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Abstract

In this report, we study the Unique Games conjecture of Khot [32] and its implications on the hardness of
approximating some important optimization problems. The conjecture states that it is NP-hard to determine
whether the value of aunique1-round game between two provers and a verifier is close to1 or negligible.
It gives rise to PCP systems where the verifier needs to query only2 bits from the provers (in contrast,
Håstad’s verifier queries3 bits [44]). We start by investigating the conjecture through the lens of Håstad’s
3-bit PCP. We then discuss in detail two results that are consequences of the conjecture. The first states that
Min-2SAT-Deletion is NP-hard to approximate within any constant factor [32]. The second result shows that
minimum vertex cover is NP-hard to approximate within a factor of2− ε for everyε > 0 [34]. We display
the use of Fourier techniques for analyzing the soundness of the PCP used to prove the first result, and we
display the use of techniques from extremal combinatorics for analyzing the soundness of the PCP used to
prove the second result. Finally, we present Khot’s algorithm which shows that for the conjecture to be true,
the domain of answers of the two provers must be large, and we survey some recent results examining the
plausibility of the conjecture.
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1 Introduction

Many important optimization problems are NP-hard to solve exactly in the worst case. When faced with
such a problem, we have to settle for an approximate solution. An approximation algorithm for an NP-
hard problem is a Turing Machine that produces a feasible solution to the given problem that is within
a guaranteed factor of the optimum solution. Usually, this factor is taken to be greater than1, so for a
maximization problem, an approximation algorithm that achieves a factorC produces a solution whose
value is at least OPT/C, where OPT refers to the problem’s global optimum solution. For a minimization
problem, a factorC approximation algorithm produces a solution whose value is at mostCOPT. Finding an
approximation algorithm is one aspect of studying the approximability of an NP-hard problem. The other
aspect is proving, under certain assumptions, that the problem cannot be approximated within a certain
factor. Such results that rule out the possibility of an approximation algorithm are referred to ashardness
results orinapproximabilityresults. Usually, they are based on the assumption that P6=NP, thus ruling out
the possibility of a polynomial time approximation algorithm.

Early inapproximability results are due to Garey and Johnson [23]. However, strong inapproximability
results for many problems were not obtained until the connection between approximation hardness and
multiprover interactive proofs was discovered by Feigeet al. [19]. An interactive proof can be viewed as
a game between a computationally unbounded prover, and a polynomial time algorithm called the verifier
with access to random bits. The prover wants to convince the verifier of some fact, e.g. that a given string
is in a language, and the verifier (probabilistically) decides whether to accept the fact or not by querying
the prover. The Unique Games conjecture [32] is about a certain type of interactive proof with2 provers. It
implies strong inapproximability results showing for example that unless P= NP, Min-2SAT-deletion cannot
be approximated within any constant factor, and that under the same assumption vertex cover ink-uniform
hypergraphs cannot be approximated within a factor ofk − ε for everyk ≥ 2 andε > 0. In particular,
this means that the conjecture would settle the vertex cover problem on graphs since there exists a factor
2 approximation algorithm for this problem. The conjecture would also settle the Max-Cut problem as it
would imply that the approximation factor achieved by the algorithm of Goemans and Williamson [25] is
the best possible [30, 39].

1.1 Brief History

Interactive proofs were introduced by Goldwasser, Micali and Rackof [26], and Babai [6]. Ben-Oret al. [9]
defined the notion of multiprover interactive proofs where the verifier interacts with provers who cannot
communicate with each other. Fortnow, Rompel and Sipser [21] showed that the class of languages that have
multiprover interactive proofs equals the class of languages that have (in today’s terms) probabilistically
checkable proofs (PCP) with polynomial randomness and query complexity (the number of bits examined
by verifier), i.e. MIP= PCP(poly, poly). In a PCP, instead of interacting with the verifier, the provers write
down the entire proof. The verifier decides whether to accept or reject the proof by checking a few randomly
selected positions of the proof.

A breakthrough result of Lundet al. [37] demonstrated the power of interactive proof systems by using
algebraic techniques to show that all co-NP statements have interactive proofs. Using these techniques,
Shamir [43] showed that all decision problems which may be solved using a polynomial amount of mem-
ory have interactive proofs and vice versa, i.e. IP= PSPACE. The result of Babai, Fortnow and Lund
[7] showing that MIP= NEXP further established the power of interactive proofs and enabled the con-
nection with hardness of approximation. Feigeet al. [19] made the connection by showing that NEXP
⊆ PCP(poly, poly) implies that Max-Clique is hard to approximate unless EXPTIME= NEXP. They
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achieved a hardness of approximation result under an assumption closer to P6= NP by showing that NP
⊆ PCP(log n log log n, log n log log n). This established that Max-Clique is hard to approximate within any
constant factor unless problems in NP can be solved innO(log log n) time.

Following the result of Feigeet al. improved characterizations of NP were sought. Arora and Safra
[5] formalized and named the class PCP. They introduced the idea of proof composition, which turned out
to be fundamental in all subsequent developments, and showed that languages in NP have PCP verifiers
that use logarithmic randomness and sub-logarithmic query complexity. Aroraet al. [3] reduced the query
complexity to constant, thus proving the celebrated PCP Theorem (Thm. 2.8). They also showed that Max-
3SAT cannot be approximated within some constant factor. Bellare, Goldreich and Sudan [8] showed that
this constant is27/26. Their result showed that in order to get strong hardness results, one needs to design
PCP’s with the specific application in mind.

Max-3SAT is a constraint satisfaction problem with three variables per constraint. Following the phi-
losophy of [8], H̊astad [44] proved that unless P= NP, Max-3SAT cannot be approximated within a factor
of 8/7, which is a tight result, by constructing a PCP whose query complexity is3, i.e. the verifier only
needs to read3 bits of the proof. The approach used to prove this result is similar to that of [8]. The starting
point is a multiprover protocol, which comes from a combination of the PCP Theorem and Raz’s parallel
repetition theorem [40]. The protocol is transformed into a PCP by writing down the prover’s answers in
coded form. H̊astad showed that the encoding introduced by [8] enables the verifier to check the proof by
reading only3 bits. The verifier in the multiprover system is known as the Raz Verifier, and the verifier that
reads the encoded proof is called the inner verifier. Håstad’s result also implies that Max-2SAT is NP-hard to
approximate within any factor less than22/21. This factor is, however, not tight. Max-2SAT is a constraint
satisfaction problem with two variables per constraint and we seem to have no techniques for constructing
PCP’s where the verifier can read only2 bits. Khot [32] suggested the Unique Games conjecture as a possi-
ble direction for designing such PCP’s. The Unique Games conjecture stipulates the existence of a verifier
with stronger properties than the Raz Verifier. Having this powerfulouter verifier enables the design of
inner verifiers to prove strong inapproximability results for such problems as Max-2SAT and vertex cover.
Nonetheless, even with such a powerful outer verifier, the inner verifiers are typically non-trivial relying on
deep theorems in Fourier analysis.

1.2 Organization of the Report

The main focus of this report is understanding the Unique Games conjecture and presenting the results of
[32, 34] based on it.

Section 2 defines some of the problems we consider and provides some necessary background. It ends
with a description of2-prover1-round games and the Raz Verifier, thus setting up the stage for the discussion
that follows.

We investigate the Unique Games conjecture by studying Håstad’s3-bit test. The Unique Games con-
jecture enables the design of a similar test that queries2 bits of the witness proof. We will provide intuition
behind the need for the third bit in Håstad’s verifier and how the conjecture alleviates this need. This is
done in Section 3. In Sec. 4 we show how the2-bit test allows us to prove that it is NP-hard to distinguish
between instances of Max-2SAT that are(1 − ε)-satisfiable and instances that are(1 − ε

1
2
+o(1))-satisfiable

for all sufficiently smallε > 0. We also briefly present a verifier based on the Unique Games conjecture that
shows a tight hardness result for coloring a3-uniform hypergraph with3 colors, and we state some recent
results based on the conjecture.

Section 5 presents the result of Khot and Regev [34] which shows that vertex cover is hard to approx-
imate within2 − ε for any ε > 0 assuming the Unique Games conjecture. The construction of the hard
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instance of vertex cover is very similar to that of [14] which shows that vertex cover ink-uniform hyper-
graphs is NP-hard to approximate within any constant factor smaller thanbk/2c, k ≥ 4. In fact, the two
constructions coincide whenk = 2. Given this graph construction, we show how the proof of the latter
result cannot be used to prove2 − ε hardness for vertex cover on graphs. We also discuss why the proof
of [34] fails to give the desired result if the graph construction is based on the Raz Verfier. Assuming the
construction is based on the Unique Games conjecture, we present the proof of [34].

Finally, the plausibility of the conjecture is discussed in Sec. 6. We end with a presentation of Khot’s
SDP based algorithm [32], which shows that for the conjecture to be true, the domain of answers of the
provers must be large.

2 Background

2.1 Problems Considered

In this section, we define some of the problems we will be considering.

Definition 2.1 (Max-kLin- p). Let p be a prime. Max-kLin-p is the problem of given a system of linear
equations over the fieldZp with exactlyk variables in each equation, find the maximum number of equations
that can be satisfied by any assignment.

We will specifically be interested in the problems Max-3Lin-2 and Max-2Lin-2.

Definition 2.2 (Max-kSAT). Max-kSAT is the problem of given ak-CNF formula (i.e. each clause contains
exactlyk variables), find the maximum number of clauses that can be satisfied by any assignment.

We will specifically be interested in Max-3SAT and Max-2SAT. The minimization version of Max-2SAT,
where the objective is to find the minimum number of constraints that cannot be satisfied by any assignment,
is called Min-2SAT-Deletion (or Min-2CNF-Deletion).

A q-uniform hypergraphH = (V,E) consists of a set of verticesV and a set of hyperedgesE where
every hyperedge is a subset of vertices of sizeq. A hypergraph is said to bek-colorable if each of its vertices
can be assigned a color from a set ofk colors such that no hyperedge is monochromatic, i.e. not all its
vertices have the same color. A non-monochromatic hyperedge is said to becorrectly colored. We will
mostly be interested in the maximization version of hypergraph coloring defined below.

Definition 2.3 (Hypergraph k-Coloring). Hypergraphk-Coloring is the problem of given aq-uniform
hypergraph andk different colors, find an assignment of colors to the vertices so as to maximize the number
of correctly colored hyperedges.

The minimization version is called Approximate Coloring, and it is the problem of given ak-colorable
hypergraph, color it with as few colors as possible.

A vertex coverof a hypergraphH is a subset of verticesV ′ ⊆ V that contains at least one end point of
each hyperedgee ∈ E, i.e. e ∩ V ′ 6= ∅. The complement of a vertex cover is called anindependent set, i.e.
it is a subset of vertices that does not contain any hyperedge entirely within it.

