 

(Supplemental Fig. 6 & Fig. 7).  
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PPACK treated blood samples were treated with fluorescently conjugated anti-CD61a antibody 

(clone VI-PL2, Becton Dickson, Franklin Lakes, NJ, 0.125 µg/ml final concentration) to label 

platelets and anti-human CD62P (P-Selectin) antibody (BioLegend, San Diego, CA, 4 µg/ml final 

concentration) to stain for P-Selectin. Blood samples were subsequently treated with either HBS 

or 100X stock solutions of the indicated antagonists.  MRS 2179 (2'-deoxy-N6-methyladenosine 

3', 5'-bisphosphate ammonium salt (MRS 2179, Tocris Bioscience, Minneapolis, MN), S-

Nitrosoglutathione (GSNO, Santa Cruz Biotechnology, Dallas TX), and iloprost (Tocris 

Bioscience) were the antagonists used and dissolved at 0.1 mM, 10 mM, 0.2 mM in HBS 

respectively. Whole blood perfusion in microfluidic devices started within 10 min of blood 

collection in constant flow mode at 100 s-1.  

 

Statistical Significance Analysis  

Statistical significance was assessed using a two-tailed unpaired Student's t-test. Data sets were 

considered significantly different from each other if the calculated p-value < 0.05. Exact p-values 

are reported in the results where p > 0.001, otherwise p < 0.001 is denoted.     
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RESULTS 

Hemotocrit reduction: dilution reduces platelet deposition on collagen (no thrombin) and platelet-

fibrin accumulation on TF/collagen.  

Our healthy volunteer study population had a mean age 26.2 ± 1.52y (10M/5F). The effect of 

hematocrit dilution on platelet deposition was evaluated by ex vivo dilution of healthy whole blood 

with either saline, PPP, or PRP (Supplemental Fig. 1). In the absence of thrombin with PPACK-

treated whole blood at 200 s-1, platelet deposition was strongly inhibited by hemodilution with 

saline (p < 0.001), PPP (p < 0.001), or PRP (p < 0.001: 10 & 20% Hct, p = 0.01: 30% Hct)  (Fig. 

1A,C,E).  As expected in the flow assay over collagen, fibrin generation was dependent on 

thrombin production and was negligible in PPACK-inhibited whole blood in the absence of 

surface-patterned TF on collagen (Fig. 1B, D, F).  

 

Similarly, in the presence of surface-triggered coagulation (Fig. 2), we detected significant 

decreases in platelet accumulation for all lowered Hct levels when whole blood was diluted with 

saline (p < 0.001: 10 & 20% Hct, p = 0.0154: 30% Hct), PPP (p < 0.001: 10 & 20% Hct, p = 0.002: 

30% Hct or PRP (p < 0.001: 10% Hct, p = 0.0035: 20% Hct, p = 0.0316: 30% Hct) (Fig. 2A, C, 

E).  Total fibrin accumulation at lower Hct levels was also significantly reduced when whole blood 

was supplemented with saline (p < 0.001: 10, 20 & 30% Hct) or PPP (p < 0.001: 10% Hct, p = 

0.005: 20% Hct, p = 0.0064: 30% Hct) or PRP (p < 0.001: 10% & 20% Hct, p = 0.3576: 30% Hct) 

to reduce Hct  (Figure 2B, D).  The reduced fibrin accumulation observed with reduced Hct cannot 

be due to a reduction in coagulation factors since the concentration of coagulation proteins remains 

constant when whole blood is diluted with PPP or PRP (as opposed to saline dilution).  In this 
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experiment, reduced platelet deposition was highly correlated with reduced fibrin production as 

Hct was reduced, regardless of how Hct was lowered (Figure 2). 

 

Exogenous tPA activates the lytic state at venous and arterial shear rates and promotes 

hyperfibrinolysis 

Following severe trauma and shock, injured endothelial cells release tPA systemically leading to 

hyperfibrinolysis (1). To mimic this pathological mechanism, tPA was exogenously added to 

whole blood (Supplemental Figure 1). At venous shear rates (200 s-1), exogenous addition of tPA 

to whole blood had negligible effects on platelet deposition on TF bearing collagen surfaces under 

flow (Figure 3A, B; ns). However, the rapid production of plasmin at the surface-patterned injury 

site in conjunction with fibrin formation at 200 s-1 induced a 'lytic state' with 50 nM ex vivo tPA 

addition. Total fibrin accumulation decreased 63.9 % by 10 min (Figure 3C; p  = 0.0044). To 

reverse the 'lytic state' and stop fibrinolytic activity under flow, we added the lysine analogue ε-

