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Explanation of the discrepancy between the measured and atomistically

calculated yield stresses in body-centered cubic metals

R. GRÖGER and V. VITEK*

University of Pennsylvania, Department of Materials Science and Engineering

3231 Walnut Street, Philadelphia, PA 19104, USA

Abstract

We propose a mesoscopic model that explains the factor of two to three discrepancy

between experimentally measured yield stresses of BCC metals at low temperatures and

typical Peierls stresses determined by atomistic simulations of isolated screw dislocations.

The model involves a Frank-Read type source emitting dislocations that become pure

screws at a certain distance from the source and, owing to their high Peierls stress, control

its operation. However, due to the mutual interaction between emitted dislocations the

group consisting of both non-screw and screw dislocations can move at an applied stress

that is about a factor of two to three lower than the stress needed for the glide of individual

screw dislocations.

Keywords: Peierls stress; screw dislocations; mixed dislocations; interactions; Frank-Read

sources
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1  Introduction

It has been firmly established by many experimental and theoretical studies performed in the last

forty years that the plastic behavior of body-centered-cubic (BCC) metals is controlled by

1/2〈111〉 screw dislocations the cores of which are non-planar (for reviews see [1-7]). However,

the only direct experimental observation that suggests such core spreading is the high-resolution

electron microscopic (HREM) study of Sigle [8]. On the other hand it was concluded in a very

recent HREM study of screw dislocations in Mo [9] that the experimental noise masks the true

structure of the dislocation core. Hence, the primary source of our understanding of the

dislocation core structure and related atomic-level aspects of the glide of 1/2〈111〉 screw

dislocations is computer simulation. Such calculations have been made using a broad variety of

descriptions of interatomic forces, ranging from pair-potentials [10-12] to density functional

theory (DFT) based calculations [13-15] and studies employing other quantum mechanics based

methods [16-18].

The vast majority of atomistic studies of the core structure and glide of 1/2〈111〉 screw

dislocations in BCC metals were carried out using molecular statics techniques and thus they

correspond to 0 K. A problem encountered universally in all the calculations of the critical

resolved shear stress (CRSS), i.e. the Peierls stress, at which the screw dislocation starts to glide,

is that it is by a factor of two to three larger than the CRSS obtained by extrapolating low-

temperature experimental measurements of the yield and flow stresses to 0 K. The following are

a few examples. Basinski et al. [19] measured the flow stress of potassium in the temperature

range 1.5 K to 30 K and extrapolated to 0 K to get 0.002µ to 0.003µ where µ=(C11-C12+C44)/3 is

the 〈111〉{110} shear modulus and C11, C12, C44 are elastic constants. Similar values were found

by Pichl and Krystian [20]. The values of the CRSS when the maximum resolved shear stress

plane (MRSSP) is a {110} plane, calculated using a pair potential derived on the basis of the



theory of weak pseudopotentials [21], is 0.007µ to 0.009µ [19]. More recently, Woodward and

Rao [14] calculated the CRSS in molybdenum using the many-body potentials derived from the

generalized pseudopotential theory [22] and a DFT based method. When the MRSSP is a {110}

plane, they found the CRSS to be between 0.018µ and 0.020µ. A similar value of the CRSS,

0.019µ, was found in calculations employing the tight-binding based bond-order potential for

molybdenum [18, 23]. Experimental measurements of Hollang et al. [24], extrapolated to 0 K,

give for the CRSS in molybdenum 0.006µ. A similar problem was encountered by Wen and

Ngan [25] who used the Embedded Atom Method (EAM) potential for iron and the Nudged

Elastic Band method to analyze the activation enthalpies for kink-pair nucleation on screw

dislocations. The calculated yield stress at 0 K was about 0.013µ. Similar values of the Peierls

stress were found in recent calculations of Chaussidon et al. [26] who also employed EAM type

potentials for iron. In contrast, the experimental values, reported by Aono et al. [27] are 0.005µ to