Definition 2.4 (Ek-Vertex-Cover). Ek-Vertex-Cover is the problem of given a hypergraphH = (V,E),
find a minimum size vertex cover inH.

The problem E2-Vertex-Cover is simply the minimum vertex cover problem on graphs.
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2.2 The Classes NP and PCP

Before defining the class of languages that have Probabilistically Checkable Proofs (PCP’s) we recall the
definition of the class NP in terms of the existence of a deterministic polynomial time verifier that can check
language membership proofs.

Definition 2.5 (NP). A languageL is in NP if and only if there exists a deterministic polynomial time
verifierV such that given a stringx ∈ {0, 1}n it satisfies,

• Completeness: Ifx ∈ L, then there is a stringy with |y| = nO(1) such thatV (x, y) = 1

• Soundness: Ifx 6∈ L, then for ally with |y| = nO(1), V (x, y) = 0.

The running time ofV is assumed to be polynomial in the length ofx. We say thatV acceptsx when
it outputs1; otherwise, we say that itrejectsx. We will refer toy in the above definition as theproof.

A PCP is described by a probabilistic verifier that randomly examines a few bits of a written proofy.
We say that the verifierV hasoracle accessto y, and we writeV y to indicate thatV does not receivey
explicitly. We are interested in two properties ofV , namely, the number of coinsV flips and the number of
bits of the proof it reads.

Definition 2.6. A (r(n), q(n))-restricted verifier is a probabilistic polynomial time Turing machine such
that given inputx of lengthn and oracle access to proofy, it usesr(n) random bits to listq(n) positions of
y, queriesy at these positions, and accepts or rejectsx based on the values it receives.

The running time ofV is again assumed to be polynomial in the size of the inputx. Note thatr(n) and
q(n) are bounded by the running time ofV . Futhermore,V is non-adaptive– it simultaneously decides
which queries to make. The parameterq(n) is called the query complexityof V . We can now define the
class of languages PCPc,s[r(n), q(n)].

Definition 2.7 (PCP). A languageL is in PCPc,s[r(n), q(n)] if there exists a(r(n), q(n))-restricted verifier
V such that given a stringx ∈ {0, 1}n it satisfies,

• Completeness: Ifx ∈ L, then there is a proofy : Pr[V y(x) = 1] ≥ c ;

• Soundness: Ifx 6∈ L, then for ally, Pr[V y(x) = 1] < s ,

where the probabilities are taken overV ’s choice of random bits and0 ≤ s < c ≤ 1. Furthermore, for any
y, |y| ≤ q(n) · 2r(n).

The bound on|y| is determined by the number of possible positions ofy thatV can examine. All other
bits of y are irrelevant. Ifc = 1 we say that the verifier hasperfect completeness, and if c = 1 − o(1), we
say it hasalmost perfect completeness. If L ∈ PCPc,s[r, q], we say thatL has a PCP with parameters(r, q).

2.3 The PCP Theorem

It is immediate from definition 2.7 that NP= PCP1,0(0, poly(n)). The PCP Theorem states the following
suprising result:

Theorem 2.8. [3, 5] NP = PCP1, 1
2
[O(log n), O(1)]
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One side of this equality, PCP1, 1
2
[O(log n), O(1)] ⊆ NP, is easy to see. Given a languageL ∈

PCP1, 1
2
[O(log n), O(1)] with verifier V , we can construct a deterministic verifierV ′ that simulatesV on

all 2O(log n) = poly(n) random coin flips and accepts if and only ifV accepts on all runs.
The PCP Theorem provides a “robust” characterization of the class NP in the sense that any proof of a

false statement must be wrong almost everywhere since in order to reject with probability more than a half,
it suffices for the verifier to check only a few a bits of a proof. As we will see below, this robustness allows
us to reduce a languangeL ∈ NP to a 3SAT formula such that ifx ∈ L, then the formaula is satisfiable, and
if x 6∈ L, then no assignment can satisfy more than1− ε fraction of the clauses of the formula. This shows
the relationship between the PCP Theorem and the inapproximability of Max-3SAT, where the objective is
to satisfy the maximum number of constraints in a given formula. The gap in the reduction implies that
Max-3SAT does not have a(1 + ε)-approximation unlessP = NP . In fact, the PCP Theorem is equivalent
to the inapproximability of Max-3SAT.

Theorem 2.9. [3] NP = PCP1, 1
2
[O(log n), O(1)] if and only if there is a constantε > 0 for which there

exists a polynomial time reductionf from any languageL ∈ NP to Max-3SAT such that

• If x ∈ L, OPT(f(x)) = 1,

• if x 6∈ L, OPT(f(x)) < 1− ε.

Here, OPT(f(x)) refers to the maximum fraction of constraints of the formulaf(x) that any assignment
can satisfy. In general, OPT will be clear from context. The reduction above is called agap-introducing
reductionas it introduces a gap of factor1/(1−ε) between the two classes of instances of Max-3SAT (those
constructed from instancesx ∈ L and those constructed from instancesx 6∈ L). As noted above, this gap
establishes the approximation hardness of Max-3SAT. Suppose there is a1/(1 − ε) factor approximation
algorithmA for Max-3SAT. Then ifx ∈ L, A(f(x)) ≥ (1 − ε)OPT(f(x)) = 1 − ε, and if x 6∈ L, then
A < 1− ε. Hence, usingA we can decide any NP languageL; a contradiction unless P = NP. Even though
the proof of the above theorem can be found in many places (see for example [2]), we will give the proof here
as it shows that the choice of1/2 is arbitrary and can be replaced by any small constant, and it displays the
importance of designing PCPs that are very closely connected to the optimization problem whose hardness
we are trying to prove.

Proof of Theorem 2.9.(if) Assume thatL ∈ NP and there is a gap-introducing reductionf as in the state-
ment of the theorem. Given inputx, the PCP verifier we construct first runsf to create a Max-3SAT formula
f(x). It then randomly selects a clauseC from f(x) using itsO(log n) random bits. Let a proofy corre-
spond to an assignment of the variables off(x). The verifierV reads the values of the3 variables inC
from y, and accepts if and only if the variables satisfyC. Hence, ifx ∈ L, letting y be a satisfying as-
signment tof(x) we havePr[V y(x) = 1] = 1. On the other hand, ifx 6∈ L, then for any assignmenty,
Pr[V y(x) = 1] < 1 − ε. Sinceε is a constant, this probability can be reduced to1/2 (or any other small
constant) at an exponential rate by a constant number of repetitions.

(only if) Assume thatL ∈ NP. By the PCP Theorem,L ∈ PCP1, 1
2
[c log n, q] wherec andq are constants.

Let V be its PCP verifier. Given inputx of lengthn, let y be a proof to whichV has oracle access. For a
random string of lengthc log n, V queriesq positions of the proof and decides to accept or reject based on
the values it receives fromy. We generate a boolean variable corresponding to each position iny (so thaty
corresponds to an assignment to those variables). Further, we generate a boolean functionfr whose domain
is {0, 1}q for each random stringr of lengthc log n. The functionfr : {0, 1}q → {0, 1} takes as input the
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values assigned byy to theq variables that correspond to theq positionsV queries givenr. The output of
fr is 1 if and only if V accepts. By simulatingV on allnc random strings we getnc such boolean functions.
The truth table of each boolean function can be represented by at most2q q-CNF clauses, and each such
clause can be transformed to at most(q − 2) 3CNF clauses in the standard way. Hence, we end up with a
3CNF formulaφ with nc2q(q − 2) clauses.

Now if x ∈ L, then there exists a proof such that every test causesV to accept; hence, the formula is
satisfiable. Ifx 6∈ L, then any proofy causes more thannc/2 of the tests to reject. Hence, the fraction of
unsatisfied clauses in our formula is> (nc/2)/(nc2q(q−2)) = 1/(2q+1(q−2)) = ε. That is OPT(φ) < 1−ε
andε is a constant.

2.3.1 The Relationship to Constraint Satisfaction Problems

The gap in Thm. 2.9 is so small because the translation from boolean functions with domain{0, 1}q to 3CNF
clauses produced a large number of clauses. Intuitively, we can get a better approximation hardness result
if we had a PCP verifier that needs to read a smaller number of bits. Max-3SAT is a constraint satisfaction
problem on3 variables. In fact, we now highlight the relationship between PCP’s and the hardness of
approximating constraint satisfaction problems onk variables (k-CSP’s) in general. In ak-CSP, we are
given a set of variables and a set of constraints. Each constraint depends on exactlyk variables. The goal
is to find an assignment to the variables that maximizes the number of satisfied constraints. Designing a
specific verifier whose query complexity isk implies a hardness result for ak-CSP. We let the positions
of the proof be the variables of the problem and the verifier’s possible tests (given its random bits) be the
constraints. A proof defines an assignment to the variables. Hence the acceptance probability of the verifier
equals the fraction of satisfied constraints, and the hardness factor is obtained from the ratio between the
completeness and soundness of the constructed PCP system.

The next section shows a different characterization of NP that will allow us to design PCP’s with lower
query complexity.

2.4 2-Prover 1-Round Games

In order to design PCP’s with low query complexity, we will need a detailed description of the queries
made by the PCP verifier. We will design a new proof system with two provers and a simple probabilistic
verifier. The system is best thought of as a game between the provers,P1 andP2 and the verifierV where
the provers are trying to convince the verifier of the validity of an NP statement of lengthn (e.g. a formula
that is claimed to be satisfiable). The two provers are cooperating and infinitely powerful. They can make
any agreement before the start of the game, however, once the interaction with the verifier starts, they can
no longer communicate. The verifier is allowed to ask each prover only one question; hence, the game
is 1-round. It has access tor(n) random bits, which it uses to generate two questionsq1 andq2 without
communicating with the provers. Note that this implies that the verifier is non-adaptive as it does not
produce the second question based on the first answer it receives. The verifier simultaneously sendsq1 to P1

andq2 to P2. ProverP1 does not have access toq2, and proverP2 does not have access toq1. The provers
answer withP1(q1) andP2(q2). Since the verifier can ask the two provers for the same information, the
provers’ ability to cheat gets restricted. The verifier decides whether to accept or reject after receiving both
answersP1(q1) andP2(q2). We now define the class of languages 2P1Rc,s[r(n)] that are recognized by such
verifiers.

Definition 2.10. [44] A languageL is in 2P1Rc,s[r(n)] if there exists a probabilistic polynomial time verifier
V that receivesr(n) random bits such that given a stringx ∈ {0, 1}n it produces two queriesq1 and q2
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based only on its random bits andx and satisfies,

• Completeness: Ifx ∈ L, there exist two proversP1 and P2 whose answersP1(q1) and P2(q2) to
queriesq1 andq2 respectively causeV to accept with probability at leastc ;

• Soundness: Ifx 6∈ L, then for any two proversP1 andP2, the probability thatV accepts based on the
answersP1(q1) andP2(q2) is at mosts ,

where the probabilities are taken overV ’s choice of random bits, and0 ≤ s < c ≤ 1.