aminocaproic acid (εACA) to inhibit plasmin activity. The inhibition of plasmin by εACA restored 

total fibrin accumulation to levels comparable to control conditions but resulted in delayed fibrin 

initiation (Figure 4C). At arterial shear rates (1222s-1), embolization occurred with tPA as 

indicated by a drastic drop in the platelet signal by 12 min (Figure 4). The platelet signal continued 

to fall approaching zero by the end of the 20 min assay (Figure 4B). Exogenous tPA addition 

minimized total fibrin formation while treatment with εACA non-significantly increased platelet 

deposition (p = 0.1024) and total fibrin accumulation (p = 0.1132) (Figure 4B, C).  Interestingly, 

in a few channels of the microfluidic assay at either venous or arterial wall shear rates, tPA-

mediated fibrinolysis was followed by destabilization of platelet deposits which then embolized 
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downstream. This disruption of platelet rich thrombi from the patterned injury site was followed a 

second round of platelet deposition and renewed fibrin generation (Supplemental Figure S4, S5)  

 

Trauma patient platelet function tests: delayed platelet recruitment to collagen and attenuated 

secondary aggregation  

Our 20 trauma patient population had a mean age of 50.2 ± 22.84 and a median injury severity 

score (ISS) of 7.5 with an interquartile range of 25. There were 15% penetrating injuries and 25% 

brain injuries. Rapid platelet function testing of PPACK-inhibited whole blood from trauma 

patients (n = 20) revealed a subpopulation of patients (14/20) with reduced platelet function upon 

arrival to a Level 1 Trauma Center (Figure 5, Supplemental Figure S8). When compared to 7 

healthy donors, 14 trauma patients were found to have significantly decreased total platelet 

accumulation measured at 900 sec (Supplemental Figure S9; p < 0.001). We categorized these 

subset of patients as 'loss of function'. Patients with statically significant increased total platelet 

accumulation measured at 900 sec when compared to healthy donors were categorized as 'gain of 

function' (Figure 5, Supplemental Figure S9) Visual inspection of platelet aggregates formed on 

collagen surfaces indicate two loss of function phenotypes in trauma patients. The first loss of 

function phenotype in trauma patients was characterized by platelets failing to adhere to the 

collagen surface indicative of dysfunctional platelet glycoprotein VI (GPVI) (Figure 5B, C, E, 

K). In a second observed loss of function phenotype, platelet aggregate growth beyond the initial 

monolayer of platelets was minimal or completely missing (Figure 5D, F-N). Platelet aggregates 

tended to form above the initial monolayer of collagen-adherent platelets but were subsequently 

washed downstream. Clots formed from these patients did not grow to full channel occlusion 

during the duration of the 900 sec assay (Figure 5A, black arrow). This failure of secondary 
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aggregation in these patients may be due to a lack of ADP or thromboxane A2 mediated clot 

growth. Interestingly, 3 patients exhibited hyper-responsive platelet function in this microfluidic 

assay with two patients forming occlusive clots within the first 400 seconds (Figure 5R-T).   

 

Trauma patient platelets respond less to antagonism by MRS 2179 and iloprost but increased 

sensitivity to inhibition by GSNO  

To assess the various pathways that affect trauma platelet signaling under flow, we antagonized 

platelet function in three different manners (Supplemental Figure S2). MRS 2179 was used to 

potently inhibit the platelet ADP receptor, P2Y1. The addition of GSNO was used to stimulate 

nitric oxide production ex vivo and iloprost was used to raise cyclic adenosine monophosphate 

(cAMP) levels inside the platelet in order to reduce platelet aggregation. On average, trauma 

patients with detectable baseline platelet function measured by platelet fluorescence responded to 

all three forms of antagonism (Supplemental Figure S2C). Total platelet accumulation at 900 sec 

was reduced 58.8%, 43.83% and 73.80 % by MRS 2179, GSNO, and iloprost respectively in 

trauma patients (n = 17, 68 clots, p < 0.001) as compared to 79.2%, 15.2%, and 91.81% in healthy 

donors (n = 6, 24 clots, p < 0.001) (Supplemental Figure S9). Interestingly, trauma patient platelet 

function responded less to the addition of MRS 2179 or iloprost but was more strongly inhibited 

by production of nitric oxide ex vivo (Supplemental Figure S9; MRS 2179: p = 0.003, Iloprost 

or GSNO: p < 0.001).  

