September 2004

Toward a 6 DOF Body State Estimator for a Hexapod Robot with Dynamical Gaits

Pei-Chun Lin  
*University of Michigan*

Haldun Komsuoglu  
*University of Michigan*

Daniel E. Koditschek  
*University of Pennsylvania*, kod@seas.upenn.edu

Follow this and additional works at: http://repository.upenn.edu/ese_papers

Recommended Citation


This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of the University of Pennsylvania's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.

NOTE: At the time of publication, author Daniel Koditschek was affiliated with the University of Michigan. Currently (August 2005), he is a faculty member in the Department of Electrical and Systems Engineering at the University of Pennsylvania.
Toward a 6 DOF Body State Estimator for a Hexapod Robot with Dynamical Gaits

Abstract
We report on a continuous time full body state estimator for a hexapod robot operating in the dynamical regime (entailing a significant aerial phase) on level ground that combines a conventional rate gyro with a novel leg strain based body pose estimator. We implement this estimation procedure on the robot RHhex and evaluate its performance using a visual ground truth measurement system. As an independent assessment of our estimator's quality we also compare its odometry performance to sensorless averaged open loop distance-per-stride estimates.

Comments

This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of the University of Pennsylvania's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.

NOTE: At the time of publication, author Daniel Koditschek was affiliated with the University of Michigan. Currently (August 2005), he is a faculty member in the Department of Electrical and Systems Engineering at the University of Pennsylvania.

This conference paper is available at ScholarlyCommons: http://repository.upenn.edu/ese_papers/132
Toward a 6 DOF Body State Estimator for a Hexapod Robot with Dynamical Gaits

Pei-Chun Lin
Department of Mechanical Engineering
The University of Michigan
Ann Arbor, Michigan, USA
Email: pclin@umich.edu

Haldun Komsoğlu, Daniel E. Koditschek
Department of Electrical Engineering and Computer Science
The University of Michigan
Ann Arbor, Michigan, USA
Email: {hkomsoog, kod}@umich.edu

Abstract—We report on a continuous time full body state estimator for a hexapod robot operating in the dynamical regime (entailing a significant aerial phase) on level ground that combines a conventional rate gyro with a novel leg strain based body pose estimator. We implement this estimation procedure on the robot RHex and evaluate its performance using a visual ground truth measurement system. As an independent assessment of our estimator’s quality we also compare its odometry performance to sensorsaveraged open loop distance-per-stride estimates.

1. INTRODUCTION

The hexapod, RHex [1], exhibits unprecedented mobility for a legged autonomous robot [2]. Using an open loop feedforward control strategy, the machine runs at speeds exceeding five body lengths per second on even terrain [3], and negotiates badly broken and unstable surfaces, as well as stairs [4]-[6].

In our initial studies with sensor based controllers we have observed significant behavioral improvement from even minimal feedback [7], [8]. Theoretical and simulation evidence [9] suggests that the availability of full body state estimates as well as force interactions with the surrounding environment throughout the stance and aerial phases of locomotion, should confer considerably greater agility still.

Building a sensor suite that can deliver full body state information — six configuration coordinates together with their six time derivatives — at data rates relevant to motor control (~ 1KHz) remains a challenging problem in legged robotics because of the constraints upon onboard instrumentation combined with extreme variations in operating regime. The traditional inertial measurement unit (IMU) for rigid bodies in flight typically lies out of the range of robotics applications because of its cost and excessive volume. Appropriately cheap and small IMU packages typically suffer severe drift and saturation. Moreover, while ballistic flight models are quite accurate, logged missions by definition spend a large fraction of their locomotion duty cycle in ground contact. There, the determination of an appropriate model is greatly complicated by the uncertainty in ground conditions (local terrain shape, slipperiness, and damping and compliance properties) and leg contact conditions (which legs are in stance).

Recently, we have introduced a novel leg-strain based full body pose estimator (hereafter referred to as the “leg pose sensor”) for the tripod stance phase of a hexapod robot [10]. In that work we have demonstrated that a memoryless transformation built from (data driven phenomenological) models relating leg strain to configuration coupled with a conventional kinematic model of leg configuration to body pose can yield the six coordinates of body position and orientation when the robot’s three legs are fixed in the ground. In this paper, we join to the leg pose sensor a 3 degree of freedom (DOF) rate gyro to develop a very simple full body state estimator that operates continuously during flight, and touchdown and liftoff transients as well as during the full tripod stance phase of steady state hexapod dynamical running.1 By this latter term we denote stable periodic legged locomotion with a significant aerial phase — 25% of the complete stride for the “jogging” gait adopted in the accompanying empirical study.2 This represents an important first step in a general full body state estimator we are presently developing by combining accelerometers as well.