Thevalueof a 2-prover 1-round game (2P1R) is the maximum acceptance probability of the verifier.
Note that the number of random bits available toV limits the domain of questionsV can ask. This

in turn limits the number of answers the provers need to prepare. We can thus turn the above game into a
PCP simply by writing down each prover’s answers indexed by the questionsV can ask the prover. It is
noteworthy that if the game is not 1-round, then we cannot think ofP1 andP2 as written proofs since the
provers are infinitely powerful and hence can be considered adaptive. Next we construct a 2-prover 1-round
PCP with logarithmic randomness that captures NP.

A PCP with Low Query Complexity and Soundness close to1. Given a languageL ∈ NP, we use
the gap-introducing reductionf given in Thm. 2.9 to transform any instancex to a Max-3SAT formulaφx.
Supposeφx hasn variables andm clauses. Our 2P1R verifier works as follows. It assumes that prover
P1 is a string containing a truth assignment to then variables (i.e. each position takes one of two values).
Furthermore, it assumes that proverP2 is a string containing for each clause asatisfyingassignment to its3
variables (i.e. each position takes one of 7 values). It uses itsO(log n) random bits to pick a clauseC from
φx, and a random variablez occurring inC. It queriesP1 atx andP2 atC. It receives a1-bit answerP1(z)
from the first prover and a3-bit answerP2(C) from the second prover. Note thatP2(C) implicitly contains
an assignment toz. The verifier accepts if and only ifP1(z) and the implicit assignment toz in P2(C) are
equal.

If x ∈ L thenφx is satisfiable and clearly there are proofsP1 andP2 that make the verifier accept with
probability1.

If x 6∈ L, then more thanε fraction of the clauses ofφx are not satisfiable whereε is the constant in
Thm. 2.9. SinceP1 is an assignment to the variables, more thanεm clauses are not satisfied by it. Suppose
we pick an unsatisfiable clauseC. This happens with probability> ε. SinceP2 contains only satisfying
assignments, its assignment toC must differ fromP2 in at least one variable. The probability that we catch
this inconsistency is at least1/3. Hence, the soundness of this 2P1R game is less than1− ε/3.

The above PCP is good in thatV queries only4 bits of the proof; however, its acceptance probability
is always close to1. As in the proof of Thm. 2.9, we would like to use a constant number of repetitions
to reduce the acceptance probability in the soundness case. Repeating the above procedureu independent
times reduces the error probability to(1− ε/3)u. If we do that, however, the game is no longer one round.
We will use a different technique known asparallel repetition.

2.5 The Raz Verifier

Parallel repetition simply means thatV randomly choosesu clauses(Ci)u
i=1 and for each clauseCi it

chooses one variablezi at random. The verifier sendsq1 = (zi)u
i=1 to P1 andq2 = (Ci)u

i=1 to P2 all at
once. It assumes that each position inP1 is indexed byu variables and contains an assignment to theu
variables. Thus, the length ofP1 is nu and each position takes one of2u values. Further,V assumes each
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position inP2 is indexed byu clauses and contains a sequence of satisfying assignments to theu clauses.
Thus, the length ofP2 is mu and each position takes one of7u values. VerifierV then receives the answers
from P1 andP2 and accepts if allu variable assignments it receives fromP1 are consistent with allu clause
assignments it receives fromP2.

Since the provers can see all answers, it is not clear that the error probability of this game is(1− ε/3)u

In fact, the error probability can be greater than that; however, in [40], Raz showed that the error probability
indeed decreases exponentially withu.

Theorem 2.11. [40] Given a 2-prover 1-round game with soundnesss < 1 and answer sized, there exists
s′ < 1 that depends only ons such that for all integersu the soundness ofu parallel repetitions of the game
is (s′)u/d.

Hence, since the answer size of our original game is constant, by choosingu to be a large enough
constant, we can make the soundness arbitrarily small. However, the number of bits queried is nowu + 3u.
Note that the size of the domain of answers of the provers is a constant that depends on the soundness
parameter. This 2P1R game with perfect completeness and arbitrarily low soundness is known as theRaz
Verifier. In [44], Håstad uses the Raz Verifier to construct a3-bit PCP. We will reserve the discussion of
Håstad’s PCP to the next section where we motivate the Unique Games conjecture.

3 The Unique Games Conjecture

The Unique Games conjecture (UGC) [32] is the following:

Conjecture 3.1 (Unique Games Conjecture).For arbitrarily small constantsζ, δ > 0, there exists a
constantk = k(ζ, δ) such that it is NP-hard to determine whether a unique 2-prover 1-round game with
answers from a domain of sizek has value at least1− ζ or at mostδ.

Why is the UGC stated as such? In this section we attempt to answer this question. We feel that the best
way to provide intuition behind the conjecture is to describe Håstad’s3-bit PCP. We will also defineunique
games and describe a problem called Label Cover that is equivalent to a 2P1R game.

3.1 Overview of Håstad’s PCP

Håstad’s result is the following:

Theorem 3.2. [44] For all ε, η > 0,

NP = PCP1−ε, 1
2
+η[O(log n), 3] .

Moreover, the acceptance condition of the verifiers is linear (i.e. if the three bits read from the proof areb1,
b2 andb3, the acceptance condition is eitherb1 + b2 + b3 = 0 or b1 + b2 + b3 = 1).

The starting point of H̊astad’s PCP is the Raz Verifier described in Sec. 2.5. We will refer to the Raz
Verifier as theouter verifier. Recall that this verifier has perfect completeness and arbitrarily low soundness.
The problem, however, is that it reads answers from a large alphabet that is dependent on the soundness
parameter. To achieve our goal, we will build a new verifier called theinner verifierthat expects as a proof
encodings of the provers’ answers using a predefined encoding scheme. With a suitable encoding, the inner
verifier can perform its test efficiently. A cheating prover, however, may not abide by the encoding. Hence,
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besides checking the consistency of the answers, the inner verifier must also check if the encodings of the
answers are correct. Håstad’s construction integrates these two tasks into a single test that reads only3 bits.
The test does not explicitly check that the encodings are correct. Instead, it is shown that if a proof makes the
inner verifier accept with high probability, then there is a way to “decode” the proof and extract strategies
for the provers that would make the outer verifier accept with probability greater thanδ. This leads to a
contradiction if the soundness of the outer verifier is less thanδ. The strategies are extracted by analyzing
the encoded answers using Fourier Analysis.

It suffices for our purposes to describe the3-bit test. Even though we will not go over the soundness
analysis of this test, the technique of using discrete Fourier transforms to extract strategies from encoded
answers will be displayed when we analyze a different test in Sec. 4.2.3. We start by describing the encoding
expected by the inner verifier.

3.2 The Long Code

The long codewas introduced by [8]. The long code of an elementx ∈ {0, 1}u is a string of length22u
. It

is a wasteful encoding; however, it is very useful for our purposes.

Definition 3.3 (Long Code). LetFM be the family of boolean functionsf : M → {0, 1}. The long code of
an elementx ∈ M is a mapAx : FM → {0, 1} whereAx(f) = f(x).

The usefulness of the long code is apparent when we consider the type of questions the inner verifier
should ask. In order not to waste any bits, the inner verifier will ask boolean questions. Suppose that the
answer to the outer verifier’s first query isx. The question the inner verifier will ask aboutx is, “Doesx
belong to the following set of values?” Sincex is au-bit string, there are2u possible values forx, and hence
22u

possible subsets the inner verifier can inquire about. Note thatu in our case is a constant depending on
the number of parallel repetitions the outer verifier performs, thus the inner verifier can ask such questions
in constant time. The long code encodes the answer of the prover for every possible subsetS ⊆ {0, 1}u.
Hence, the long code forx is a22u

bit string where positioni = 1 if x ∈ Si, and0 otherwise (we use an
arbitrary but fixed convention to order the subsets of{0, 1}u).

We can identify a setS ⊆ {0, 1}u by a functionfS : {0, 1}u → {0, 1}. That is,S = {x ∈ {0, 1}u :
fS(x) = 1}. Asking if x is in S is equivalent to evaluatingfS at x. Now since the set of all subsets of
{0, 1}u corresponds to the family of functionsf : {0, 1}u → {0, 1} we arrive at definition 3.3 above.

When working with long codes, it is sometimes more convenient to work with boolean variables from
{1,−1} rather than the standard{0, 1}. We let−1 denote true so that multiplication represents the exclusive-
or of two bits. The reason we use this multiplicative representation will become apparent when we utilize
Fourier techniques to analyze the long codes. However, we use it below to define the mechanism offolding
introduced by [8].

Definition 3.4 (Folding). A functionA : FM → {1,−1} is folded if for allf ∈ F ,−A(f) = A(−f).

A correct long code is clearly folded, since forS ⊆ M , x ∈ S iff x /∈ S̄. In order to implicitly ensure
that a long code written by a prover is folded, we store (in an arbitrary but fixed mannar) for each pair of
functions(f,−f) one representative. When we want to access the other function, we negate the result we
read. Supposef is chosen for example. Then, if we want to evaluatef(x), we simply readAx(f) whereAx

is the long code forx. If we wish to evaluate−f(x), then we readAx(f) and negate the result.
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The fact that the number of parallel repetitions executed by the Raz Verifier is constant allowed the inner
verifier to use the long code to encode the provers’ answers. Another important property of the Raz Verifier
is described below and it will allow us to design the3-bit test. A modification of this property given by the
Unique Games conjecture allows us to design a2-bit test.

3.3 The Raz Verifier’s Projection Property

Let us a look at a concrete example of a round of interaction between the Raz Verifier and the provers. Let
the number of parallel repetitions beu = 2. Suppose the verifierV randomly picks the clauses(C1, C2) =
(x1 ∨ x̄2 ∨ x3, x̄1 ∨ x4 ∨ x5) and the variables(z1, z2) = (x1, x5). The verifier then probes the provers and
receives answersP1(z1, z2) andP2(C1, C2). Note that given the set of probes andP2’s answer, there is a
unique answer ofP1 that would makeV accept. In our example, ifV receives(110, 010) from P2, then the
only answer received fromP1 that would makeV accept is(1, 0). That is, the accepted answer ofP1 is the
projectionof the answer ofP2 at (x1, x5). This implies that for every possible pair of questionsq1, q2 to
proversP1 andP2, there is a projectionπq1,q2 : [7u] → [2u] such thatV accepts if and only if the answers
P1(q1), P2(q2) satisfyπq1,q2(P2(q2)) = P1(q1). This projection property is almost all we need to design the
inner verifier.