 

A subpopulation of trauma patient platelets displayed decreased p-selectin expression under flow 

P-selectin surface expression was also used as a marker for α-granule secretion and irreversible 

platelet activation in our microfluidic assay (Supplemental Figure S3). A population of trauma 
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patients (9/21) exhibited low p-selectin expression in the flow assay (data not shown) however, 

when normalized against the platelet fluorescence signal, a single patient displayed a severe deficit 

in p-selectin expression on a per platelet basis (Supplemental Figure S3B-D). The lack of p-

selectin expression in patient #9 may be indicative of low levels of platelet activation and potential 

previous degranulation of platelets prior to microfluidic testing.   

 

DISCUSSION  

Trauma induced coagulopathy is a multi-faceted phenomenon that occurs in the combined setting 

of  shock, hemodilution, hypothermia, and tissue injury. With the use of microfluidic technology 

we evaluated hemodilution and hyperfibrinolysis, two common mechanisms of TIC, in order to 

understand how derangements in platelet deposition and fibrin formation contribute to altered 

hemostasis. Hemodilution of healthy whole blood with saline, PPP, or PRP significantly reduced 

platelet adhesion to collagen in the absence of surface-triggered coagulation at all lowered Hct 

levels (Figure 1). Platelet deposition was also significantly decreased with this dilution scheme on 

TF-bearing collagen surfaces (Figure 2). RBCs strongly influences platelet margination and 

enhances platelet accumulation at the collagen or collagen/TF injury site in these assays. These 

results indicate a significant role for RBCs in mediating the rapid platelet response required to seal 

vessel injuries. Furthermore, RBCs have also been shown to release ADP thus promoting platelet 

aggregation and can potentially sustain thrombin generation (25). This is could be another role in 

which RBCs support platelet function and coagulation in our microfluidic assays.  However, ADP 

release from RBC is expected to be minimal under the venous flow conditions tested (Figure 2).   
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Furthermore, a second mechanism associated with TIC is increased fibrinolytic activity. Excessive 

fibrinolysis impairs clot integrity and causes bleeding. We recapitulated this mechanism and 

rapidly detected changes in fibrin accumulation and clot stability in microfluidic assays with 

exogenous addition of tPA. We promoted a 'lytic state' under flow inducing fibrin lysis at venous 

shear rates that was rescued with ex vivo εACA addition (Figure 3). At arterial shear rates, the 

'lytic state' induced embolism as clots tore from the TF bearing collagen surfaces and washed 

downstream (Figure 4). In rare cases, the 'lytic state' induced a consumptive coagulopathy with 

complete fibrin lysis and disintegration of platelet aggregates followed by platelet re-adherence 

and fibrin regeneration on the TF bearing collagen surface. This observed process depletes 

platelets, clotting factors, and plasma proteins in the flowing blood. The deranged hemostasis 

during hyperfibrinolysis we have recreated in the microfluidic assays mimics the coagulopathy of 

traumatic brain injuries (26). Our results suggest that hyperfibrinolysis and excessive consumption 

of clotting factors work synergistically during TIC. (Supplemental Figure S4, S5).  Finally, we 

were able to detect and quantify changes in fibrin generation and clot stability during this 'lytic 

state' in <6 min, a time scale much faster than what is currently capable with TEG. 

 

In clinical settings, conventional plasma-based assays are used to assess TIC instead of 

microfluidic-based assays. The prothrombin time (PT), partial thromboplastin time (PTT), platelet 

count, and fibrinogen levels are the most commonly used tests for monitoring coagulopathy 

following trauma. These tests, however, examine only a single component of the hemostatic 

process and fail to measure clot strength, fibrinolytic activity or platelet function. Furthermore, 

while TEG with or without platelet mapping is more indicative of global hemostasis, the use of 

FXII activator kaolin and citrated samples are major drawbacks with this technology. Kaolin 
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activation of coagulation is non-physiologic as kaolin is not found in the body and citrate is known 

to affect platelet αIIβIIIa integrin function. The fluid mechanics of TEG also fail to replicate the 

hemodynamics of the vasculature. The oscillatory movement of a cup in a closed system cannot 

generate the extraordinary platelet concentrations in a clot on the vessel wall. Furthermore, in TEG, 

the moving cup is a closed system where platelet releasates and coagulation factors can accumulate 

unhindered due to the lack of transport-induced washout of these components. Microfluidic 

assessment of trauma patient function detected platelet function defects in < 5 min while a 

complete TEG test may take upward to 60 min (27).   

 

In whole blood microfluidic assays, on the other hand, platelet deposition and fibrin generation 

must occur under well-controlled hemodynamic conditions and in the presence of convective 

dilution of thrombin, soluble agonists, and plasma proteins. During these assays, the biorhelogic 

phenomena present can either limit or augment local enzyme concentrations. In addition to 

changes in the local enzyme concentrations, platelet receptor-ligand bonds must withstand the 

hydrodynamic shear stress imparted by following blood.  Thus whole blood microfluidic assays 

provide a much more rigorous physiologic test of platelet function and fibrin generation not 

captured by static clotting assays and TEG (28,29).  

