A-site substitution of SrRuO$_3$ using La, K and Pb

Svetlana Shuba
University of Pennsylvania

Alexander Mamchik
University of Pennsylvania

I-Wei Chen
University of Pennsylvania, iweichen@seas.upenn.edu

Follow this and additional works at: https://repository.upenn.edu/mse_papers

Recommended Citation


This paper is posted at ScholarlyCommons. https://repository.upenn.edu/mse_papers/128
For more information, please contact repository@pobox.upenn.edu.
A-site substitution of SrRuO$_3$ using La, K and Pb

Abstract

We have investigated Sr$_{1-x}$La$_{x/2}$K$_{x/2}$RuO$_3$ and Sr$_{1-x}$Pb$_x$RuO$_3$, which have a larger average size of the A-site cations. They manifest a gradual loss of ferromagnetism in a similar way as their counterparts with smaller A-site cations. There is also evidence for a magnetism-suppressing disorder effect similar to that observed in Sr$_{1-x}$La$_{x/2}$Na$_{x/2}$RuO$_3$. Therefore, the Stoner ferromagnetism in SrRuO$_3$ is rather unique and cannot be easily tuned by lattice distortion to yield a higher Curie temperature.

Comments

Postprint version. Published in *Journal of Physics: Condensed Matter*, Volume 80, Issue 40, October 2006, pages 9215-9220. Publisher URL: http://dx.doi.org/10.1088/0953-8984/18/40/007

This journal article is available at ScholarlyCommons: https://repository.upenn.edu/mse_papers/128
A-site substitution of SrRuO$_3$ using La, K and Pb

Svetlana Shuba, Alexander Mamchik and I-Wei Chen

Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104-6272, USA

E-mail: iweichen@seas.upenn.edu

Received 20 July 2006, in final form 24 August 2006
Published
Online at stacks.iop.org/JPhysCM/18/1

Abstract
We have investigated Sr$_{1-x}La_{x/2}K_{x/2}$RuO$_3$ and Sr$_{1-x}$Pb$_x$RuO$_3$, which have a larger average size of the A-site cations. They manifest a gradual loss of ferromagnetism in a similar way as their counterparts with smaller A-site cations. There is also evidence for a magnetism-suppressing disorder effect similar to that observed in Sr$_{1-x}La_{x/2}Na_{x/2}$RuO$_3$. Therefore, the Stoner ferromagnetism in SrRuO$_3$ is rather unique and cannot be easily tuned by lattice distortion to yield a higher Curie temperature.

1. Introduction

Metallic strontium ruthenate SrRuO$_3$ (SRO) has attracted much interest because of its unusually high Curie temperature ($T_c = 160$ K) which is unique among 4d and 5d transition metal oxides [1]. The ferromagnetism (FM) in this ABO$_3$ perovskite is of the Stoner type, arising from a high density of states (DOS) at the Fermi level ($E_F$) due to a nearby van Hove singularity [2]. A-site substituted Sr$_{1-x}$Ca$_x$RuO$_3$ is also metallic but it suffers a substantial lattice contraction and a gradual loss of FM [3, 4]. This has been attributed to the lowering of the DOS at $E_F$ due to structural distortion [2]. Based on this result, Mazin and Singh speculated that the A-site substitution by an oversized cation might cause an enhancement of FM [2]. However, such an experiment has not been reported since Ba$^{2+}$, being the only non-radioactive alkali-earth cation larger than Sr$^{2+}$, yields a hexagonal, face-sharing BaRuO$_3$ compound that is structurally distinct from SRO perovskite. Meanwhile, nearly all alloying attempts to fine tune the DOS by modifying lattice distortions severely suppress the FM [4–11], whereas mixed A-site substitution (such as in Sr$_{1-x}$La$_{x/2}$Na$_{x/2}$RuO$_3$ which has a smaller average size of the A-site cations) appears to cause a disorder effect further suppressing FM [4]. Here we report that Sr$_{1-x}$La$_{x/2}$K$_{x/2}$RuO$_3$, despite its larger average size of the A-site cations, still manifests a reduction of the FM. By comparing the magnetic properties of Sr$_{1-x}$La$_{x/2}$K$_{x/2}$RuO$_3$ and similarly (A-site) oversized Sr$_{1-x}$Pb$_x$RuO$_3$ we also found evidence for a disorder effect similar to the one observed in Sr$_{1-x}$La$_{x/2}$Na$_{x/2}$RuO$_3$.