0.006µ. This ubiquitous higher value of the calculated CRSS, found independently of atomic

interactions, suggests that the origin of this discrepancy cannot be sought on the atomic scale of

the motion of individual dislocations but rather on mesoscopic scale where a large number of

elastically interacting dislocations glide at the same time. In this context it should be noticed that

the only atomistic simulation that predicts yield stress close to that measured experimentally

considered a planar dislocation network of 1/2[111] and  1/2[ ]111  screw dislocations with [001]

screw junctions [28]. Such a network moved in the ( )110  plane at the stress about 50% lower

than the Peierls stress of an isolated screw dislocation.

In-situ TEM observations of dislocation sources in BCC transition metals showed that in thin

foils straight screw dislocations formed near the source and moved very slowly as a group [29-

35]. Hence they fully control the rate at which the source produces dislocations. In the foils used

in TEM the applied stresses are very low but a similar control of the sources by sessile screw

dislocations can be expected in the bulk at stresses leading to the macroscopic yielding. However,



at higher stresses dislocations move faster and do not become pure screws immediately after

leaving the source but at a distance from the source. Indeed, even in situ observations at higher

stresses do not show straight screw dislocations emanating directly from the sources [36].

In this paper, we propose a mesoscopic model involving a Frank-Read type source [37]

emitting dislocations of generally mixed character that become pure screw dislocations at a

distance from the source and, owing to their high Peierls stress, control its operation. However,

there are a number of non-screw dislocations between the screws and the source, which can move

easily. These dislocations exert a stress on the screw dislocations and this stress, together with the

applied stress, act on the screw dislocations by the force equal to that needed to overcome the

Peierls stress. Screw dislocations can then move at an applied CRSS that is about a factor of two

to three lower than the CRSS needed for the glide of individual screw dislocations.

2  Model of dislocation nucleation and motion

Let us consider a Frank-Read source (see e.g. [37]) that produces dislocations in a BCC metal. It

emits, as always, dislocation loops that have a mixed character and expand easily away from the

source since their Peierls stress is low. However, at a certain distance from the source, a

significant part of the expanding loop attains the screw orientation and becomes much more

difficult to move owing to the very high Peierls stress of pure screws. The rest of the loop, having

a mixed character, continues to expand which leads to further extension of the screw segments.

As a result, the source becomes surrounded by arrays of slowly moving screw dislocations, as

depicted schematically in Figure 1. Further operation of the source is hindered by their back

stress and effectively controlled by the ability of the screw dislocations to glide.

[Insert figure 1 about here]



The operation of the source is driven by the applied shear stress, σa, parallel to the slip

direction, which acts by the Peach-Koehler force [37] σab (per unit length) on the dislocation that

bows out. This dislocation obviously has a mixed character. Let us consider now that there are Ns

screw dislocations at distances xi from the source and Nm dislocations, generally of mixed

character, positioned between the source and the screw dislocations. We approximate the latter as

straight lines of the same orientation as the screws, positioned at distances yk from the source, but

with a negligible Peierls stress compared to that of the screws. In the framework of the isotropic

elastic theory of dislocations the condition for the source to operate is then
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where τ is the line tension of the emitted dislocations, b their Burgers vector, R the half-length of

the source, µ the shear modulus, and α, β constants of the order of unity. The first term is the

force arising from the line tension that pulls the dislocation back and the second and third terms

are forces produced by the stress fields of screw and non-screw dislocations, respectively, present

ahead and/or behind the source. In the following we neglect the interaction between dislocations

ahead and behind the source as they are far apart. Moreover, the dislocation sources are

frequently single-ended (see e.g. [37]). Hence we analyze only dislocations ahead of the source,

i.e. those towards which the source bows out.