In walking gait with no aerial phase, complete 6 DOF body pose in continuous time can be derived in principle from a purely kinematic model [12] without velocity state estimation. In contrast, a robot operating in a jogging gait with significant aerial phase would seem to require full state estimation — both velocity and configuration information. In order to build such estimators, of course, the sensor suite must incorporate enough information to allow the reconstruction of full state from the record of past measurements filled in by some dynamical model. In the present paper we take a partial step toward this goal by combing gyro data with our leg strain data through a naïve kinematic model. Roughly speaking, the gyro is used to augment the leg sensor data during flight and the leg sensor is used to recalibrate the gyro that suffers the well known problems of saturation and drift in stance. Explicit dynamical modeling promises to be complicated since the physical robot acts as a lagrangian system with 3 different models depending on touchdown-stick/touchdown-liftoff conditions on each leg. Instead, we simplify that problem by using three repeatedly successive models - tripod stance phase, aerial phase, and transient phase as a starting point to describe this jogging locomotion and to estimate full body state by models with partial true state obtained from leg sensor and gyro.

The idea of sensor fusion has widely spread into many different fields, and mobile robotics, typically wheel vehicles, is one of the stereo type — from algorithm [13] or

1In this preliminary study, to ease the computational load on the onboard processor, all gyro data has been integrated offline and combined with the leg pose sensor on the benchtop.
2Note that hexapod running gait need not entail an aerial phase to be "dynamical" in the sense of requiring careful management of kinetic energy to insure balance and steady progress [11]. However, for purposes of our sensor suite, gait with no aerial phase would in principle be completely covered by the leg strain based subsystem.
3Denote the mode of leg contact wherein the three toes of the front and rear ipsilateral legs and the middle contralateral leg of a tripod are all in contact with the ground.
4Denote the conditions besides tripod stance phase and aerial phase.
controller design [14] to practical implementation, like fusion inertia and vision information [15], [16] or fusion gyro and other sensors [17]. With support from multi sensors reliability and performance of robot improves significantly, like in positioning estimation or error reduction [18]. For legged robots, sensor fusion is addressed in many aspects as well, from typical positioning (by sonar sensors in [19]), to inertial or vision guidance [20], even to entertainment robots [21], [22]. However, from the database we haven’t seen any paper related to full body state for a hexapod with dynamical gaits with data from gyro and leg pose sensor, which indicates the novelty of our work.

Section II introduces the algorithm for body pose in a local coordinate frame from the leg pose sensor during tripod stance phase. This material originally introduced in [10] is briefly reviewed here for ease of exposition. Section III presents the algorithm for continuous time 6 DOF body state estimation using sensor inputs from the leg pose sensor and gyro. Section IV examines the accuracy of the resulting body state estimator implemented on RHex pictured in Figure 1(right) equipped with our previously developed leg pose sensor [10] and commercial 3 DOF rate gyro (Fizoptika VG941-3A). The performance is assessed with respect to an independent visual ground truth measurement system (GTMS) initially introduced in [10] and detailed in [12].

II. BODY POSE FROM LEG STRAIN DURING TRIPOD STANCE PHASE

A typical “tripod stance” during robot locomotion is depicted in Figure 1(right). It is intuitively clear that knowledge of the configuration relative to the body of each leg in contact with the ground, together with information about the ground contact points yields complete pose information. By defining the tripod coordinate system, T, detailed in [10], we can construct a rigid transformation, \( H_{TB} : B \rightarrow T \), relating the body coordinate system, B, to the tripod coordinate system, T.

\[
H_{TB} := \begin{bmatrix} R_l & s_l \\ 0 & 1 \end{bmatrix}
\]

where \( s_l \) denotes center of mass (COM) translation and \( R_l \) denotes a rotation matrix, which can be also represented in three Euler angles — pitch (\( \alpha_l \)), roll (\( \beta_l \)), and yaw (\( \gamma_l \)).

During a tripod stance phase this algorithm continuously delivers 6 DOF body pose in tripod coordinates. The tripod coordinate system, T, has a fixed rigid relationship to world coordinates assuming no toe slippage, permitting, for example, complete odometry during steady walking.

