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Abstract 
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Many polymers and composites have been used to prepare active wound dressings. 

These materials have typically exhibited potentially toxic burst release of the drugs 

within the first few hours followed by a much slower, potentially ineffective drug release 

rate thereafter. Many of these materials also degraded to produce inflammatory and 

cytotoxic products. To overcome these limitations, composite active wound dressings 

were prepared here from two fully biodegradable and  tissue compatible components, 

silicon oxide sol-gel (xerogel) microparticles that were embedded in tyrosine-

poly(ethylene glycol)-derived poly(ether carbonate) copolymer matrices.  Sustained, 

controlled release of drugs from these composites was demonstrated in vitro using 

bupivacaine and mepivacaine, two water-soluble local anesthetics commonly used in 

clinical applications. By systematically varying independent compositional parameters of 

the composites, including the hydrophilic:hydrophobic balance of the tyrosine-derived 

monomers and the poly(ethylene glycol) in the copolymers and the porosity, weight ratio 

and drug content of the xerogels, drug  release kinetics approaching zero-order were 

obtained. Composites with xerogel mass fractions up to 75% and drug payloads as high 

as 13% by weight in the final material were fabricated without compromising the 

physical integrity or the controlled release kinetics. The copolymer - xerogel composites 

thus provided a unique solution for the sustained delivery of therapeutic agents from 

tissue compatible wound dressings. 
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1. Introduction 

Polymeric wound dressings that are capable of maintaining a controlled 

environment at the wound site have been shown to promote healing and tissue 

regeneration [1,2].  To accelerate healing, active wound dressings have been developed 

that enable the controlled, local delivery of therapeutic agents while keeping the wound 

surface moist, removing exudates, inhibiting bacterial invasion and allowing oxygen 

permeation [3].  Ideally, the active wound dressing would deliver a nearly instantaneous 

initial dosage of the drug at the optimum therapeutic concentration, followed by a 

sustained constant delivery rate of the drug (i.e., zero-order kinetics) that maintains the 

local concentration at the optimum dosage level for as many days as necessary to achieve 

complete and effective wound healing.  Many synthetic polymers and biopolymers have 

been used to prepare active wound dressings, including polyurethane [4], chitosan [5], 

poly(ethylene oxide)/ poly(vinyl alcohol) [6], alginate, cellulose [7], and collagen [8]. 

When such polymeric wound dressings are used for sustained release of therapeutic 

agents, however, they typically provide limited control of the kinetics with a burst release 

of drugs within the first few hours followed by much slower release thereafter [9-11]. 

The early burst release stage can cause drug overdose and toxicity problems while the 

slower release stage may be below the drug’s therapeutic dosage range.  

To overcome these limitations of polymeric active wound dressings, composite 

polymer-ceramic wound dressings have been investigated.  In these composites, the 

continuous, organic polymer phase can provide a flexible, cohesive wound covering 

matrix into which the second discrete phase of drug-loaded particles is embedded. The 
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continuous polymeric phase can include biopolymers such as collagen [12] and chitosan 

[13] or synthetic polymers such as poly(lactic acid) (PLA) [14], poly(lactide-co-glycolide) 

(PLGA) [15], polyhydroxyalkanoates [16], polyurethanes [17], polyvinyl alcohol [18] or 

poly(methyl methacrylate) [19]. Certain ceramic particles, particularly sol-gel processed 

silicon oxide (xerogel) microparticles, can provide controlled release properties including 

zero-order kinetics for a broad range of therapeutic agents such as anesthetics, antibiotics 

and growth factors [20-31] but by themselves the ceramics do not provide for a flexible, 

absorbent wound covering.  Polymer-ceramic composites based upon PLA and PLGA 

have been investigated for controlled drug delivery  [32, 33] but  their use is limited by 

the inherently acidic, pro-inflammatory polymeric degradation products and by their 

relatively high rigidity and lack of flexibility [34]. 

It is the objective of this study to demonstrate that composite active wound 

dressings can provide fully tunable drug delivery kinetics approaching zero-order  by 

carefully integrating the drug binding and drug release properties of polymeric and 

ceramic biomaterial components that are each  biodegradable and non-inflammatory. 