1 Author to whom any correspondence should be addressed.
2. Experimental details

Polycrystalline ceramic samples of the composition \( \text{Sr}_{1-x}\text{La}_{x/2}\text{K}_{x/2}\text{RuO}_3 \), with \( x \) up to 0.6, were prepared with starting materials of \( \text{SrCO}_3 \) (99.99%, Alfa Aesar, Ward Hill, MA), \( \text{K}_2\text{CO}_3 \) (99.9%, J T Baker Inc., Phillipsburg, NJ), \( \text{La}_2\text{O}_3 \) (99.99%, Alfa Aesar, Ward Hill, MA) and \( \text{RuO}_2 \) (99.95%, Alfa Aesar, Ward Hill, MA). For comparison, samples of \( \text{Sr}_{0.9}\text{Pb}_{0.1}\text{RuO}_3 \) were also prepared using \( \text{PbO} \) (99.9%, Aldrich, Milwaukee, WI). The starting powders were dissolved in dilute nitric acid and made to gel with poly(ethylene glycol) (MW = 2000, Aldrich, Milwaukee, WI) addition and slow heating. After further thermal decomposition in several stages, a powder product of oxide precursors was obtained. Phase-pure perovskite was formed by calcination at 800 °C and final sintering of pellets was performed at 1200 °C using an SRO powder pack to minimize Ru loss. In the case of Pb-containing samples, a powder pack of mixed SRO and PbZrO3 was also used to minimize Pb loss.

Phase purity was monitored with x-ray powder diffraction (XRD) using Cu Kα radiation, with Si powder added as an internal standard. Only single-phase perovskite samples according to XRD were used for further studies. (Beyond \( x = 0.6 \), \( \text{Sr}_{1-x}\text{La}_{x/2}\text{K}_{x/2}\text{RuO}_3 \) samples contained mixed phases and were discarded.) Magnetization (\( M \)), AC susceptibility (\( \chi \)) and (four-point-probe) electrical resistivity (\( \rho \)) were measured using a Physical Property Measurement System (Quantum Design PPMS, San Diego, CA) at various magnetic fields (\( H \)) up to 9 T over the temperature (\( T \)) range from 10 to 300 K. Other experimental details were similar to those used in our previous work described elsewhere [5, 6].

3. Results and discussion

The XRD patterns of \( \text{Sr}_{1-x}\text{La}_{x/2}\text{K}_{x/2}\text{RuO}_3 \) shown in figure 1(a) can be indexed using an orthorhombic unit cell (figure 1(b)) with cell dimensions that increase with \( x \). All the samples are metallic (\( d\rho/dT > 0 \)) at higher temperature, see figure 2; for \( x \) up to 0.35
A-site substitution of SrRuO$_3$ using La, K and Pb

Figure 2. Resistivity, normalized by its 300 K value, for several compositions ($x = 0, 0.25, 0.35, 0.45$) of Sr$_{1-x}$La$_{x/2}$K$_{x/2}$RuO$_3$. Arrows indicate kinks at the ferromagnetic transition.

Figure 3. DC magnetization ($M$) of Sr$_{1-x}$La$_{x/2}$K$_{x/2}$RuO$_3$ at $H = 1$ T. Inset: $H/M$ versus temperature ($T$) showing Curie–Weiss behaviour at high temperature.

they also exhibit a characteristic kink at a progressively lower temperature ($T_{\text{kink}}$) caused by the scattering of itinerant electrons by enhanced critical spin fluctuations at $T_c$ [12]. This is supported by the magnetic measurements indicating the suppression of FM properties, such as $M$ at 1 T (shown in figure 3) and $T_c$ from the peak of $\chi(T)$ (shown as $T_{\text{peak}}$ in figure 4), with increasing substitution. For a quantitative comparison, we plot the reciprocal DC susceptibility at 1 T, $M/H$, in the inset of figure 3 and fit its high temperature portion with the Curie–Weiss equation, $M/H = \chi T + C/(T - \theta_p)$. Here $\chi T$ is a temperature-independent constant, $C = N(\mu_B \mu_{\text{eff}})^2/3k$ and $\theta_p$ is the Curie–Weiss temperature, with $N =$ Avogadro’s constant, $\mu_B =$ Bohr magneton, $\mu_{\text{eff}} =$ effective moment in units of Bohr magneton, and $k =$ Boltzmann’s constant. The fitted $\theta_p$ also shown in figure 4 is in good agreement with the $T_c$
determined from the resistivity kink and AC susceptibility, confirming that FM is progressively suppressed by La/K substitution despite its larger orthorhombic cells.

The Sr$_{0.9}$Pb$_{0.1}$RuO$_3$ samples are also orthorhombic and metallic at high temperatures. Its magnetic properties are similarly depressed, as evidenced by the lower saturation magnetism and $T_c$ (figure 5 and inset) compared to those of SRO. This is despite the fact that Pb$^{2+}$ has a larger ionic radius (0.149 nm) than Sr$^{2+}$ (0.144 nm) in 12-fold coordination according to Shannon [13].