Let RY , RX be the sets of possible answers the outer verifier can receive from proversP1 and P2

respectively. That is,|RY | = 2u, and|RX | = 7u whereu is the number of parallel repetitions. Suppose
the outer verifier receives answera1 (resp. a2) from P1 (resp. P2) in response to questionq1 (resp. q2).
We are trying to verify if the two answers are consistent, i.e. if they satisfyπq1,q2(a2) = a1. For ease of
notation, defineπ := πq1,q2. The inner verifier will pick a random setF from the rangeRY of the projection
π, and it will askP1 if a1 belongs toF . If a1 ∈ F , then the set of consistent answers received fromP2

is limited toF ′ = π−1(F ) ⊆ RX . The inner verifier will accept if and only ifa1 ∈ F anda2 ∈ F ′, or
a1 6∈ F anda2 6∈ F ′ resulting in a2-bit test (i.e. the exclusive-or of the two provers’ answers is0). Note
that since the long codes are folded, the provers cannot always pass the test by simply answering1 to every
query. Nonetheless, this test does not work as it can disclose the set of variables inq1 to P2. Intuitively,
this is because even thoughF is random, the values inF ′ are correlated allowingP2 to inferF andq1 [18].
Knowing q1 enablesP2 to pick an assignment to the clauses inq2 that is consistent withP1’s assignment
to the variables inq1, thus ensuring that the outer verifier accepts. Recall that the provers can make any
agreement before the start of the interaction with the outer verifier, and specifically, they can agree onP1’s
assignment. Note that this does not contradict the soundness of the outer verifier as its soundness depends
on the fact that each prover does not know the question directed to the other prover (i.e.q1 is hidden from
P2 and vice versa). Going back to the pair of clauses in our example above, suppose for simplicity that
F ′ = {(100, 001), (110, 001), (010, 100), (010, 101)}. Then, it is easy to see thatq1 = (x3, x4) and
F = {(0, 0)}.

Håstad’s Inner Verifier. In order to overcome this difficulty, the inner verifier asksP2 two questions. It
picks a random setG from the domainRX and asksP2 if a2 belongs toG and ifa2 belongs to the exclusive-
or of G andF ′ denotedG ⊕ F ′. The two sets now appear random toP2 and do not enable it to inferF .
In terms of long codes, the test is as follows. LetA be the long code ofa1 andB be the long code ofa2.
The inner verifier picks a random functionf : RY → {0, 1} and a random functiong : RX → {0, 1}. The
functionf corresponds to our setF above, andg corresponds to setG. Note that the functionf ◦ π, where
(f ◦π)(x) = f(π(x)) for x ∈ RX corresponds to the setπ−1(F ) = F ′. Leth : RX → {0, 1} be a function
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such thath = g ⊕ (f ◦ π). The verifier reads the bitsA(f), B(g) andB(h), and accepts if and only if,

A(f)⊕B(g)⊕B(h) = 0 ,

which is a linear3-bit test. There is a crucial part of the test that we have omitted. The functionh is in fact
defined ash = g ⊕ (f ◦ π) ⊕ µ whereµ : RX → {0, 1} is chosen by settingµ(x) = 1 with probability
ε andµ(x) = 0 with probability1 − ε independantly for eachx ∈ RX . If h is not defined withµ, then it
can be shown (see for example [33, p. 33]) the test would accept with probability1 even ifB is not a long
code. This reduces the completeness of the verifier to1− ε, but this is all that we can hope for since perfect
completeness would have implied thatP = NP . Recall the relationship between PCP’s and CSP’s given in
Sec. 2.3.1. H̊astad’s PCP implies that it is NP-hard to determine if the maximum fraction of clauses that can
be satisfied in a Max-3Lin-2 instance is at least1 − ε or at most1/2 + η for all ε, η > 0. If we had perfect
completeness, then the set of linear equations in the resulting Max-3Lin-2 instance could be solvable and
using Gaussian Elimination we can determine in polynomial time if a system of linear equations over a field
(Z2 in this case) is solvable.

3.4 Unique Games and Khot’s Conjecture

A 2P1R game is calledunique(e.g. see [36, 17]) if the answer of one prover uniquely determines the
answer of the other proverand vice versa. Suppose that the Raz Verifier were a unique 2P1R game with
almost perfect completeness and arbitrarily low soundness. (We sayalmostperfect completeness because
it is trivial to determine if a unique game has value1 as shown in Thm. 3.7 below.) Having the uniqueness
property means that that for every possible pair of questionsq1, q2 to proversP1 andP2, there is abijection
πq1,q2 : R → R such thatV accepts if and only if the answersP1(q1), P2(q2) satisfyπq1,q2(P2(q2)) =
P1(q1). Note that the two provers provide answers from the same domainR. Intuitively, having these
bijections would eliminate the need for the inner verifier we describe above to make the third query since
the pre-image of a random set under a bijection is simply a permutation of the set and is also random. The
Unique Games conjecture stipulates the existence of such a powerful outer verifier that would allow us to
construct boolean 2-query PCP’s. We will see a2-bit test based on our discussion in Sec. 4.2.1.

3.5 Label Cover

A 2P1R game with the property that the answer of the second prover uniquely determines the answer of the
first prover is equivalent to a problem called Label Cover first defined in [45]. We will use the definition of
a weighted Label Cover from [32].

Definition 3.5. A weighted Label CoverL(G(Y, X), RY , RX , {πyx}, {pyx}) consists of a complete bipar-
tite graphG with bipartitionY , X. Each edge(y, x) has a weightpyx with

∑
y,x pyx = 1. Every vertex in

Y is supposed to get a label fromRY , and every vertex inX is supposed to get a label fromRX . With every
edge(y, x) there is an associated projectionπyx : RX → RY . The goal is to find a labeling of the vertices,
that is find functionsLY : Y → RY andLX : X → RX , that maximizes the weight of satisfied edges. An
edge(y, x) is satisfied ifπyx(LX(x)) = LY (y). OPT (L) is defined to be the maximum weight of edges
satisfied by any labeling. A Label Cover isuniqueif RX = RY = R and every functionπyx : R → R is a
bijection.

It is clear how a label cover problem is the same as a 2P1R game. LetY , X be the sets of questions the
verifier can ask the two provers, andRY , RX , respectively, be the set of their possible answers. Hence, the
Unique Games conjecture can be stated as follows:
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Conjecture 3.6 (Unique Games conjecture).[32] For arbitrarily small constantsζ, δ > 0, there exists a
constantk = k(ζ, δ) such that it is NP-hard to determine whether a unique Label Cover instance with label
sets of sizek (i.e. |R| = k) has optimum at least1− ζ or at mostδ.

The following theorem shows why the completeness parameter of the UGC is not1.

Theorem 3.7. Deciding if a unique Label Cover has optimum equal to1 is in P .

Proof. Given a unique Label Cover instanceL defined as in Def. 3.5, the following simple algorithm finds
a labeling that satisfies all the edges if one exists. First, we get rid of edges with weight0 as they do not
contribute to the optimum. For every connected component of the resulting graph, we do the following.
Mark all the component’s vertices False. Pick an arbitrary vertexx0 ∈ X and assign it an arbitrary label
L(x0) from R. Now do the following:

- For every labeled vertexv marked False,

- If v ∈ X, then assign each unlabeledy in the neighborhood ofv the labelπyv(L(v)). If somey was
already labeled withL(y), then check ifL(y) = πyv(L(v)). Mark v True if all tests pass; otherwise,
start over with a different label forx0.

- If v ∈ Y , then assign each unlabeledx in the neighborhood ofv the label(πvx)−1(L(v)). If somex
was already labeled withL(x), then check ifL(x) = (πvx)−1(L(v)). Mark v True if all tests pass;
otherwise, start over with a different label forx0.

If some label tox0 causes all the vertices in the connected component to be marked True, then the component
is satisfied. If we can satisfy all components thenOPT (L) = 1. Otherwise, there is no labeling that has
value1.

4 Hardness Results based on the Unique Games Conjecture

This section is mainly dedicated to showing that Min-2SAT-Deletion is NP-hard to approximate to within
any constant factor [32]. The proof of Min-2SAT-Deletion closely follows that in [32]. We include it here
as it displays the powerful technique developed by Håstad ([44, 27]) of analyzing the tests of an inner
verifier using Fourier analysis. We also present the inner verifier and the test used to prove that3-uniform
hypergraph3-coloring is hard to approximate within any factor less than9

8 . We omit the test’s soundness
anlysis, however. Finally, we cite other results announced in [32] and point out some exciting more recent
results by Khotet al. [30], Chwalaet al. [12] and Dinuret al. [15]. All these PCP constructions essentially
start with the Unique Games conjecture as the outer verifier and construct suitable inner verifiers to prove
the hardness of the considered problems.

4.1 Fourier Analysis

The soundness proof of the inner verifier for Min-2SAT-Deletion depends heavily on Fourier analysis. Let
F be the family of functionsf : M → {1,−1}. Forβ ⊆ M , the basis functionsχβ : F → {1,−1} used to
define the Fourier transforms are

χβ(f) =
∏
y∈β

f(y) ,

Note thatχβ is the point-wise product of long codes, and when|β| = 1, χβ is just the long code of the
element inβ.
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Proposition 4.1. [28] For any β ⊆ M ,

∑
f∈F

χβ =

{
2|M | if β = ∅
0 otherwise

For functionsA,B mappingF to< define their inner product as,

〈A,B〉 = 2−|M |
∑
f∈F

A(f)B(f) = Ef [A(f)B(f)] .

Under this inner product, the Fourier basis form a complete orthonormal system since their number is
2|M | and for anyα, β ⊆ M ,

〈χα, χβ〉 = Ef [χα(f)χβ(f)]

= Ef [
∏
x∈α

f(x)
∏
y∈β

f(y)]

= Ef [
∏

x∈α∆β

f(x)]

= 1 if α = β and0 otherwise,

where∆ denotes the symmetric difference of two sets. The third equality follows from the fact that if
x ∈ α∩β, thenf(x)f(x) = 1, and the last equality follows from Prop. 4.1. Hence, any functionA : F → <
can be written as a linear combination of the basis functions,

A(f) =
∑
β⊆M

Âβχβ(f) , (1)

whereÂβ = 〈A,χβ〉 = Ef [A(f)χβ(f)]. Equation (1) is the Fourier inversion formula, andÂβ is called the
Fourier coefficient ofA at setβ.

Theorem 4.2 (Parseval’s identity).For any functionA : F → <,∑
β⊆M

Â2
β = 2−|M |

∑
f∈F

A2(f) .