It should be noted here that the screw dislocations in the array ahead of the source are not

pressed against any obstacle and thus they do not form a pile-up. Within the approximations

defined above, the ith screw dislocation will move provided
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where σP is the Peierls stress of screw dislocations. The second and third terms are stresses

arising from screw and non-screw dislocations, respectively, and the fourth term is the stress

arising from the dislocation associated with the source that is also treated as a straight line of the

same type as all the other mixed dislocations. Since the Peierls stress of non-screw dislocations is

negligible, the  C th non-screw dislocation can move provided
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The meanings of individual terms are analogous to those in equation (2).

Now, the question asked is how large stress, σa, needs to be applied so that the screw

dislocations can move so far away from the source that they either reach a surface or encounter

dislocations of opposite sign from another source and annihilate, which leads to the propagation

of slip through the sample. In both cases the source then keeps producing new dislocations

indefinitely and the sample deforms plastically. In order to investigate the problem formulated

above, we performed the following self-consistent simulations for certain fixed values of the

Peierls stress, σP, and applied stress σa. First, we choose a half-length of the source, R, and a

distance from the source, ymax, beyond which the expanding loop always attains the screw

character. The first mixed dislocation emitted by the source becomes screw when reaching the

distance ymax and then moves to a distance x1, determined by equation (2). Provided that the

source can operate, i.e. the inequality (1) is satisfied, another dislocation is emitted from the

source. The position of this dislocation is determined by equation (3) if it does not reach ymax and



by equation (2) if it does. Subsequently, the position of the first dislocation, x1, is updated to

satisfy equation (2), which allows also the second dislocation to move. In this way a new position

of the first dislocation, x1, and the position of the second dislocation, either y1 if smaller than ymax

or x2 if larger than ymax, are found self-consistently. This self-consistent process is then repeated

for the third, fourth, etc., dislocations until the source cannot emit a new dislocation, i.e. when

inequality (1) is no longer satisfied. The result of this calculation is the number of screw

dislocations, Ns, and mixed dislocations, Nm, as well as their positions ahead of the source, when

the source becomes blocked by the back-stress from all the emitted dislocations. The first screw

dislocation is then at a position x1=xmax and further operation of the source can proceed only if

this screw dislocation is removed, as argued above. The source can then continue operating in a

steady-state manner, producing a large number of dislocations that mediate the macroscopic

plastic flow.

3  Results

In the following numerical simulations the applied stress, σa, has been set equal to 0.3σP and

0.5σP, respectively, in order to investigate whether the source can operate at stress levels

corresponding to experimental yield stresses extrapolated to 0 K, as discussed in the Introduction.

Three values of the Peierls stress, σP, have been considered that fall into the range found in

atomistic studies of transition metals [14, 18, 23, 25], namely 0.01µ, 0.02µ, and 0.03µ. Three

different positions at which mixed dislocations transform into screw ones have been considered,

namely ymax/b=500, 1000, and 2000. The dependence on the size of the source, R, was also

investigated. However, this dependence is very weak since R enters only through the line tension

term in (1) and this is always small compared to the terms arising from the back-stress of emitted



dislocations. Hence, without the loss of generality, we set R=ymax. Moreover, the non-screw

dislocations considered in the model deviate only slightly from the screw orientation and thus the

difference between their long-range stress fields and those of screws is negligible compared to

the orders of magnitude difference in their Peierls stresses. Hence, the values of parameters α and

β in Eqs. (1) to (3) have been set to one. Finally, the usual approximation for the line tension,

τ=µb2/2 [37], is adopted.

[Insert figure 2 about here]

Results of such simulation are presented in detail for σa=0.5σP, σP=0.02µ and ymax=500b in

Figure 2, where positions of the dislocations ahead of the source and stresses acting on them are

shown. In this case xmax/ymax=1.8. It should be noted that the stress exerted on the majority of

screw dislocations is practically equal to their Peierls stress. The distances xmax found for the two

values of σa, three values of σP and three values of ymax, are summarized in Table 1.