Specifically, composites of tyrosine-poly(ethylene glycol)(PEG)-derived poly(ether 

carbonate) copolymers [35] and silica-based sol-gel (xerogel) microparticles [26] are 

investigated here.  These composites provide tunable drug delivery systems that can 

enable controlled drug delivery approaching zero-order kinetics. This is demonstrated 

here by analysis of the in vitro release of two therapeutic agents, bupivacaine and 

mepivacine, which are local anesthetics commonly used in clinical treatments of pain. 

The tyrosine-PEG derived poly(ether carbonate)s are biodegradable and have four 

independent compositional variables that are readily modified by established synthetic 
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methods to provide a wide range of physical properties, including mechanical strength, 

flexibility and hydrophilic:hydrophobic balance [34]. They bind and release a variety of 

bioactive agents and, unlike polyesters such as PLA and PLGA, they do not produce 

significant amounts of inflammatory degradation products [35, 36]. The silica-based 

xerogel particles synthesized here also display  excellent local tissue response, their 

degradation products are safely excreted [37-39] and they allow highly tunable controlled 

release for a broad range of  bioactive compounds  [21, 24, 26, 27].  

 

2. Materials and Methods 

2.1 Xerogel synthesis 

Silica xerogels containing either bupivacaine hydrochloride (BP) or mepivacaine 

hydrochloride (MP) (Sigma Aldrich) were prepared at room temperature via a one-step 

acid catalyzed sol-gel process with tetraethoxysilane (TEOS, Strem Chemicals, 

Newburyport, MA) as previously described [21-24]. The dried xerogel disks were then 

crushed into granules using mortar and pestle. The crushed silica granules were sieved 

using nylon meshes in order to obtain granules within the range of 20-105μm diameter.  

The ratio Rs of water to TEOS at which the sols were prepared was varied from 6 to 15 to 

control the porosity of the xerogels [26]. Our nomenclature for the drug-loaded xerogels  

is, for example, Rs10-100, meaning the xerogel is prepared at sol gel conditions of Rs =10 

and 100 mg drug/gram of silica. 

 

2.2 Copolymer synthesis  

 5



Pyridine 99+% was purchased from Acros (Morris Plains, NJ; poly(ethylene glycol) 

1000 (PEG1K) and bis(trichloromethyl) carbonate were purchased from Fluka 

(Milwaukee, WI); methylene chloride HPLC grade and methanol HPLC grade were 

supplied from Fisher Scientific (Morris Plains, NJ);  tetrahydrofurane (THF) high purity 

solvent stabilized with 250 ppm BHT was purchased from EMD (Gibbstown, NJ); 2-

propanol, bupivacaine hydrochloride, mepivacaine hydrochloride, Dulbecco’s phosphate 

buffer saline, acetonitrile HPLC grade and water solution containing 0.1% (v/v) 

trifluoroacetic acid for HPLC were purchased from Sigma Aldrich (Milwaukee, WI).  

Tyrosine-PEG-derived poly(ether carbonate)s were prepared as previously described 

[35, 40] and their general structure is shown in Figure 1. The copolymers are comprised 

of poly(ethylene glycol) of 1,000 Da molecular weight (PEG1K) and desaminotyrosyl 

tyrosine alkyl ester monomers (DTR), where R is the pendent ester; DTO is 

desaminotyrosyl tyrosine octyl ester and DTE is desaminotyrosyl tyrosine ethyl ester. 

Abbreviations for the copolymers are given as: DTR- x%PEG; for example, DTO-

10%PEG is poly(90%DTO-co-10%PEG1K carbonate), where the DTO and PEG 1K are 

in mole percent.  

Copolymer compositions were confirmed by 1H NMR (DMSO-d6, Varian VNMRS 

400MHz spectrometer) and FTIR (Avatar 380 spectrometer, Thermo Nicolet). The 

molecular weights of the copolymers were measured by gel permeation chromatography 

(GPC) using THF as eluent [40] (see Table 1).  