\( ^5 \)

\[
H_{WB} := \begin{bmatrix} R & r \\ 0 & 1 \end{bmatrix}
\]

where \( r := [r_x, r_y, r_z]^T \) denotes COM translation with three components in lateral (\( r_x \)), fore/aft (\( r_y \)), and vertical (\( r_z \)) directions and \( R \) denotes a rotation matrix, related by three Euler angles pitch (\( \alpha \)), roll (\( \beta \)), and yaw (\( \gamma \)) by a function [24], \( R_l \), with definition \( R_l = R(\alpha_l, \beta_l, \gamma_l) \).

Consider the typical sequence of leg contact conditions, depicted in Figure 2, that occur during steady state operation in a stable running gait. During the \( i \)th stride interval, \( C(t) := [t_k(t), t_k(t)] \), a tripod stance interval, \( \Phi_S(t) := [t_k(t), t_k(t)] \), is succeeded by a period of time when the legs begin to liftoff, \( \Phi_L(t) := [t_k(t), t_k(t)] \), followed by an interval of aerial flight, \( \Phi_A(t) := [t_k(t), t_k(t)] \), then touching down through another period of varied leg contacts, \( \Phi_T(t) := [t_k(t), t_k(t)] \), to the fixed tripod stance interval \( \Phi_S(t+1) \) of the next stride, \( C(t+1) \). We conceive of the liftoff and touchdown intervals, \( \Phi_L(t), \Phi_T(t) \) as “transients” because they typically exhibit complex sequences of successive leg contacts that reveal little consistent pattern from run to run (or, often, even from stride to stride).

Our algorithm for combining rate gyro with leg pose sensor data assumes perfect information about which phase interval the robot is undergoing at every instant of time. In our implementation, the crucual leg contact information required to detect the onset and termination of each of these phases of a stride may be gleaned directly from the individual leg strain sensors.

We further assume the existence of a continuously available gyro integrator output signal that delivers the 3 DOF body attitude data throughout the entirety of the each stride at the same rate as the body pose sensor. In this work we follow Skaff et al [20] and implement an
From $H_{TB}(t)$ (1) combined with yaw from gyro, $\gamma(t)$, we can construct the homogeneous transformation relating the body coordinate system at any instant, $t$, to that at tripod touchdown moment, $t_1$, in world coordinate sense by

$$
H_{WB}(t) := \begin{bmatrix}
R_t(t) & 0 \\
0 & 1
\end{bmatrix} H_{TB}(t_1(t))^{-1} H_{WB}(t)
$$

where $R_t(t) := R(0,0,(\gamma(t) - \gamma(t_1)))$ denotes the yaw correction required to maintain the rotation in the tripod coordinate system, $T$, when the toes do not slip. i.e. yaw motion can also be correctly detected by leg pose sensor during tripod stance interval, $R_t = I$, the tripod coordinate system $T$ is a fixed inertial frame in the ground, and the COM translation between any instant $t$ and touchdown moment $t_1$ derived from (3) can be transformed without assistance of yaw data from other sensor suite to world coordinates by a simple geometry relation as we have explained in the leg pose sensor discussion of the previous section. In general, with toe slippage, the transformation back to world coordinates requires a complementary sensor suite to provide information regarding yaw rotation and rotation center at every instant. While yaw can be provided by the gyro, $\gamma(t)$, it is difficult to detect the rotation center without any toe force sensor. Thus we simply assume this rotation motion with respect to COM yields the computation shown in (3).

The COM translation in lateral ($r_{H_{WB}}(t)$) and in fore/aft ($r_{V_{H_{WB}}}(t)$) directions with respect to COM location at initial tripod touchdown moment, $t_1$, can be extracted from $H_{WB}(t)$ shown in (3) by the rotation defined in (2). The COM vertical translation ($r_{H_{WB}}(t)$) is directly extracted from $H_{TB}(t_1(t))$ because, as we have mentioned above, it preserves non-drifting absolute height to the level ground. The rotation matrix, $R_{S}(t)$, is constructed as $R_{S}(t) = R(\alpha(t), \beta(t), \gamma(t))$ combining the leg pose sensor's pitch and roll data with the gyro's yaw data as explained above. In summary, the homogeneous transformation, $H_{WB}(t)$, relating the body coordinate system to world coordinates during tripod stance interval, $\Phi_S$, is expressed as

$$
H_{WB}(t) := H_{S}(t) \begin{bmatrix} R_{S}(t) & r_{S}(t) \\ 0 & 1 \end{bmatrix} 
$$

where $r_{S}(t) := [r_{H_{WB}}(t) \, r_{V_{H_{WB}}}(t) \, r_{Z_{H_{WB}}}(t)]^T$.