A proof of Parseval’s identity can be found in [28] for example. Specifically, whenA has range{1,−1},
i.e. A : F → {1,−1}, Parseval’s identity says that

∑
β⊆M Â2

β = 1. Furthermore,Âβ is a measure of the
correlation ofA with χβ . For anyβ ⊆ M andf ∈ F , let 1{A=χβ}(f) indicate ifA(f) = χβ(f). Clearly,
for anyf ∈ F , 1{A=χβ}(f) = (A(f)χβ(f) + 1)/2. Taking expectations we have,

Pr
f

[A(f) = χβ(f)] =
Ef [A(f)χβ(f)] + 1

2
=

Âβ + 1
2

. (2)

This implies that ifA is the long code of somex ∈ M , thenÂ{x} = 1 and by Parseval’s identity all other
Fourier coefficients are0.

The next lemma shows the effect of folding (see Def. 3.4) on the Fourier coefficients of a long code.
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Lemma 4.3. [44] If A is folded, then for allβ ∈ M , if Âβ 6= 0 then|β| is odd (and in particularβ is not
empty).

Let π : M → M be a permutation. The following proposition relates the Fourier basis function off ◦ π
to that off .

Proposition 4.4. [32] χβ(f ◦ π) = χπ(β)(f).

Proof. Sinceπ is a bijection, we have

χβ(f ◦ π) =
∏
x∈β

f(π(x)) =
∏

y∈π(β)

f(y) = χπ(β)(f) .

4.2 Hardness of Approximating Min-2SAT-Deletion

In this section we outline the proof of the following theorem.

Theorem 4.5. [32] The Unique Games Conjecture implies that for every1
2 < t < 1 and for any sufficiently

small constantε > 0, it is NP-hard to distinguish between the instances of Min-2Lin-2 where the fraction of
satisfied equations is at least1− ε and those where it is at most1− εt.

Theorem 4.5 implies the same gap for Max-2SAT using the following simple reduction. We transform
an equation of the formx + y ≡2 0 to the two clausesx ∨ ȳ and x̄ ∨ y, and we transform equations of
the formx + y ≡2 1 to x ∨ y and x̄ ∨ ȳ. If an equation is satisfied, then the two corresponding clauses
are satisfied; otherwise, exactly one clause is not satisfied. Hence, if there aren equations in a Max-2Lin-2
instance andεn are not satisfied, there will be2n clauses in the constructed Max-2SAT instance andε/2
fraction will not be satisfied. It immediately follows that it is NP-hard to distinguish between the instances
of Min-2SAT-Deletion where the fraction of unsatisfied clauses is at mostε and those where it is at leastεt

for any 1
2 < t < 1. Hence, Min-2SAT-Deletion cannot be approximated within any constant factor.

Related Algorithmic Results. The gap of(1 − ε, 1 − ε
1
2
+o(1)) for Min-2SAT-Deletion is tight since, on

an instance whose optimum is1 − ε, the algorithm of Goemans and Williamson [25] produces a solution
with value1− O(

√
ε). Zwick’s algorithm [48] for Max-2SAT finds a(1− O(ε1/3))-satisfying assignment

when given a(1 − ε)-satisfiable 2CNF formula. And Agrawalaet al. [1] recently gave anO(
√

log n)-
approximation algorithm for Min-2SAT-Deletion.

4.2.1 The PCP

The PCP we construct will be composed from an outer verifier and an inner verifier. The unique Label Cover
instanceL(G(Y, X), R, {πyx}, {pyx}) guaranteed by Conjecture 3.6 serves as our PCP outer verifier. The
inner verifier expects the proof to contain the long codes of the labels applied to everyy ∈ Y andx ∈ X.
The long codes are assumed to be folded.

The inner verifier will pick an edge(y, x) and check if labels ofy andx satisfyπyx. Letpy =
∑

x∈X pyx

and defineqy : X → [0, 1] asqy(x) = pyx/py. The verifier will pick an edge by first picking a vertexy ∈ Y
with probability py, and then picking a vertexx ∈ X with probability qy(x). That is, it will choosex
conditioned on the fact that it already chosey. The full test is as follows:
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1. Picky ∈ Y with probabilitypy. Let A be the supposed long code of the label ofy. Recall thatA is
indexed by all functionsh : R → {1,−1}.

2. Pick a random functionf : R → {1,−1}.

3. Pick a functionµ : R → {1,−1} by defining independently for each labela ∈ R

µ(a) =

{
1 with probability1− ε

−1 with probabilityε

4. With probability1
2 select one of the following actions:

(a) (Codeword test) Accept if and only ifA(f) = A(fµ)

(b) (Consistency test) Pick a vertexx ∈ X with probabilityqy(x). LetB be the supposed long code
of the label ofx, and letπ = πyx.

Accept if and only ifA(f) = B(f ◦ π).

It would seem at first glance that the “perturbation” function should be added to the consistency test, i.e.
A(f) = B((f ◦ π)µ), for otherwise the test can always be made to accept with probability1 even ifB is
not a long code. Consider the following example.1 Let A be the long code of somea ∈ R, and letB = χβ

for someβ ⊆ R where|β| is odd,|β| > 1, andπ(b) = a for all b ∈ β. Then,

A(f) = f(a) =
∏
b∈β

f(π(b)) = χβ(f ◦ π) = B(f ◦ π) .

The second equality follows from the fact that the cardinality ofβ is odd. Nonetheless, the functionµ ensures
that the verifier rejects codes whose Fourier spectrum depends significantly on sets of large size, and we will
see in the soundness analysis that it suffices to include it only in the codeword test. For intuition, letA, for
example, be the product of long codes, i.e. letA = χα for someα ⊆ R with |α| > 1, then the probability
the codeword test accepts is

Ef,µ[A(f)A(fµ)] + 1
2

=
Ef,µ[

∏
a∈α f2(a)µ(a)]

2
=

(1− 2ε)|α| + 1
2

,

which decreases as|α| increases. Recall that ifA is the long code of somea ∈ R, then all its Fourier
coefficients are0 except forÂ{a} which is1

4.2.2 Completeness

The completeness of the verifier is1− ε+ζ
2 . In a correct proof,A andB are the long codes of somea, b ∈ R

wherea (resp. b) is the label of the vertexy ∈ Y (resp. x ∈ X) that we picked. The verifier selects a
test with probability1/2. Now the codeword test fails whenµ(a) = −1, which happens with probabilityε.
The consistency test, on the other hand, fails when we pick an unsatisfied edge in the unique Label Cover
instanceL, which happens with probabilityζ. When we pick a satisfied edge, the consistency test succeeds
sincef(a) = A(f) = B(f ◦ π) = f(π(b)) = f(a). Note that by the Unique Games conjecture, we can
assumeζ to be arbitrarily small. The completeness of the verifier follows.

1This example is given in [33] to show how, withoutµ, Håstad’s3-bit can always fail.
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4.2.3 Soundness

We will show that the soundness of the verifier is at most1− 1
8ctε

t for any 1
2 < t < 1 wherect is a constant

dependent ont (from Thm. 4.6), and whereε is that of the “perturbation” functionµ. We will use Fourier
analysis to show that if the verifier accepts with probability greater than1 − 1

8ctε
t, then we can extract a

(probabilistic) labeling of reasonable weight using the Fourier coefficients of the codes provided. Since
OPT(L) ≤ δ, this would lead to a contradiction provided we chooseδ to be small enough. The analysis
uses the following result of Bourgain [11] as stated in [32],

Theorem 4.6 (Bourgain). Let A be any boolean function (for instance a supposed long code) andk > 0
an integer. Then for every12 < t < 1, there exists a constantct > 0 such that,

If
∑

α : |α|>k

Â2
α < ctk

−t then
∑

α : |Āα|≤ 1
10

4−k2

Â2
α <

1
100

.

The probability of acceptance of the inner verifier is,

Pr[Accept] =
1
2

[
Ey,f,µ

[
1 + A(f)A(fµ)

2

]
+ Ey,x,f

[
1 + A(f)B(f ◦ π)

2

]]
.

This can be shown, for example, by the indicator method as we did for Eq. (2) in Sec. 4.1.
Using the Fourier transform we have,

Ef,µ[A(f)A(fµ)] = Ef,µ[
∑

α1,α2

Âα1Âα2χα1(f)χα2(f)χα2(µ)]; and, (3)

Ef [A(f)B(f ◦ π)] = Ef [
∑
α,β

ÂαB̂βχα(f)χβ(f ◦ π)] . (4)

Now, χα1(f)χα2(f) = χα1∆α2 and as shown in Sec. 4.1 its expectation overf is 1 if α1∆α2 = ∅ and
0 otherwise. Hence, (3) is non-zero only ifα1 = α2 = α. SinceEµ[χα(µ)] = (1− 2ε)|α|, we have that,

Ef,µ[A(f)A(fµ)] =
∑
α

Â2
α(1− 2ε)|α| . (5)

Using Prop. 4.4, we similarly see that (4) is non-zero only ifα = π(β). Sinceπ is a bijection,β = π−1(α)
and we have that,

Ef [A(f)B(f ◦ π)] =
∑
α

ÂαB̂π−1(α) . (6)

The probability of acceptance becomes,

Pr[Accept] =
1
2

+
1
4
Ey

[∑
α

Â2
α(1− 2ε)|α| +

∑
α

ÂαEx

[
B̂π−1(α)

]]
=

1
2

+
1
4
Ey[Dy + Cy] .

Suppose this probability is greater than1 − 1
8ctε

t wheret andct are from Bourgain’s Theorem. Then
we haveEy[Dy + Cy] ≥ 2 − 1

2ctε
t, which implies by Markov’s inequality that over the choice ofy, with

probability at least12 , Dy + Cy ≥ 2− ctε
t. Fix any such “good”y. By Parseval’s identity,Dy ≤ 1 and we
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have thatCy ≥ 1 − ctε
t > 1

2 where the last inequality follows by choosingε small enough. Similarly, by
Cauchy-Schwarz and Parseval’s identityCy ≤ 1 and we have thatDy ≥ 1 − ctε

t. This last fact combined
with the term(1− 2ε)|α| introduced byµ allows us to show that∑

α : |α|>ε−1

Â2
α < ctε

t , (7)

and applying Bourgain’s Theorem, we get,∑
α : |Âα|≤ 1

10
4−ε−2

Â2
α <

1
100

. (8)

Equation (7) says that for the given code its Fourier coefficients at sets of large size are insignificant,
while Eq. (8) says that the code is determined by a few coefficients. Ideally, in a correct proof, a long code
is determined by only one coefficient at a set of size one (see Sec. 4.1).

We summarize the rest of the argument. Callα “good” if α is nonempty,|α| ≤ ε−1, and |Âα| ≥
1
104−ε−2

. All other α ⊆ M are “bad”. It is shown that the contribution of badα’s to the termCy introduced
by the consistency test is small. First, ifα = ∅, then by lemma 4.3,̂Aα = 0. Next, if |α| > ε−1, then (7)
is used to show thatCy <

√
ctεt. Finally, if |Âα| < 1

104−ε−2
, then (8) is used to show thatCy < 1/10.