 

To the best of our knowledge, our results are the first real-time platelet function testing of whole 

blood samples from trauma patients using microfluidic technology. One previous study by Jacoby 

et al. has assessed platelet function following trauma using a platelet function analyzer (PFA-100) 

with citrated whole blood.  The PFA-100 is a cartridge-based flow system that aspirates citrated 

whole blood in capillaries. It measures aperature closure time following blood clotting on a 
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membrane coated with collagen/ADP or collagen/epinephrine. Their study reported decreased 

closure times at initial trauma patient presentation indicating increased platelet function and 

hypercoagulability. Contrary to the Jacoby et al. report, we observed noticeable decreases in 

platelet adhesion to collagen and secondary platelet aggregation when we rapidly assessed platelet 

function in trauma patients (n = 20) at 100s -1 over collagen surfaces (Figure 5). Furthermore, 

when comparing our microfluidic assay results to clinical patient data, we found no correlation 

between platelet function and injury severity score (ISS), or platelet function and the diagnosis of 

traumatic brain injury (TBI). All 14 patients displaying decreased platelet function had 

physiological Hct levels and platelet counts.  With respect to static plasma clotting assays, 13 of 

the 14 patients with decreased platelet function were within the normal PTT reference range (20.8-

34.4) (10). These results indicate that patient hematocrit levels, platelet counts, and plasma-based 

clotting tests are largely inadequate in assessing the contribution of platelet function to acute 

traumatic coagulopathy.  

 

Interestingly, of the 7 patients that did require blood products post microfluidic testing, 4 patients 

had decreased platelet function as initially assessed by whole blood microfluidic testing. A single 

patient (#31) was transfused with 14 units of blood products within 12 hrs of arrival. Microfluidic 

testing of this patient detected decreased platelet function upon initial presentation and continuous 

attenuated platelet function up to 72 hours post admission (Supplemental Figure S11).  

 

Important distinctions exist between assays that evaluate platelets under non-flow conditions and 

microfluidics that allow platelets to accumulate on a surface to levels >200-fold that of whole 

blood levels.  We demonstrated that microfluidic assay of trauma patient samples is a global test 
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of whole blood clotting function under flow with the capability of detecting platelet dysfunction.  

In future work, a comparison of microfluidic assay with platelet aggregometry or platelet mapping-

TEG may provide further insights into platelet dysfunction during TIC. Microfluidic assay allows 

determination of: (1) platelet recruitment to the collagen surface, (2) total platelet accumulation, 

(3) platelet accumulation rate, and (4) time to full channel occlusion. These metrics could be 

compared to platelet mapping-TEG metrics such as maximum clot strength (MAThrombin), the 

contribution of ADP receptors (MAADP), and the contribution of the arachidonic acid pathway 

(MAAA). For example, we previously observed a relationship between aPTT and platelet 

accumulation rates on collagen surfaces for hemophilic blood from patients with increase bleeding 

risks (10). Finally, while all trauma patient samples were collected within one hour of injury. 

Further validation in the whole blood microfluidic assay is required to examine how a variation in 

time of sample collection within the one hour time window affects platelet function under flow as 

derangements in trauma patient platelet function is thought to occur rapidly prior to hospital 

admissions.   

 

The high throughput nature of microfluidic whole blood testing however, will enable testing of 

fresh platelets, stored platelets, and other current and novel drugs used to restore platelet function 

during the acute phase of trauma coagulopathy. In a previous study, we have shown a novel method 

to assess the incorporation of culture-derived platelets from human peripheral blood cells into 

developing human thrombi under flow (28). Using similar techniques, future studies should test 

whether stored platelets can incorporate into trauma patient thrombi under flow. Successful 

adherence and incorporation of stored platelets into patient thrombi formed ex vivo would indicate 

the high potential of these platelets to restore platelet function in acute traumatic coagulopathy.  
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The mechanisms underlying trauma platelet dysfunction have yet to be elucidated and require 

further investigation outside of microfluidic testing. Groups have postulated that platelet function 

downregulation can occur during trauma. Previous studies suggest the presence of dysfunctional 

circulating platelets following activation in response to tissue damage (5,7). Platelet receptor 

proteolysis may be another putative pathway in which platelet function is down-regulated in 

trauma patients. Previous reports describe proteolysis of platelet GPVI and GPIb-IX-V receptors 

(29,30). Ectodomain shedding of platelet adhesion receptors is a plausible physiologic mechanism 

in which platelets can respond to cases of severe endothelial injury following trauma yet prevent 

uncontrolled thrombus growth that leads to systemic clotting.    