**B. Body State during Liftoff Transient, $\Phi_L$**

During liftoff transient interval, $\Phi_L(t)$, translational motion is modeled as "constant speed" motion with initial velocity $v_0$ estimated by differentiating (suitably smoothed) leg pose translation signals during the initial portion of the previous tripod stance interval, $\Phi_S(t)$, Integrating forward using this naive zero acceleration model yields the following COM translation prediction at any instant, $t$, with respect to the initial liftoff time, $t_3$, as $r_{L}(t) = r_0(t_3(t)) / (t - t_3(t))$ where $t \in [t_2(t) \, t_3(t)]$.

In contrast, there is a direct gyro reading for orientation during the transient periods, and, after initializing the rate gyro integrator with the leg pose sensor's orientation data at end of stance, we simply adopt the gyro's
integrated signal via the rotation matrix, $R_{k} = R_{1}(t_{2}(i))R_{p}(t_{2}(i))^{-1}$ at liftoff time $t_{2}(i)$ which indicates the last instant with the availability of two rotation matrices from both sensors, $R_{a}(t)$ and $R_{b}(t)$.

The "relational" pitch ($\alpha_{R_{a}(t)}$) and roll ($\beta_{R_{b}(t)}$) between $R_{a}(t)$ and $R_{b}(t)$ can be extracted from $R_{g}$ by inverting the kinematic relationship [24], which allows us to construct the correct "recalibration" rotation matrix, $R_{g}(t)$, without resetting yaw motion defined as $R_{g} := R_{1}(\alpha_{R_{a}(t)}, \beta_{R_{b}(t)}, 0)$. Thus, with the "reset" initial homogeneous transformation matrix,

$$
H_{b}(t) := \begin{bmatrix}
R_{0} & r(t_{2}(i)) \\
0 & 1
\end{bmatrix}
$$

where $r(t_{2}(i))$ is obtained according to the notation shown in (2), the homogeneous transformation, $H_{WB}(t)$, relating the body coordinate system to world coordinates during liftoff transient interval, $\Phi_{L}$, can be expressed as

$$
H_{WB}(t) := H_{b}^{-1}(t) \begin{bmatrix}
R_{b}(t) & r(t_{2}(i)) \\
0 & 1
\end{bmatrix} t \in [t_{2}(i), t_{3}(i)]
$$

C. Body State during Aerial Flight, $\Phi_{A}$

Translation trajectories during aerial phase, $\Phi_{A}(t)$ are predicted using the standard ballistic flight model, resulting in the COM translation at any instant, $t$, with respect to the initial liftoff time, $t_{3}(i)$, as $r_{A}(t) = k_{b}^{-1}(t_{2}(i)) (t - t_{3}(i)) + (1/2) g (t - t_{3}(i))^{2}$ where $t \in [t_{3}(i), t_{4}(i)]$ and $G = [0, 0, g]^T$ with gravity constant, $g$. Similar to the procedure in liftoff transients, with the newly defined "reset" initial homogeneous transformation matrix defined as,

$$
H_{b}^{-1}(t) := \begin{bmatrix}
R_{0} & r(t_{2}(i)) \\
0 & 1
\end{bmatrix}
$$

we can construct the homogeneous transformation, $H_{WB}(t)$, relating the body coordinate system to world coordinates during aerial flight, $\Phi_{A}$, as

$$
H_{WB}(t) := H_{b}^{-1}(t) \begin{bmatrix}
R_{b}(t) & r(t_{2}(i)) \\
0 & 1
\end{bmatrix} t \in [t_{3}(i), t_{4}(i)]
$$

D. Body State during Touchdown transient, $\Phi_{T}$

With the same "constant speed" model, the computation procedure for body state during the touchdown transient interval, $\Phi_{T}(t)$, is similar to that in liftoff transient interval, $\Phi_{L}(t)$. The only difference is the initial velocity in vertical direction due to the effect of gravity during aerial flight.