Combined with the fact thatCy > 1/2, the above implies that when restricted to goodα’s, Cy remains at
least1/4.

Hence, if the acceptance probability of the inner verifier is greater than1 − 1
8ctε

t, the codes provided
by the provers must be “close” to long codes in a sense that they are determined by a few coefficients at
sets of small size, namely those coefficients with goodα’s. We will depend on those coefficients to define
a (probabilistic) labeling for the edges inL of total weightΩ(ε42ε−2

). This will contradict the fact that
OPT(L) < δ if δ is chosen to be sufficiently small implying that the acceptance probability of the verifier is
at most1− 1

8ctε
t. Note that by the Unique Games conjecture, we can assumeδ to be arbitrarily small.

The labeling we define is as follows. For a good vertexy ∈ Y , pick α with probability Â2
α. Pick a

random element ofα and define it to be the label ofy. For anyx ∈ X, pick β with probabilityB̂2
β. Pick a

random element ofβ and define it to be the label ofx.
Now, let (y, x) be an edge with a goody and leta andb be the labels ofy andx respectively. The

probability that we pick a certainαi andβi = π−1(αi) is Â2
αi

B̂2
π−1(αi)

. Given this event, the probability
that π(b) = a is 1/|αi| sincea andb are randomly chosen elements ofαi andβi respectively, and since
|αi| = |βi|. Therefore, with probability

∑
α Â2

αB̂2
π−1(α)

1
|α| the edge(y, x) is satisfied. Letpx =

∑
y∈Y pyx,

i.e. if an edge is picked with probability equal to its weight,px is the probability that the right end point is
x. The expected weight of satisfied edges is then,

∑
y,x

pyx

∑
α

Â2
αB̂2

π−1(α)

1
|α|

= Ex

[∑
α

Â2
αB̂2

π−1(α)

1
|α|

]
≥ εEx

[∑
α good

Â2
αB̂2

π−1(α)

]
. (9)

Note that we are assuming thaty is good, which happens with probability at least1/2. The above expression
is shown to beΩ(ε42ε−2

) by the properties of goodα’s and the fact thatCy ≥ 1/4 even when restricted to
goodα’s. This concludes the soundness analysis.

4.3 Hardness of Coloring3-uniform Hypergraphs with 3 Colors

In this section we will outline the PCP used to prove the following theorem.
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Theorem 4.7. [32] The Unique Games conjecture implies that given a3-uniform hypergraph and3 colors,
it is NP-hard to determine whether there exists a coloring of the vertices that correctly colors1− ε fraction
of the hyperedges or any coloring correctly colors at most8

9 + ε fraction of the hyperedges, whereε > 0 is
an arbitrarily small constant.

The problem of coloring aq-uniform hypergraph withk colors can be thought of as a constraint satisfac-
tion problem. The vertices of the graph are the variables of the CSP, and the edges are its constraints. Since
each edge is a set ofq vertices, each constraint has exactlyq variables. Thek colors correspond to a domain
of sizek from which we will assign values to the variables. A constraint is satisfied if not allq variables
in the constraint have the same value. Hence, satisfying a constraint is equivalent to correctly coloring the
corresponding edge. The optimum of the CSP is the maximum fraction of constraints that can be satisfied
by any assignment. As in [31], we will call this CSP NAEq,k.

Definition 4.8. [31] The problem NAEq,k is said to have theRandom Threshold Propertyif it is NP-hard to
do strictly better than a random assignment. That is, it is NP-hard to distinguish whether the optimum is at
least1− ε or at most1− 1

kq−1 + ε for arbitrarily small ε > 0.

Hence, Conjecture. 4.7 asserts that NAE3,3 has the random threshold property. In [31], Khot proves this
result (with gap(1, 8

9 + ε)) unconditionally. In fact, it is shown that NAE3,k for everyk ≥ 3 has the random
threshold property. Recall that in a unique Label Cover instance, the mapsπyx : R → R are bijections. The
main technique in [31] is to obtain a weaker notion of this property. Khot (see also [33, Thm. 4.2.2]) shows
the hardness of Label Cover when the mapsπyx : RX → RY satisfy the followingsmoothnessproperty:
For everyx ∈ X and every pair of distinct labelsa, a′ ∈ RX ,

Pr
y

[πyx(a) 6= πyx(a′)] ≈ 1 . (10)

This property is combined with themulti-layeredversion of Label Cover from [14] to prove the result. Note
that for the only other case, namely NAE3,2, Zwick’s algorithm [47] performs strictly better than a random
assignment.

4.3.1 The PCP

The unique Label Cover instanceL(G(Y, X), R, {πyx}, {pyx}) guaranteed by the Unique Games conjecture
again serves as the outer verifier in the PCP we construct. Hence, the construction of the PCP again reduces
to the construction of a suitable inner verifier. The inner verifier expects the proof to contain the long codes
of the labels of all the vertices inL. LetF3

R be the family of functionsf : R → {1, ω, ω2}. The long code
A of a labela ∈ R is indexed by all functionsf ∈ F3

M and is defined asA(f) = f(a). The verifier will read
three symbols from the proof and accept if and only if the three symbols are not all equal. The verifier’s test
is as follows:

1. Picky ∈ Y with probabilitypy.

2. Pick three verticesx1, x2 andx3 with probabilitiesqy(x1), qy(x2) andqy(x3) respectively. LetA, B,
andC be the supposed long codes ofx1, x2 andx3 respectively.

3. Pick two random functionsf, g ∈ F3
M . Let h = f̄ · ḡ wheref̄(a) is the complex conjugate off(a).

4. Pick a functionµ : R → {ω, ω2} by defining for eacha ∈ R, µ(a) = ω with probability 1
2 and

µ(a) = ω2 with probability 1
2 .
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5. Accept if and only if not all ofA(f ◦ πyx1), B(g ◦ πyx2), andC((h ◦ πyx3) · µ) are equal.

The completeness of the verifier is1 − 3ζ. The verifier picks3 edges from the unique Label Cover
instance and each can be unsatisfied with probabilityζ. Suppose all edges are satisfied. In a correct proofA,
B andC are the long codes of somea, b, c ∈ R respectively wherea, b andc are the labels ofx1, x2 andx3

respectively. Furthermore,πyx1(a) = πyx2(b) = πyx3(c) = d for somed ∈ R (d is the label ofy). Suppose
A(f ◦ πyx1) = f(d) = g(d) = B(g ◦ πyx2). ThenC((h ◦ πyx3) · µ) = f(d)g(d)µ(c) = f(d)2µ(c) =
f(d)µ(c) 6= f(d) sinceµ(c) ∈ {ω, ω2}. Hence, if the edges are all satisfied, not all three symbols read can
be equal.

The soundness of the test is shown to be8
9 + ε for arbitrarily smallε > 0 by showing that if the inner

verifier accepts the not-all-equal test with a probability bounded away from0, then it is possible to define a
labeling for the vertices ofL of reasonable weight. Since OPT(L) ≤ δ, this leads to a contradiction provided
we chooseδ small enough.

4.4 Other Hardness Results

Minimum Multicut and Sparsest Cut. Chawlaet al. [12] note that, as implied by the approximation-
preserving reduction from Min-2SAT-Deletion to Minimum Multicut of [35], Thm. 4.5 also shows that
Minimum Multicut is hard to approximate within any constant factor. Recall that Minimum Multicut is
the problem of given a graphG andk pairs of vertices{(si, ti)}k

i=1, find a minimum-size subset of edges
whose removal disconnects every(si, ti) pair. Sparsest Cut is the problem of given a graphG, find the cut
with smallest edge expansion where the edge expansion of a cut(S, S̄) is defined as|E(S, S̄)|/ min{S, S̄}.
Using a stronger version of the Unique Games conjecture, [12, Cor. 1.4] shows for some fixed constant
c > 0 that it is NP-hard to approximate Min-2SAT-Deletion, Minimum Multicut and Sparsest Cut to within
factor c log log n. The stronger version of the conjecture requires that the parametersζ, δ and the answer
domaink = k(ζ, δ) satisfymax{ζ, δ} ≤ 1/(log n)Ω(1) andk = O(log n). (We will show in Sec. 6 that for
the UGC to hold,k must be at leastmax{ 1

ζ(1/10)
, 1

δ}, which does not exclude the parameters required by
the stronger version).

On the algorithmic side, the algorithm of [24] approximates Minimum Multicut to within a factor of
O(log k), and [4] give aO(

√
log n)-approximation algorithm for Sparsest Cut.

Max-Cut. In [30], Khot et al.show that assuming the Unique Games conjecture, it is NP-hard to approx-
imate Max-Cut to within any factor greater than3

4 + 1
2π (≈ .909155). 2 If they further assume a conjecture

they refer to as theMajority is Stablestconjecture together with the UGC, then they show that it is NP-hard
to approximate Max-Cut to within a factorαGW + ε for all ε > 0. Here,αGW = min0≤θ≤π

θ/π
(1−cos θ)/2 ,

which is exactly the approximation factor of the Goemans-Williamson algorithm [25]. The currently best
known gap for Max-Cut is(1, 16

17 + ε) due to H̊astad [44].
A generalization of the Majority is Stablest conjecture was recently confirmed by Mosselet al. [39,

Thm. 4.4]. Besides implying that based on the UGC the Goemans-Willimason.878-approximation algo-
rithm is the best possible for Max-Cut, their theorem also implies that based on the UGC, Max-2Lin-2 and
Max-2SAT have a gap of(1− ε, 1−O(

√
ε)). Furthermore,

Theorem 4.9. [39, Thm. 2.12] UGC implies that for eachε > 0 there existsq = q(ε) such that given an
instance of Max-2Lin-q it is NP-hard to distinguish between the case where it is(1 − ε)-satisfiable and
ε-hardness. Indeed, this statement is equivalent to UGC.

2For consistency with the cited work, the approximation factors are< 1.
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Approximate Coloring. The Approximate Coloring problem (cf. Sec. 2.1) can be stated as follows: Given
a graphG and a pair(q, Q), decide if the chromatic number ofG, χ(G) ≤ q or χ(G) ≥ Q. Whenq = 3,
the best known polynomial time algorithm solves the problem forQ = Õ(n3/14) wheren is the number
of vertices of the given graph [10]. The strongest hardness result, on the other hand, is due to Khannaet
al. [29] and shows that the problem is NP-hard forQ = 5. Most recently, assuming a variant of the Unique
Games conjecture (called then Conjecture), Dinuret al.[15] show that the problem is hard for any constant
Q > 3. They also show that for anyq ≥ 4 and any constantQ > 0, the problem is hard based on Khot’s [32]
2-to-1 conjecture.

We end this section with Khot’sd-to-1 conjecture. A 2P1R game has the “d-to-1” property if the answer
of the second prover uniquely determines the answer of the first prover and for every answer of the first
prover, there are at mostd answers for the second prover that would make the verifier accept.