[Insert table 1 about here]

These results suggest that, for a given applied stress, the ratio xmax/ymax is almost constant,

independent of ymax, and only weakly dependent on the magnitude of the Peierls stress σP. At

σa/σP=0.3, most of the dislocations are mixed and xmax/ymax≈1.3. With increasing stress, more

emitted dislocations become screw and, at σa/σP=0.5, xmax/ymax≈2, which implies that the numbers

of mixed and screw dislocations ahead of the source are very similar. Very importantly, the stress

exerted on most of the screw dislocations is practically equal to their Peierls stress, see Figure 2.



4  Conclusion

The distinguishing characteristic of the model presented in this paper is that it does not consider

the glide of a single screw dislocation but movement of a large group of dislocations produced by

a Frank-Read type source. In general, this source produces dislocation loops of mixed character

that transform into pure screws at a distance ymax from the source. Hence, the group of

dislocations consists of screw dislocations at distances larger than ymax and non-screw

dislocations near the source. It is then the combination of the applied stress with the stress

produced by the dislocations in this group that acts on the screw dislocations and is practically

equal to their Peierls stress. However, after emitting a certain number of dislocations the source

becomes blocked by their back-stress and, at this point, the leading screw dislocation reaches the

distance xmax from the source. Nonetheless, the source can continue operating if a dislocation of

opposite sign, originating from another source, annihilates the leading screw dislocation (see

Figure 3). This requires an average separation of sources about 2xmax. Since the pinning points of

the sources are produced by intersections with dislocations in other slip systems, their separation

is related to the dislocation density in these systems. In a deformed molybdenum crystal this

density is of the order of 1012 m-2 [38] which implies separation of dislocations between 3000b

and 4000b, for the lattice parameter of Mo equal to 3.15 Å. These values are in the range of 2xmax

for applied stresses that are between one-third and one-half of the atomistically calculated Peierls

stress.

[Insert figure 3 about here]

The present study implies that the Peierls stress of screw dislocations in BCC metals found in

atomistic studies cannot be compared directly with the measured yield stress extrapolated to 0 K.



The experiments do not determine the stress needed for the glide of individual screw dislocations

but, instead, the stress needed for the operation of sources that are hindered by the sessile screw

dislocations. These sources can operate at stresses lower than the Peierls stress of the screws

owing to the collective motion of screw and mixed dislocations produced by them, as described

in this paper. Hence, the discrepancy between the calculated Peierls stress and the measured yield

stress is not a consequence of the inadequacy of the description of atomic interactions, which has

often been raised as a possible explanation, but impropriety of their direct comparison.
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 Figure 1:  Schematic operation of a dislocation source in bcc metals. The curved non-screw

segments migrate away, leaving behind a new pair of screw dislocations. σa  is the shear stress in

the slip plane acting parallel to the slip direction and σab  the corresponding Peach-Koehler force

exerted on dislocations produced by the source.



Figure 2:  Positions of mixed (open circles) and screw (full circles) dislocations and the

corresponding stresses when the source is blocked by the back-stress for the case σa/σP=0.5,

σP/µ=0.02, and ymax/b=500.



Table 1:  The distance which the leading screw dislocation advances from the source, xmax, as a

function of the distance ymax from the source at which dislocations become screw, for the applied

stress σa/σP and the Peierls stress of the screw dislocations σP/µ.

ymax/b

500 1000 2000

σa/σP=0.3

σP/µ=0.01 1.0 1.1 1.2

xmax/ymax σP/µ=0.02 1.2 1.3 1.3

σP/µ=0.03 1.2 1.2 1.2

σa/σP=0.5

σP/µ=0.01 1.6 1.8 2.0

xmax/ymax σP/µ=0.02 1.8 2.0 2.0

σP/µ=0.03 1.9 2.0 2.0



Figure 3:  When two dislocations of opposite Burgers vectors, generated by different sources,

annihilate at a distance xmax , the reduced back-stress on the sources allows a steady-state

generation of new dislocations. σab  is the Peach-Koehler force exerted on dislocations by the

applied shear stress σa .
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