 

In this study, we have used microfluidic technology to effectively evaluate current resuscitation 

strategies and hyperfibrinolysis showing more rapid detection of impaired hemostasis and 

coagulation than what is capable with current technologies.  Furthermore, we also tested trauma 

patient platelet function using this high throughput method. The fast identification of platelet 

function defects in trauma patients using whole blood microfluidic assays indicate a potential novel 

15 min test to help guide coagulopathy treatments in the future.  
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FIGURE & TABLE LEGENDS 

 

Figure 1. Platelet accumulation on collagen in healthy donors following Hct dilution in the 

absence of thrombin 

(A & B), Platelet and fibrin fluorescence intensities vs. time with saline dilution of Hct. (C & D), 

Platelet and fibrin fluorescence vs. time with PPP dilution of Hct. (E & F), Platelet and fibrin 

fluorescence intensities vs. time with PRP dilution of Hct.  Shaded traces are the mean and standard 

deviation of 10 clotting events from 5 donors.  

 

Figure 2.  Platelet and fibrin accumulation on TF-bearing collagen in healthy donors 

following Hct dilution 

(A & B), Platelet and fibrin fluorescence intensities vs. time with saline dilution of Hct. (C & D), 

Platelet and fibrin fluorescence intensities vs. time with PPP dilution of Hct. (E & F), Platelet and 

fibrin fluorescence intensities vs. time with PRP dilution of Hct. Shaded traces are the mean and 

standard deviation of 10 clotting events from 5 donors.  

     

Figure 3.  Platelet and fibrin accumulation in response to exogenous tPA ± εACA at venous 

shear rates.  

(A), Overlay of platelets (red) and fluorescent fibrinogen (yellow) deposition at 200 s-1 over the 

time course of the 20 min assay. (B), Platelet fluorescence intensities vs. time with exogenous tPA 

± εACA. (C), Fibrin fluorescence intensities vs. time with exogenous tPA ± εACA. Shaded traces 

are the mean and standard deviation of 12 clotting events from 3 donors.  
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Figure 4. Platelet and fibrin accumulation in response to exogenous tPA ± εACA at arterial 

shear rates.  

(A), Overlay of platelets (red) and fluorescent fibrinogen (yellow) deposition at 1222 s-1 over the 

time course of the 20 min assay. (B), Platelet fluorescence intensities vs. time with exogenous tPA 

± εACA. (C), Fibrin fluorescence intensities vs. time with exogenous tPA ± εACA. Shaded traces 

are the mean and standard deviation of 8 clotting events from 2 donors.  

 

Figure 5. Trauma patient thrombi morphology at 900 sec and platelet deposition dynamics 

at venous shear rates (100 s-1) 

(A & A'), Platelet fluorescence intensities vs. time for representative healthy donor and 

representative image of final platelet accumulation at 900 sec. (B-N & B'-N', blue line), Platelet 

fluorescence intensities vs. time and representative image of final platelet accumulation at 900 sec 

for trauma patients exhibiting loss of platelet function.  (O-Q & O'-Q', yellow line), Platelet 

fluorescence intensities vs. time and representative images of final platelet accumulation at 900 

sec  for trauma patients exhibiting normal platelet function.  (R-T & R'-T', green line), Platelet 

fluorescence intensities vs. time and representative images of final platelet accumulation at 900 

sec for trauma patients exhibiting gain of platelet function. Shaded traces are the mean and standard 

deviation of 4 clotting evens from each patient. (MCC: Motorcycle Crash, MVC: Motor Vehicle 

Crash, SW: Stab wound, GSW: Gun Shot Wound) 
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Table 1. Trauma patient characteristics and clinical data. 

20 trauma patients were examined in microfluidic assays with PPACK-inhibited whole blood 

perfusion over collagen. Medications altering coagulation, blood product use, pre-existing 

conditions, Hct, platelet count, Injury Severity Score, diagnosis of traumatic brain injury, PT, PTT, 

INR, blood alcohol level, and blood products post microfluidic testing are as reported.  
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TABLES 

 

Table 1. 20 trauma patients were examined in microfluidic assays with PPACK-inhibited whole 

blood perfusion over collagen. Trauma patient characteristics and clinical data are as reported, 

blood products post microfluidic testing were administered within the first hour of evaluation by 

Hospital of University of Pennsylvania (HUP) Level 1 Trauma Center.  
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