 

2.3 Copolymer and composite film preparation 
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Copolymer and composite copolymer-xerogel films were prepared by compression 

molding at temperatures 75°C above the respective Tg’s on a Carver press, followed by 

free cooling to room temperature. The two steel plates of the press were covered with 

parchment paper in order to prevent the copolymers or composites from adhering to the 

metal surfaces. Shims with a thickness of 500 μm were used during the compression 

molding.  

Copolymers loaded with bupivacaine or mepivacaine (i.e., without xerogel) were 

prepared by direct addition of 4 mg/ml drug solution in acetonitrile to a 250 mg/ml 

copolymer solution in THF at room temperature.  The mixture was poured into a Petri 

dish, dried under nitrogen flow and then in a vacuum oven at 40°C overnight, and the 

resulting films were peeled off and compression molded to the desired film thickness. For 

these copolymer-drug complexes, the nomenclature  is,  e.g. DTO-10%PEG-50BP, which 

stands for poly(90% DTO-co-10% PEG1K carbonate) loaded with 50 mg bupivacaine /g 

copolymer. 

Composites of copolymers with drug-loaded xerogels were prepared by solution 

blending. Approximately 200 mg copolymer was dissolved in 2 mL THF and 200mg 

xerogel granules containing BP or MP were added, followed by vigorous mixing for 1 

min. The suspensions were then poured into small Petri dishes, dried under nitrogen flow 

and then in a vacuum oven at 40°C overnight. The resulting composite films were peeled 

off and compression molded to the desired thickness. For these composites, the 

nomenclature starts with the copolymer matrix used, followed by the weight % and type 

of xerogel  and then the amount of bupivacaine loaded in the xerogel; e.g., DTO-
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10%PEG-50%Rs10-100 is the composite containing 50% wt:wt poly(90% DTO-co-

10%PEG1K carbonate) with 50% wt:wt of xerogel Rs10-100.   

 

2.4 In vitro drug release   

In vitro drug release rates from silica xerogel granules, copolymer films and 

composite films were measured for up to seven days using 30mg of samples incubated in 

6 mL PBS at 37°C in a Julabo SW2 water bath shaker at 100 rpm. The incubation 

medium was completely withdrawn at specified time intervals and replaced with 6 mL 

fresh buffer. The withdrawn samples were diluted 1:1 (v/v) with acetonitrile and analyzed 

by HPLC. All experiments were performed in triplicates. The BP and MP concentrations 

were assayed by high performance liquid chromatography (HPLC) using a Waters 2695 

HPLC system equipped with a Waters 2489 UV/Vis detector that was set at 210 nm for 

BP detection. Chromatographic separations were achieved using a Perkin-Elmer 

Pecoshere HS-3 C18 reversed-phase column, 3μm particle size, 33x4.6 mm, at 25°C. The 

injection volume was 10μL, and a mixture of 60% water (0.1% TFA), 30% acetonitrile 

(0.1%TFA), 10% methanol (v/v) with a flow rate of 0.7 mL/min was used as eluent. The 

total run time was 5 min. and the retention time of BP was 2.3 min. Validity of the 

method was established through a study of specificity, linearity and accuracy according 

to the ICH guidelines [41]. Standard calibration curves were prepared at concentrations 

ranging from 0.97μg/mL to 0.25 mg/ml and exhibit linear behavior over this range of 

concentration. The detection limit was 0.23μg.The specificity was determined by 

comparing the results from the placebo supernatant, containing only the copolymers 
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incubated for the given time period with the standard solutions of the BP and no 

interference was observed.  

 

2.5 Glass transition temperature, water uptake and hydrolytic degradation studies 

The glass transition temperature (Tg) was determined by differential scanning 

calorimetry (2910 Modulated DSC, TA Instruments) on 10-15 mg samples. Specimens 

were sealed in aluminum pans and subjected to a heat-cool-reheat temperature program 

from -50 to 150°C at a heating rate of 10°C/min. Glass transition temperature was 

determined as the temperature at the inflection point in the second heating scan of the 

DSC temperature program. 