Conjecture 4.10 (d-to-1). [32] Let δ > 0 be an arbitrarily small constant, then there exists a constant
k = k(δ) such that it is NP-hard to determine whether a 2P1R game withd-to-1 property and answers from
a domain of size at mostk has value1 or at mostδ.

Khot states that the2-to-1 conjecture implies a
√

2−ε hardness for Vertex Cover. In [34], however, Khot
and Regev show that the Unique Games conjecture implies vertex cover is hard to approximate to within
2− ε. This result is the topic of Sec. 5.

5 Hardness of Approximating Vertex Cover

In this section, we present the following result due to Khot and Regev [34]:

Theorem 5.1. [34] Assuming the Unique Games conjecture, Ek-Vertex-Cover is NP-hard to approximate
within factork − ε for everyk ≥ 2 and arbitrarily smallε > 0.

In [14], Dinur et al.show an inapproximability factor ofbk
2c − ε for Ek-Vertex-Cover based on the Raz

Verifier using a construction similar to that of [34]. We will compare the two techniques and show how the
Unique Games conjecture is used to prove the stronger result.

One way of reducing the Raz Verifier to Ek-Vertex-Cover is by introducing a block of vertices for each
variable inX andY (representing their long codes) and emulating each constraintπyx by a set of hyperedges
consisting of bothx-vertices (vertices introduced byX) andy-vertices (vertices introduced byY ). However,
this reduction has a basic “bipartiteness” flaw: The underlying constraint graph being bipartite (i.e. the Label
Cover instance) has a vertex cover whose size is at most half the number vertices. This translates to a vertex
cover in the hypergraph regardless of whether the PCP instance used to construct the graph is satisfiable or
not.

Dinur et al. [14] overcome this bipartiteness flaw by introducing a multi-layered PCP. Instead of two
“layers” X andY the multi-layered PCP has̀layersX1, X2, . . . , X`. Each pair of layers represents an
instance of the Raz Verifier. In this PCP, it is NP-hard to distinguish between the case where there exists
an assignment that satisfies all the constraints, and the case where for every pair of layersXi andXj there
is no assignment that satisfies anε fraction of the constraints betweenXi andXj . Using this multilayered
PCP and thebiasedlong code introduced in [16], Dinuret al. show that Ek-Vertex-Cover is NP-hard to
approximate within a factor of(k− 1− ε) for all k ≥ 3 whereε > 0 is any arbitrary constant. We introduce
the biased long code in the next section as we will also be using it for our construction.
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Another way to reduce the Raz Verifier to Ek-Vertex-Cover is to construct the hypergraph only from
the variables inX. We introduce a2|RX | block of vertices for eachx ∈ X representing its long code, and
hyperedges connect vertices fromx1’s block to vertices fromx2’s block only if there existsy ∈ Y such that
πyx1 andπyx2 are constraints in the system. This construction is used both in [14] for showing thebk

2c − ε
result, and in [34] for showing thek− ε result but starting from the Unique Games conjecture instead of the
Raz Verifier. A stronger form of the UGC called theStrong Unique Label Cover, or Strong LC for short, is
needed in [34].

A Strong LCL(Y, X,E, R,Π) is defined as follows. We are given a bipartite graph(Y, X,E) possibly
with parallel edges in which all the degrees of the vertices inX are equal to some constantd. Each vertex
in Y andX is supposed to get a label fromR. With every edge(y, x) ∈ E there is an associated bijection
πyx : R → R, πyx ∈ Π. An assignment of labels to verticesL : Y ∪ X → R is said to satisfy edge
(y, x) ∈ E if πyx(L(x)) = L(y).

Theorem 5.2. [34, Thm. 3.2] Assuming the Unique Games conjecture, for anyζ, γ > 0 there exists con-
stantsk, d such that the following is NP-hard. Given a Strong LCL(Y, X,E, R,Π) with |R| = k and the
degree of every vertex inX is d, distinguish between the case where there exists as assignment in which at
least1−ζ fraction of theX vertices have all their edges satisfied and the case where no assignment satisfies
more thanγ of the edges.

This form of the Unique Games conjecture shares two key properties with the Raz Verifier that the
employed techniques use to prove hardness in our hypergraph construction:

1. (Regularity) The layer in the underlying constraint graph used to create the vertices of the hypergraph
is regular.

2. (Strong Completeness) The Raz Verifier has perfect completeness, i.e. the provers have a strategy
such that with probability1, after fixing the question to the second prover, the verifier accepts for
everyquestion to the first prover. In the Strong LC, this happens with probability very close to1.
(Recall that the original form of the UGC simply states that the provers have a strategy that convinces
the verifier with probability very close to1).

To reiterate, in [14], the hardness achieved isbk
2c−ε, and in [34] it isk−ε. Both results use the same type

of hypergraph construction, which we briefly mentioned but will shortly formalize, for constructing a hard
instance of Ek-Vertex-Cover. Their underlying constraint graphs are made essentially similar by Thm. 5.2.
They differ in their proof techniques and in that the constraints are projections in one and bijections in the
other. We will investigate why the proofs fail to give the tight hardness result when the constraints are
projections. Since the two constructions coincide exactly whenk = 2, we will proceed by constructing a
graph from the Raz Verifier first, and switching to the Unique Games conjecture to show the strong hardness
result.

5.1 Preliminaries

The following definitions are from [14] and [34]. We include them here for easy reference.

Definition 5.3. For a bias parameter0 < p < 1 and a ground setR, the weight of a setF ⊆ R is

µR
p (F )

def
= p|F | · (1− p)|R\F | .
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Hence, the weight of a subset is the probability of obtaining this subset when each element inR is picked
with probabilityp. The weight of a family of subsetsF ⊆ 2R is,

µR
p (F)

def
=

∑
F∈F

µR
p (F ) .

Note that sinceµR
p (2R) = 1 the bias parameter defines a distribution on2R. We denote this distributionµR

p .
We will use a combinatorial view of the long code, and we define the biased long code next.

Definition 5.4 (p-biased Long Code).Let p < 0 < 1 be a bias parameter. Ap-biased long code over a
domainR for an elementσ ∈ R is a2|R| bit string indexed by all subsetsF ⊆ R. The bit indexed byF has
a weightµR

p (F ) attached to it and its value is1 if σ ∈ F and0 otherwise.

The only difference between this definition and Def. 3.3 is the weight attached to each bit in the long
code.

Definition 5.5 (Influence). For a familyF ⊆ 2R, an elementσ ∈ R, and a bias parameterp, the influence
of the element on the family is defined as,

InfluenceRp (F , σ)
def
= PrF∈µR

p
[exactly one ofF ∪ {σ}, F \ {σ} is inF ] .

Theaverage sensitivityof a family is defined as the sum of influences of all the elements:

asRp (F)
def
=

∑
σ∈R

InfluenceRp (F , σ) .

Definition 5.6 (Monotone Family). A familyF ⊆ 2R is called monotone ifF ∈ F andF ⊆ F ′ implies
F ′ ∈ F .

Definition 5.7 (Core-Family). A familyF ⊆ 2R is called a core-family with a coreC ⊆ R if there exists a
familyFC ⊆ 2C such that,

∀F ∈ 2M , F ∈ F if and only if F ∩ C ∈ FC .

Finally, we define the notion of ans-wiset-intersecting family. Denote[n] = {1, 2, . . . , n} and2[n] =
{F : F ⊆ [n]}.

Definition 5.8. A familyF ⊆ 2[n] is calleds-wiset-intersecting if for everys setsF1, F2, . . . , Fs ∈ F , we
have|F1 ∩ F2 ∩ · · · ∩ Fs| ≥ t.

5.2 The Construction

We start with an instance of the Raz Verifier, or the equivalent Label Cover instance, call itL, whereY
(resp. X) corresponds to the set of questions the verifier can ask proverP1 (resp. P2), andRY (resp.
RX ) corresponds to the set of its possible answers. Let{πyx} be the set of projection constraints. We will
construct a weighted graphG = (V,E) as follows. The set of vertices of the graph will correspond to the
bits of the long codes of the labels assigned to the vertices ofX. Namely, the set of vertices is defined to be,

V
def
= X × 2RX .
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For eachx ∈ X, we define theblock of vertexx, B[x], as the set of vertices corresponding tox. That is,

B[x]
def
= {〈x, F 〉 : F ⊆ RX} .

The weight of each vertex is

weight(〈x, F 〉) def
=

1
|X|

µRX
p (F ) ,

where0 < p < 1 is a bias parameter.
The edges are defined as follows. For every pair of constraintsπyx1 andπyx2 sharing a common variable

y ∈ Y , we add the following edges between vertices inB[x1] andB[x2],

{{〈x1, F 〉, 〈x2, G〉} : πyx1(F ) ∩ πyx2(G) = ∅} .

That is, there is nor1 ∈ F andr2 ∈ G such thatπyx1(r1) = πyx2(r2). The intuition behind the construction
of the edges comes from the completeness proof. Essentially, when the Label Cover instance is satisfiable,
we wantG to have a large independent set.

5.3 Completeness

AssumeL has an assignmentA that satisfies all the constraints. The following is an independent set inG:

IS = {〈x, F 〉 : x ∈ X, A(x) ∈ F} .

That is, the vertices ofG corresponding to the ‘1’ bits of the long codes of the labels assigned to the vertices
of X form an independent set. Consider an edgee = {〈x1, F 〉, 〈x2, G〉} and suppose both〈x1, F 〉 and
〈x2, G〉 are in IS. Then we know thatA(x1) ∈ F andA(x2) ∈ G. But since edges(y, x1) and(y, x2) for
somey ∈ Y in the label cover instance are satisfied, we haveπyx1(A(x1)) = A(y) andπyx2(A(x2)) =
A(y). Hence,A(y) ∈ πyx1(F ) ∩ πyx2(G) and we reach a contradiction by recalling the construction of the
edges. Now,

weight(IS) =
∑
x∈X

weight(IS∩B[x]) =
1
|X|

∑
x∈X

Pr
D∈µ

RX
p

[
D ∈ {F ∈ 2RX : A(x) ∈ F}

]
= p .

The desired completeness is achieved by settingp = 1
2 − ε whereε is arbitrarily small. Now if starting

from the Raz Verifier, we could show in the soundness case that no independent set inG has weightδ where
δ is arbitrarily small, then we would obtain the desired hardness result for vertex cover. This is because
we would have shown that we cannot differentiate between graphs whose minimum vertex cover has size
≤ 1

2 − ε and graphs whose minimum vertex cover has size≥ 1− δ.