IV. EXPERIMENTAL RESULTS

A. Performance Comparison of Pitch and Roll between Algorithm and Direct Gyro Integrator

To assess performance improvements resulting from the combination of leg pose with the rate gyro, we have run the robot RHex under the Ground Truth Measurement System (GTMS) — the independent visual ground truth measurement system introduced in [10] and detailed in [12], whose noise floor statistics are listed relative to robot body state coordinates in Table I. This yields a comparison in pitch and roll between the raw gyro sensor and the combination leg-gyro sensor proposed in Section III. The steadily increasing drift of the raw gyro signal (plotted as a magenta dotted line) becomes visibly apparent over the 4m run recorded in Figure 3 — particularly in pitch. Note, due to the limited size of the GTMS arena (1.5m x 0.9m), the initial three quarters of this trial takes place outside its field of view, hence, the GTMS trace (green solid line) for pitch and roll only appears in this figure from roughly $t > 7.5$s.

In contrast, the leg-gyro combination sensor (blue dotted line) maintains visibly better correspondence with the GTMS. We also quantify performance by presenting the standard root mean squared (RMS) error, given by $\chi(p, \beta) = \sqrt{(\|p - \hat{p}\|^{2} + M)}$ where $p$ represents the state from GTMS; $\hat{p}$ denotes the same state from output of the algorithm; and $M$ is the length of the data. Table II lists the statistical results (mean and standard deviation from 10 experimental data) of RMS error between each state from both sources to that from GTMS, as well as $\xi$ — the ratio of this RMS error to the noise floor of GTMS. Smaller RMS Error, coordinated with validation checking from the ratio, $\xi$, indicate sensor combination scheme improves the performance. We suspect that the difference in magnitude of drift between the raw gyro pitch and roll data should be attributed to intrinsic sensor inconsistencies because we have confirmed they are working within a similar operating range with respect to angular rate, angular acceleration, and jerk.

B. Performance of the Full Body State Estimator

We now evaluate the performance of the body state estimation algorithm implemented on RHhex [11], which is equipped with custom-designed leg pose sensor [10] and commercial 3 DOF rate gyro. Because the noise introduced differentiating the GTMS measurements is so severe, we are not able to check velocity estimates, and we limit our performance evaluation to assessing the quality of the onboard estimator’s six position outputs relative to those recorded by the GTMS — the lateral ($x_{l}$), fore-aft ($y_{l}$), and vertical ($z_{l}$) components of COM translation as well as pitch ($\alpha$), roll ($\beta$), and yaw ($\gamma$) — all in world coordinates, $W$. Figure 4 plots the comparison for each component over a typical run, which means the robot operation from standstill on one end of GTMS arena, jogging cross it to
Fig. 3. Pitch (a) and roll (b) measured by GTMS (green solid line) and computed according to our sensor combination scheme (blue dash-dotted line) vs. the final portion of the run when the robot is within its field of view.

Table III

<table>
<thead>
<tr>
<th>Trial no.</th>
<th>$r_x$ (cm)</th>
<th>$r_y$ (cm)</th>
<th>$r_z$ (cm)</th>
<th>$\alpha$ (deg)</th>
<th>$\beta$ (deg)</th>
<th>$\gamma$ (deg)</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>mean</td>
<td>2.54</td>
<td>4.02</td>
<td>0.84</td>
<td>0.59</td>
<td>1.57</td>
<td>1.01</td>
<td>25.2</td>
</tr>
<tr>
<td>std</td>
<td>0.60</td>
<td>0.61</td>
<td>0.62</td>
<td>0.16</td>
<td>0.29</td>
<td>0.15</td>
<td>2.6</td>
</tr>
<tr>
<td>Total RMS error (mean) shown above is 25.2% of total error.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 4. Body States measured by GTMS (green solid line) and computed according to our algorithm (blue dash-dotted line).

The other end. While the result of orientation is presented over the whole time line, that of COM translation is shown only within stable jogging period without initial transient phase from start point (around 0.5 sec) because of the current algorithm’s inability to handle unsteady locomotion transients.

Table III summarizes the outcome of 10 runs with mean and standard deviation (std). Small RMS error values (with mean error in angular states less than 2 degrees and in vertical translation less than 1 cm) compared to the robot size (50cm x 25cm x 15cm) indicate successful body state computation, which can also be quantified by $\xi$, the ratio of RMS error of each state to the noise floor of GTMS introduced in Section IV-A, as well as by $\zeta$, the ratio of RMS error of translational state to the robot length (50cm). The orientation components exhibit good performance as evidenced by $\xi$-values well under the GTMS noise floor. In contrast, translation state components during non-tripod intervals that are estimated using the purely predictive naive constant-speed and ballistic models exhibit relatively worse performance due to model error, especially in the fore-aft ($r_x$) and lateral ($r_y$) directions which depends on state history as well as unmodeled activity in the horizontal plane where slippage has significant effect. Translation state components exhibit $\xi$ values less than 10% error compared to robot length suggesting an acceptable performance for the preliminary first trial of this naive sensor combination method. In addition, despite having the highest RMS error, the percentage error of $r_z$ is actually less than 6% if considering forwarding distance is about 87cm in average detailed in Table IV. It’s not surprising that the results are worse than that of similar experiments while robot operating in walking gait (i.e. without aerial phase) [23] because of more dynamical behavior in jogging locomotion as well as the implementation of velocity states in algorithm. In walking case the algorithm can be constructed by pure kinematic relations without any velocity states but yields good body pose estimation.