For water uptake and degradation measurements, small disks of copolymer and 

composite films (3mm diameter x 500μm thick) were immersed in PBS at 37°C and at 

appropriate time points were removed from the media, wiped dry and weighed until they 

reached constant mass. The water uptake, averaged for 3 replicates, was calculated as 

(mf-mi)*100/mi , where mi and mf were the mass of the sample before and after 

immersion, respectively.  In order to monitor the hydrolytic degradation of the 

copolymers, the sample disks were incubated in PBS at 37°C and removed from the 

media at 3 and 5 days. After freeze-drying, the mass and the molecular weight variations 

were used to follow the degradation; these properties were summarized in Table 1. 

 

3. Results and Discussion 

3.1 Drug release from xerogels  
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In accord with our previous results for the specific sol-gel synthesis conditions also 

used here [26], a broad range of time-dependent release rates for bupivacaine (BP) and 

mepivacine (MP) can be obtained with these cast and ground silica xerogels  (Figures 

2a).  The release kinetics can be approximated by  two-stage  processes in which the 

cumulative release in the initial, fast release stage and the subsequent, slow release stage 

are each linearly dependent on t1/2  (Figure 2b).  Each stage can be well approximated by 

the Higuchi square-root- of-time model (Equ. (1)), which is based strictly on diffusion 

controlled behavior [26] 

(1) Q = [(Dε/τ)(2AC- εC2)t]1/2 = kH t1/2 

where Q is the amount of drug release in time, t, D is the diffusion coefficient of the drug, 

τ is the tortuosity factor, A is the total amount of drug in the matrix, C is the solubility of 

the drug in the permeating fluid, and ε is the porosity of the matrix. Drugs are released as 

water penetrates the nanoporous xerogel, allowing diffusion along the solvent-filled 

capillary channels. The initial rate of release and the total release after 5 days are directly 

proportional to Rs, the water:TEOS ratio used to synthesize the xerogels and to control 

their porosities which increase as Rs increases [22, 42]. . This direct dependence of drug 

release rates on Rs is demonstrated by the bupivacaine results at 24 hr, where 32%, 41% 

and 55% of the BP are released by the Rs6, Rs10 and Rs15 xerogels, respectively 

(Figure 2b).  The Higuchi rate coefficients, kH, calculated from equation (1) for the 0-24 

hr and 24-48hr stages, all increase with increasing Rs, as summarized in Table 2.  At 

comparable drug loading levels, the early, fast stage release of mepivacaine is 

significantly greater than that of bupivacaine from xerogels of identical composition. This 

can be ascribed, per Equ. (1), to both the much greater aqueous solubility of MP (7.0 
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mg/mL) than BP (2.4 mg/mL).and the faster diffusion of the smaller MP molecule 

(283Da molecular weight) than the larger BP molecule (325 Da molecular weight).   

.   

Hydrolytic degradation of the xerogels has previously been shown [26] to follow first-

order kinetics independent of any specific bound drug: 

(2) ln[(Ce-C)/Ce] = kSt 

where C is the concentration of silica in solution, Ce is the equilibrium solubility of 

the silica, S is the particle surface area, k is the rate constant and t is the time. For the 

silica xerogel microparticles, the degradation rate is a rather slow process, with negligible 

dissolution over the first 8 hr and a rate constant, k, of approximately 0.02/hr [26]. Given 

the rapid early release of BP and MP from the xerogels, it is clear that the first stage drug 

release reflects primarily dissolution and diffusion processes.  The mathematical models 

for diffusion-controlled release kinetics and for degradation both provide good fits to the 

slower, second stage of release and so do not enable a definitive resolution of the 

mechanism [26]. 