To compare Sr$_{0.9}$Pb$_{0.1}$RuO$_3$ with Sr$_{1-x}$La$_{x/2}$K$_{x/2}$RuO$_3$, we first choose $x = 0.1$, i.e., the same degree of substitution. At this composition, magnetic properties (e.g., saturation magnetism $\sim 4500$ emu mol$^{-1}$, $\theta_p \sim 138$ K and peak-$\chi$ temperature $\sim 130$ K) are similar
Figure 6. Curie–Weiss temperature ($\theta_p$) of Sr$_{1-x}$La$_{x/2}$K$_{x/2}$RuO$_3$, Sr$_{1-x}$La$_{x/2}$Na$_{x/2}$RuO$_3$ from [4] and Sr$_{1-x}$Ca$_x$RuO$_3$ from [14] versus average perovskite (pseudocubic) subcell size.

We next choose $x = 0.25$ since the average radius for A-site cations ($r_{La}^+ (0.132 \text{ nm}) < r_{Sr}^+ (0.144 \text{ nm}) < r_{Pb}^+ (0.149 \text{ nm}) < r_K^+ (0.160 \text{ nm})$) is 0.1445 nm for both Sr$_{0.75}$La$_{0.125}$K$_{0.125}$RuO$_3$ and Sr$_{0.9}$Pb$_{0.1}$RuO$_3$. It is then clear that the FM is substantially weaker in Sr$_{0.75}$La$_{0.125}$K$_{0.125}$RuO$_3$ ($\theta_p = 103$ K) than Sr$_{0.9}$Pb$_{0.1}$RuO$_3$ ($\theta_p = 137$ K). If the average lattice distortion is indeed an important factor [2], this finding would be consistent with the notion of A-site disorder being an FM-suppressing factor [4]. This is because, compared to (undersized) La$^{3+}$ along with (oversized) K$^+$ substitution, Pb$^{2+}$ substitution for Sr$^{2+}$ causes only a relatively smaller size disorder and no charge disorder. Lastly, to illustrate the unique position of SRO, we summarize in figure 6 the $\theta_p$ data of Sr$_{1-x}$La$_{x/2}$K$_{x/2}$RuO$_3$ and Sr$_{1-x}$Ca$_x$RuO$_3$ [14] versus the average perovskite (pseudocubic) subcell size, which was calculated from lattice parameters of the orthorhombic cell using \[
\left(\frac{b}{2}\right)\left(\frac{a}{2^{1/2}}\right)\left(\frac{c}{2^{1/2}}\right)^{1/3}.
\]
Also included in the plot are data of Sr$_{1-x}$La$_{x/2}$Na$_{x/2}$RuO$_3$ [4]. Because of its dependence on the A-site disorder, this plot is clearly not unique, as is evident from the two distinct branches on the left. Nevertheless, it does point to the strong possibility that SRO would maintain the strongest FM regardless of the unit cell volume achievable by A-site substitution. Moreover, since this volume change is likely to be accompanied by a systematic change in the degree of tilting of the RuO$_6$ octahedra, we can likewise speculate that SRO would maintain the strongest FM regardless of the octahedra tilting achievable by A-site substitution.

Lastly, although we noted in the introduction that nearly all alloying attempts on SRO severely suppress the FM [4–11], one notable exception was reported by Cao et al., who found that Pb addition to SRO polycrystals increased the $T_c$ to about 200 K in a nearly composition-independent manner within the SrPb$_{1-x}$Ru$_x$O$_3$ formulation. This formulation would likely result in the Pb substitution on the B site, which is possible under a highly oxidative environment that stabilizes Pb$^{4+}$. We believe our study of the Pb effect clearly rules out the possibility of A-site Pb$^{2+}$ being a $T_c$ enhancer. However, the mechanism of the concentration-independent B-site Pb effect on FM and $T_c$ remains an open question.

4. Conclusions

We have demonstrated that, despite a larger average size of the A-site cations, Sr$_{1-x}$La$_{x/2}$K$_{1/2}$RuO$_3$ and Sr$_{1-x}$Pb$_x$RuO$_3$ manifest a gradual loss of ferromagnetism. There
is also further evidence for a magnetism-suppressing disorder effect due to the charge and size disorder introduced by A-site substitution, suggesting that the unique Stoner ferromagnetism in SrRuO$_3$ cannot be enhanced by tuning the lattice distortion.

Acknowledgments

This work was supported by the US National Science Foundation (Grant No. DMR03-03458 and DMR05-20020).

References

Queries for IOP paper 228984

Journal: JPhysCM
Author: S Shuba et al
Short title: A-site substitution of SrRuO$_3$ using La, K and Pb

Page 6

Query 1:

Author: Reference [15] is not cited in the text. Please check.

Reference linking to the original articles

References with a volume and page number in blue have a clickable link to the original article created from data deposited by its publisher at CrossRef. Any anomalously unlinked references should be checked for accuracy. Pale purple is used for links to e-prints at ArXiv.