Table IV compares our leg sensor and gyro based odometry estimates with sensorless schemes by reference to discrepancies with GTMS measurements of elapsed distance. With no sensing apart from motor shaft measurements, “blind odometry” estimates result from counting the number of motor shaft cycles over the same long flat surface to get the best possible conversion constant. The table presents discrepancies, $K_A(\%) = \left|\frac{n_G}{n_A}\right|$, as a percentage of the GTMS measured elapsed distance, $n_A$, for

\[n_G = \frac{\text{distance}}{\text{cycle}}\]

For this purpose of this paper, “odometry” denotes the COM translation in forward direction, $r_y$ between initiation point to the end of run.

We thank Dr. Jolanta Benestain for suggesting this comparison to us.

---

2269
TABLE IV

ODOMETRY ERROR RELATIVE TO GTMS MEASUREMENTS

<table>
<thead>
<tr>
<th>Trial no.</th>
<th>GTMS reference</th>
<th>Laser based</th>
<th>Sensorless</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>μ (cm)</td>
<td>σ (cm)</td>
<td>[Δx] (cm)</td>
</tr>
<tr>
<td>mean</td>
<td>86.8</td>
<td>81.2</td>
<td>1.1</td>
</tr>
<tr>
<td>std</td>
<td>0.6</td>
<td>1.5</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Both odometry methods: sensorless and sensor-based. The results show that in each data the leg sensor and gyro based odometry is better, by a factor of 3, on average, than the blind predictions of the open loop scheme.

V. CONCLUSION

We have introduced a continuous time full body state estimator for a hexapod robot executing a jogging gait (i.e. with aero/phase) on level ground based on a noise sensor combination algorithm using inputs from a leg pose sensor and gyro. We have implemented the algorithm on RHex and evaluated the performance with respect to an independent visual ground truth measurement system (GTMS). For orientation state components, small RMS error less than 2 (deg) well within the GTMS noise floor indicates good performance. For translation state components, performance, while acceptable, is not as impressive (most likely due to the absence of the accelerometer component of the IMU), exhibiting less than 10 (%) error compared to body length. In a "sample" application — odometry along a run — this combined sensor system outperforms by a factor of three the alternative sensorless "average distance per stride" estimate.

Combining the leg pose sensor and gyro data significantly ameliorates the accumulating integrator drift associated with a gyro alone. On the other hand, without gyro's complementary data supplements, the leg pose sensor alone isn’t able to construct continuous time full body state estimation because of the requirement of orientation state in non-tripod intervals and yaw state in tripod stance interval to recalibrate the tripod coordinate system back to world coordinates. Under current circumstance the full body state can only be achieved by combining both sensor data as the minimum requirement.

The present early version of this sensor combination algorithm seems not yet to deserve the "sensor fusion" designation because it makes only heuristic use in an intuitive manner of prior knowledge regarding which sensors perform capably under what circumstances. In any case, our present hardware suite, still missing the accelerometer bank traditionally associated with an IMU, doesn’t seem to yet have enough sensor inputs to support a "full sensor fusion" algorithm that would combine two sets of independently working sensors using statistics about their respective accuracies to drive an appropriate stochastic dynamical model. Work in progress on RHex is addressing the need for a reasonably high performance accelerometer bank, and we hope to report on the performance improvements that result from an expanded sensor suite along with a statistically informed estimator that uses it.

ACKNOWLEDGMENT

We thank Sarjoun Skaff and Al Rizzi for several useful discussions as well as the access to their rate gyro integrator implementation on RHex. We thank Gregory Sharp for his Ground Truth Measurement System implementation. We also thank Joel D. Weingarten and Joseph Raisanen for jogging gait tuning. This work is supported by DARPA/SPAWAR Contract N66001-00-C-8026 and N66001-03-C-8045.

REFERENCES