 

3.2. Drug release from copolymers 

Drug release rates from polymeric matrices are dependent upon several 

interrelated physical factors, including the water influx, drug dissolution, drug solubility 

in the polymer matrix, and erosion of the polymer matrix [43]. Bupivacaine release rates 

from the tyrosine-PEG derived poly(ether carbonate)s are found to be time-dependent 

and can be characterized by an initial, burst release stage  in the first 4 hr followed by a 

prolonged, slow release stage thereafter  (Figure 3). Applying the Higuchi model, 
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equation (1), to each of the two stages, values for the coefficient kH are obtained with 

correlation coefficients  all exceeding 0.95 (Table 3).   The initial burst release of BP 

from the copolymers is much faster than from the xerogels and the total amount released 

from the copolymers increases with increasing PEG content; e.g., after seven days there 

is less than 10% cumulative release of BP from the DTO-5%PEG copolymer but almost 

100% release from the DTO-20%PEG copolymer.  This is due to the increased 

hydrophilicity of the copolymers as the PEG content is increased, causing increased 

water influx that drives drug dissolution [43].  At equilibrium, the DTO-10% PEG 

copolymer takes up 17% water while the DTO-20% PEG copolymer takes up 65% water 

(Table 1). Further increasing the copolymer hydrophilicity by decreasing the length of 

the pendent ester group in the tyrosine-derived monomers from octyl (DTO) to ethyl 

(DTE) causes the water uptake to increase from 65% for the DTO-containing copolymer 

to 73% for the DTE-containing copolymer.  

  The greater water uptake by the DTE-containing copolymers at a given PEG 

content increases the drug release rate relative to the DTO-containing copolymers, as 

may be seen by comparing the cumulative release over the first 24 hr for the DTO-

20%PEG-40BP to that of the DTE-20%PEG-40BP (Figure 3).  The BP release rates 

from the copolymers in the early, burst release stage (t < 4hr) are dependent upon the 

drug loading, with the rate increasing with increasing loading in a manner consistent with 

diffusion controlled processes (Figure 4).     

An even more pronounced burst release rate is observed for mepivacaine (MP) 

than bupivacaine from either the xerogels or the copolymers (Figure 5).  Using equation 

(1) to fit the initial burst release stage data (Figures 3 and 5), the Higuchi rate 
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coefficients for release from the DTO-10%PEG copolymer are kH (BP) = 22.9 and kH 

(MP) = 36.4 at approximately the same 40 mg/g BP  vs. 50 mg/g MP  drug loading 

concentrations. The faster dissolution and diffusion of MP is expected, given the greater 

aqueous solubility of MP (7.0 mg/mL) than BP (2.4 mg/mL). That MP release is retarded 

less by the copolymer matrix than is BP release can be anticipated from the lower 

octanol:water partition coefficient of MP (log P= 2.2) than BP (log P= 3.6).  Stronger 

binding of BP than MP to the copolymer matrix is further demonstrated by calculations 

of the Flory-Huggins interaction parameters, χsp, for BP and MP with each of the 

copolymer components: 

(3) χsp =  (δs- δP)2 Vs/ RT 

where the Hildebrand solubility parameters are δs  for the drugs and δP  for the 

polymer components (i.e., DTO, DTE, PEG), Vs is the molar volume of the solute and T 

the temperature (oK) [44-46].  The closer χsp is to zero, the more compatible and soluble a 

given drug is within the polymeric component.  From the calculated χsp values 

summarized in Table 4, it is clear that at any given PEG content the copolymer matrices 

with either DTE or DTO have higher affinity for BP than MP, and hence at any given 

composition of these copolymers the release rate is expected to be relatively faster for 

MP.    

The hydrolytic degradation rates for the copolymers are slow, with no observed mass 

loss over 5 days.  The copolymer molecular weights do decrease over that time period 

following first-order kinetics (Figure 6).  The molecular weight degradation rate 

increases as the PEG content is increased from 5% up to 20%.  These results are 

indicative of a bulk erosion process controlled by the rate of water influx rather than a 
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surface erosion process that would be dependent on the hydrolysis rates of the 

copolymer’s carbonate bonds.  These results are consistent with previous hydrolytic 

degradation studies of DTE-containing copolymers, where the molecular weight 

decreases for DTE (0% PEG), DTE-5%PEG and DTE-30% PEG are approximately 5%, 

10% and 20%, respectively, after 7 days in PBS at 37oC [35].   It is therefore concluded 

that the early burst release of the drugs from the copolymers is primarily driven by drug 

dissolution and diffusion forces rather than by matrix erosion.  

 

3.3 Drug release from copolymer-xerogel composites. 

When the xerogels and copolymers are combined to form composites, the drug 

release kinetics are very different from those observed with the separate components. In 

the composite studies presented here, the drug is initially loaded only in the xerogels.  

The initial fast release from the xerogel is modulated by the presence of the composite’s 

copolymer matrix, such that a single stage, t1/2-dependent release can be observed, as 

shown for a composite of 50:50 (wt:wt) DTO-20%PEG copolymer and Rs10-75BP 

xerogel (Figure 7).  The t1/2 dependence is deceptively simple as the composite system is 

concurrently undergoing hydrolytic degradation, drug dissolution and drug diffusion first 

through the nanopores of the xerogel and then through the copolymer matrix, which is 

itself being plasticized and swollen by the influx of water.  The copolymer matrix acts 

first as a barrier to limit the influx of water, thereby slowing the dissolution of the drug in 

the xerogel.  The more hydrophobic the copolymers, the more slowly they absorb water 

[35].  Hence, at a given porosity (Rs) of embedded xerogels, the composites prepared 

with the more hydrophobic DTO monomers release the drug more slowly than 
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composites made with the more hydrophilic DTE monomers at a fixed PEG level and, as 

the PEG content of the copolymers is increased to make the composites more 

hydrophilic, the drug is released more rapidly (Figure 7 and 8). The release rates from 

the composites are also strongly dependent on the porosity of the xerogels. At fixed 

copolymer composition, the composites made with the more porous Rs10 xerogels release 

BP faster and more completely than those made with the less porous Rs6 xerogel (Figure 

9).  

Composites containing xerogels loaded with mepivacaine (MP) release the drug 

with kinetics again resulting from the integration of the release properties of the xerogels 

and copolymers alone (Figure 10). The MP release rate from a given composites is 

greater than the BP release rate, as may be seen from the substantial initial burst release 

rate of MP from DTO-10%PEG-50%Rs15-200MP as compared to the slow, nearly zero-

order release rate of BP from the same type of composite composition, DTO-10PEG-

50%Rs15-200BP (Figure 11).  This difference is ascribed to the lower aqueous solubility 

and the higher copolymer matrix binding affinity ( higher log P and lower χsp values) of 

BP compared to MP. 

  Within the composites there is no strong interfacial interaction expected between 

the xerogel microparticles and the copolymers to influence the drug release rates.  This is 

supported by the data for the glass transition temperatures measured for the composites as 

a function of xerogel content (Table 1).  No significant differences are observed in the 

Tg’s for composites of the DTO-10%PEG with between 25% and 75% xerogel by weight 

and only a small, statistically insignificant difference of 2oC is observed between the Tg’s 

of these composites and that of the copolymer alone.  This is not surprising given that 
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there are no strong covalent or electrostatic interactions between the copolymer’s 

monomers and the silicon oxide of the xerogels.  In contrast, there is a very substantial 

change of -22 oC in the Tg of the composites when the PEG content of the copolymer is 

increased from DTO-10%PEG to DTO-20%PEG, which is due to the inherently very low 

Tg of PEG.   Increasing the PEG content of the copolymers increases their chain mobility 

and promotes both greater rates of water influx and drug diffusion-driven efflux from the 

composites at any given level of xerogel content and xerogel drug loading.  The Tg’s are  

4oC or less, reflecting that the composites will be in a rubbery elastic state at room or 

body temperature. 

 

4. Discussion 

It has been demonstrated here that the properties of composites of silica xerogels 

and tyrosine-derived-PEG- poly(ether carbonate) copolymers can be tuned to achieve 

controlled release of drugs approaching time-independent, zero-order kinetics (Figures 7, 

8 and 9).  This represents an important advance in the development of  fully 

biodegradable, tissue compatible active wound dressing material capable of delivering a 

broad range of therapeutic agents. The release kinetics of the drugs from these 

composites are dependent upon a number of factors including the water influx rate, drug 

dissolution, drug loading in the xerogels, and drug binding in the copolymer matrix, as 

has been observed for other polymeric and composite delivery systems [33, 44-48].  With 

the novel composites presented here the porosity and drug loading of the xerogels and the 

hydrophobic: hydrophilic balance of the copolymer matrix can be independently adjusted 

to control the release rates of the drugs.  The copolymer matrix acts as a barrier with 

 16



controllable drug binding affinity to regulate water influx into and drug diffusion out of 

the composites.  There is no strong chemical interaction between the xerogels and the 

copolymers in these composites that might otherwise have limited the xerogel content of 

the composites.  Studies of the mechanical properties of the composites have been 

initiated (data not shown here) and tensile strength and flexibility properties 

commensurate with the needs for wound dressings have been measured.  Evaluation of 

the in vivo drug release properties and the efficacy of drug delivery in an animal pain 

model are also in progress.  

 

4. Conclusion 

Active composite wound dressing were prepared by dispersing drug-loaded 

xerogel microparticles into a continuous polymeric phase consisting of tyrosine-

poly(ethylene glycol)(PEG)-derived poly(ether carbonate) copolymers. Sustained, 

controlled release of bupivacaine and mepivacaine, two water-soluble local anesthetics 

from these composites was demonstrated in vitro. Compositional parameters of the 

composites, including the hydrophilic:hydrophobic balance of the tyrosine-derived 

monomers and the poly(ethylene glycol) in the copolymers and the porosity, weight ratio 

and drug content of the xerogels, can be adjusted individually to obtain zero-order drug  

release kinetic. The copolymer - xerogel composites can provide a unique solution for the 

sustained delivery of therapeutic agents from tissue compatible wound dressings. 
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FIGURE CAPTIONS 

Figure 1. Tyrosine-PEG-derived poly(ether carbonate) structure. Adjustable parameters 

are: x  and y, the mole fractions of the tyrosine-derived monomers and PEG; n, the 

pendent alkyl chain length; and the PEG mol wt (fixed at 1000 in these studies).  

Figure 2 a and b.  Effect of xerogel Rs (H2O:TEOS  ratio) on the kinetics of bupivacaine 

and mepivacaine release . Open triangles: Rs6-100(BP); Open squares: Rs10-100(BP); 

Open circles: Rs15-100(BP); Dark triangle : Rs6-100(MP); Dark squares: Rs15-100(MP); 

Darl circles: Rs15-200(MP). (a) abscissa linear with time; (b) abscissa linear with the 

square root of time  

Figure 3. Effects of copolymer hydrophilicity on the kinetics of bupivacaine release from 

tyrosine-PEG-derived poly(ether carbonate)s. Open diamonds: DTE-20%PEG-40(BP); 

Open circles: DTO-20%PEG-40(BP); Open squares: DTO-10%PEG-40(BP); Open 

triangles: DTO-5%PEG-40(BP). 

Figure 4.  Effects of copolymer drug loading on the kinetics of  bupivacaine release. 

Open squares: DTO-20%PEG-250(BP); Open triangles: DTO-20%PEG-150(BP);Open 

circles: DTO-20%PEG-75(BP).   

Figure 5. Comparison of the mepivacaine release from copolymers and xerogels. Open 

circles: Rs6-100(MP); Open triangles: Rs6-150(MP), Open squares: Rs15-200(MP); 

Dark circles: DTO-10%PEG-100(MP); Dark triangles: DTO-10%PEG-75(MP); Dark 

squares: DTO-10%PEG-50(MP).  

Figure 6. Hydrolytic degradation of copolymers in PBS at 25oC. Triangles: DTO-

5%PEG, Circles: DTO-20%PEG; Squares: DTO-10%PEG.  
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Figure 7. Comparison of bupivacaine release from a composite and its component 

xerogel and copolymer. Triangles: copolymer, DTO-20% PEG-37(BP) (3.5% BP in the 

copolymer); Circles: xerogel, Rs10-75(BP) (7% BP in xerogel); Squares: composite, 

DTO-20%PEG-50%Rs10-75(BP) (3.5% in overall material). 

Figure 8. Effect of copolymer PEG content and monomer hydrophilicity on bupivacaine 

release rate from composites. Open circles: DTE-20%PEG-50%Rs15-200(BP); Dark 

circles: DTO-20%PEG-50%Rs15-200(BP).  Triangles: DTO-10%PEG-50%Rs15-

200(BP).  

Figure 9. Effect of tyrosine monomer hydrophilicity and xerogel porosity on bupivacaine 

release from composites. Dark squares: DTE-20%PEG-50%Rs10-50(BP); Open 

diamonds: DTO-20%PEG-50%Rs10-50(BP); Open squares: DTE-20%PEG-50%Rs6-

50(BP); Dark diamonds:DTO-20%PEG-50%Rs6-50(BP)   

Figure 10. Comparison of mepivacaine release from a composite and its component 

xerogel and copolymer; Open triangles: copolymer, DTO-10%PEG-50(MP); Dark 

circles: xerogel, Rs6-100(MP); Open rectangles: composite, DTO-10%PEG-50%Rs6-

100(MP) 

Figure 11. Effect of drug hydrophilicity, drug loading, and xerogel  Rs on release kinetics 

from composites; Open diamonds: DTO-10%PEG-50%Rs15-200(MP); Dark triangles: 

DTO-10%PEG-50%Rs6-150(MP); Open rectangles: DTO-10%PEG-50%Rs6-100(MP); 

Dark circles: : DTO-10%PEG-50%Rs15-200(BP) 
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Table 1. Molecular weights, polydispersity index, glass transition temperature (dry 
state), and equilibrium water uptake for copolymers and composites.  

 

DTO-10%PEG 81 160 1.97 2 17
DTO-20%PEG 64 104 1.63 -19 65
DTE-20%PEG 75 159 2.13 1 73

Composites
DTO-10%PEG-25%Rs10-100 81 160 1.97 2 15
DTO-10%PEG-50%Rs10-100 81 160 1.97 4 13
DTO-10%PEG-75%Rs10-100 81 160 1.97 4 11
DTO-20%PEG-50%Rs10-100 64 104 1.63 -18 27

Copolymers Tg 
(°C)

Water 
uptake (%)

Mw/Mn
Mn

(kDa)
Mw

(kDa)

 
 
 
 
 
 
Table 2.  Higuchi release rate coefficients, kH, for bupivacaine and mepivacaine 

from xerogels as a function of Rs (water:TEOS)   
Sample name  kH (x10

‐2, h‐1/2) 

  0‐24 hr  24‐48 hr 
Bupivacaine     

Rs6‐60  3.57  3.87 
Rs6‐100  5.42  3.55 
Rs6‐200  8.02  4.26 
Rs10‐100  8.42  4.34 
Rs15‐100  11  5.93 

     
Mepivacine     
R6‐100  6.57  0.91 
R6‐150  15.11  1.35 
R15‐200  24.11  0.5 
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Table 3.  Higuchi release rate coefficients, kH, for bupivacaine and mepivacaine 
from copolymers 

Sample name  kH (x10
‐2, h‐1/2) 

  0‐24 hr  24‐48 hr 
Bupivacaine     

DTO‐5%PEG‐40mg/g   0.92  0.58 
DTO‐10%PEG‐40mg/g  22.91  1.80 
DTO‐20%PEG‐40mg/g  54.13  1.37 
DTE‐20%PEG‐40mg/g  57.57  0.55 

     
Mepivacine     

DTO‐10%PEG‐50mg/g  36.44  0.38 
DTO‐10%PEG‐75mg/g  48.81  0.53 
DTO‐10%PEG‐100mg/g  67.36  0.30 

 
 
 
 
 
 
Table 4. Solubility Parameters and Flory-Huggins Interaction Parameters for 

Bupivacaine and Mepivacaine with the Copolymer Components 
 

 δs
 δP χsp (BP) χsp (MP) 

BP 21.6    
MP 22.0    
     
DTO  25.5 1.87 1.34 
DTE  27.5 4.23 3.29 
PEG  21.4 0.00 0.04 
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