5.4 Soundness

Assume that there is no assignment that satisfies even aγ fraction of the constraints of our Label Cover
instanceL. Following the usual paradigm, we will assume towards contradiction that the graphG contains
an independent set IS of sizeδ. We would like to show that in such a case, it is possible to “decode” the
long codes and define a labeling that satisfies aγ fraction of the constraints ofL. The proofs in [14] and
[34] employ results from extremal combinatorics and sensitivity analysis of Boolean functions to do the
decoding. We will investigate why the proofs fail to produce the desired2− ε hardness when the constraints
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are projections (i.e. when starting with the Raz Verifier as we did). We will then switch to the Unique Games
conjecture to show the desired result.

For everyx ∈ X let,
F [x] = {F : F ⊆ RX , 〈x, F 〉 ∈ IS} .

Let X∗ be the set of verticesx such thatµRX
p (F [x]) ≥ δ/2, i.e. weight(F [x]) ≥ δ

2weight(B[x]). Using
this, we have,

weight(IS) =
∑

x∈X∗

weight(F [x]) +
∑

x 6∈X∗

weight(F [x])

⇒ δ ≤ |X∗|
|X|

+
δ

2
|X| − |X∗|

|X|
⇒ |X∗| ≥ δ

2
|X|

The crux of the argument lies in being able to associate a small set of labelsL[x] ⊆ RX with every
x ∈ X∗, i.e. anyx such that the intersection of IS withB[x] is large. We will try to satisfy only those
constraints that are incident onX∗. This is aδ/2 fraction of all constraints since theX side of the underlying
bipartite constraint graph is regular and|X∗| ≥ δ

2 |X|. Let Y ∗ be the set of variables ofY that share a
constraint with some variable inX∗. In order to be able to satisfy the constraints incident onX∗, we would
like to have,

πyx(L[x]) ∩ L[y] 6= ∅ , (11)

for every constraintπyx with x ∈ X∗ andy ∈ Y ∗, whereL[y] is a small set of labels fory. We will depend
on the fact that the intersection of the IS withB[x] for x ∈ X∗ is large (µRX

p (F [x]) ≥ δ/2) to infer L[x].
We do not, however, have such a direct handle on the variablesy ∈ Y ∗. Notice though if we ensure that,

πyx1(L[x1]) ∩ πyx2(L[x2]) 6= ∅ , (12)

for every two constraintsπyx1 , πyx2 with x1, x2 ∈ X∗, y ∈ Y ∗, and if we let,

L[y]
def
= πyx(y)(L[x(y)]) ,

wherex(y) is somex ∈ X∗ with whichy has a constraint, then condition (11) will be satisfied. Here is how
we would use condition (11) to define a labeling. Suppose there is a constanth such that|L[x]| ≤ h for all
x ∈ X∗. The following probabilistic labeling completes the argument. Forx ∈ X∗ (resp.y ∈ Y ∗) let A(x)
(resp.A(y)) be a randomly chosen element ofL[x] (resp.L[y]). For each testπyx with x ∈ X∗, y ∈ Y ∗,
πyx(L[x]) andL[y] intersect and both have size at mosth. Hence, with probability at least1/h2 we have
that πyx(A(x)) = A(y), which implies that the expected fraction of satisfied constraints is at leastδ

2h2 .
Therefore, there exists an assignment that satisfies at least this many constraints and settingγ < δ

2h2 would
give the contradiction.

But we need to show (12) provided that the sizes of the label sets are upper bounded by a constant. As
in [14], let’s try to use the following lemma abouts-wiset-intersecting families.

Lemma 5.9. [14] For arbitrary ε, δ > 0 and integers ≥ 2 with p = 1 − 1
s − ε, there existst = t(ε, δ, s)

such that for anys-wise t-intersecting familyF ⊆ 2[n], µp(F) < δ. Moreover, it is enough to choose
t = Ω( 1

ε2
(log 1

δ + log(1 + 1
sε2

))).
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Consider anyx ∈ X∗. Sincep = 1
2 − ε andµRX

p (F [x]) ≥ δ/2, by the above lemma, there exists
t = t(ε, δ

2 , 2) and setsF x
1 , F x

2 ∈ F [x] such that|F x
1 ∩ F x

2 | < t, i.e. F [x] is not2-wise t-intersecting. Let
L[x] = F x

1 ∩ F x
2 .

Notice, however, we arenot guaranteed for allx1, x2 ∈ X∗ andy ∈ Y ∗ with constraintsπyx1 , πyx2

thatπyx1(L[x1]) ∩ πyx2(L[x2]) 6= ∅, even though〈x1, F
x1
1 〉, 〈x1, F

x1
2 〉, 〈x2, F

x2
1 〉, and〈x2, F

x2
2 〉 are in IS.3

Consider the following simple example,

P1 := πyx1(F
x1
1 ) = {1, 2, 3, 7, 8}

P2 := πyx1(F
x1
2 ) = {4, 5, 6, 7, 8}

Q1 := πyx2(F
x2
1 ) = {3, 6, 9, 10}

Q2 := πyx2(F
x2
2 ) = {1, 4, 9, 10}

Note that none ofPi ∩ Qj , i, j = 1, 2 is empty since otherwise we would have an edge in IS. Also,
πyx1(L[x1]) ⊆ P1∩P2 = {7, 8}, andπyx2(L[x2]) ⊆ Q1∩Q2 = {9, 10}, which implies thatπyx1(L[x1])∩
πyx2(L[x2]) = ∅.

This example shows a problem even if the constraints were bijections. Therefore, we need to explore
different avenues for constructing the small label sets and we turn to the techniques of [34].

We construct the labels in [34] partly from the next lemma. This lemma is obtained by combining the
fact that each familyF [x] is a monotone family with the Russo-Margulis identity [42, 38] and Friedgut’s
Theorem [22]. It is easy to see why eachF [x] is a monotone family. LetF ∈ F [x]. This means that
∀〈x′, G〉 ∈ IS, πyx(F ) ∩ πyx′(G) 6= ∅. But then, anyF ′ : F ′ ⊇ F must satisfy the same constraints.
Hence, there is no edge between〈x, F ′〉 and any other vertex in IS implying thatF ′ ∈ F [x]. Now, the
Russo-Margulis identity guarantees that a monotone family will have low average sensitivity, and Friedgut’s
Theorem says that a family with low average sensitivity can be well approximated by a core-family with a
“small” core. We will use these cores as part of our label sets. Letη > 0 be a sufficiently small “accuracy”
parameter:

Lemma 5.10. [34, Lemma 4.2] For every variablex ∈ X∗, there exists a real numberp[x] ∈ (1 − 1
2 −

ε, 1− 1
2 −

ε
2) and a core-familyF̂ [x] ⊆ 2RX with coreC[x] such that,

• The average sensitivity asRX

p[x](F [x]) ≤ 2
ε .

• The size ofC[x] is at mosth0, which is a constant depending only onε, δ, η.

• µRX

p[x](F [x] ∆ F̂ [x]) < η, and in particularµRX

p[x](F̂ [x]) ≥ δ/4 providedη < δ/4.

We fatten each coreC[x] with the following set to facilitate the analysis:

Infl[x] = {σ ∈ RX \ C[x] : InfluenceRX

p[x](F [x], σ) ≥ η′} ,

whereη′ > 0 is another accuracy parameter. Now,

η′|Infl[x]| ≤
∑

σ∈RX

InfluenceRX

p[x](F [x], σ) ≤ 2
ε

,

3In the construction of [14],k = 4 and{〈x1, F1〉, 〈x1, F2〉, 〈x2, G1〉, 〈x2, G2〉} is an edge ifπyx1(F1∩F2)∩πyx2(G1∩G2) =
∅. Hence, it must be the case thatπyx1(L[x1]) ∩ πyx2(L[x2]) 6= ∅ for otherwise{〈x1, F

x1
1 〉, 〈x1, F

x1
2 〉, 〈x2, F

x2
1 〉, 〈x2, F

x2
2 〉}

would be a hyperedge in IS.

26



by recalling the definition of the average sensitivity and using Lemma 5.10. We define the sets of labels of
eachx ∈ X∗ as

L[x]
def
= C[x] ∪ Infl[x] .

The size of eachL[x] is at mosth0 + 2
εη′

def
= h, which is a constant.

It remains to show condition (12) for everyπyx1 , πyx2 sharing the samey ∈ Y ∗. Can we assume as in
[34] thatπyx1(L[x1]) ∩ πyx2(L[x2]) = ∅ and hope to reach a contradiction? The difficulty, both for us and
for [34], is thatL[x1] andL[x2] are not necessarily inF [x1] andF [x2] respectively. If they were, we would
immediately reach a contradiction as we would have that the edge{〈x1, L[x1]〉, 〈x2, L[x2]〉} is contained
in IS. In [34], based on the definitions ofL[x1] andL[x2] and the assumption above, the existence of two
other setsF1 ∈ F [x1] andF2 ∈ F [x2] is exhibited such thatπyx1(F1) ∩ πyx2(F2) = ∅, which leads to
the desired contradiction. In our case, however, it is possible that the image of sayF [x1] has low weight in
the projected space, i.e.µRY

p ({πyx(F ) : F ∈ F [x1]}) < δ/2. Consider the following extreme example.
Suppose for simplicity|RX | = 23u. LetF [x1] be all non-empty subsets of the first23u − 2u + 2 elements
of RX . Supposeπyx1 maps those elements to two elements inRY and maps the2u − 2 remaining elements
of RX to distinct elements ofRY . Hence,µRX

p (F [x1]) > 3/22u
+ ε and the weight of the image ofF [x1]

underµRY
p is < 3/22u

+ ε. Note that these are all constants sinceu, the number of repetitions, is constant.
This is a problem since it causes the proof of the analogue of Lemma 5.13 in the projected space to break
down. Such a situation does not occur when the constraints are bijections.

We continue by assuming that the underlying constraint graph used in the construction is based on the
Unique Games conjecture. We start with two general lemmas needed for the proof.

Lemma 5.11. [34, Lemma 2.2] IfF ⊆ 2R is monotone andp ≥ q, thenµR
p (F) ≥ µR

q (F).

Lemma 5.12. [34, Lemma 2.5] Letε > 0 be an arbitrarily small constant and definep = 1 − 1
k − ε to be

the bias parameter. Then, for a sufficiently large universeR, the following holds. For anyF ⊆ 2R such that
µR

p (F) ≥ 1− 1
k there existk sets in the familyF whose intersection is empty.

The proof of the first lemma can be found in [16, Prop. 3.3] for example, and the proof of the second
can be found in [13, Lemma A.4].

The proof towards contradiction is continued in [34] assumingπyx1 and πyx2 are identities. This
is indeed without loss of generality, and we shortly elaborate on this. With identities, the assumption
πyx1(L[x1]) ∩ πyx2(L[x2]) = ∅ implies L[x1] ∩ L[x2] = ∅, which in turn implies the following: There
exists a subsetU0 ⊆ C[x1] with a large family of extensionsH that do not include elements from the
coresC[x1], C[x2] such thatH ∪ U0 ∈ F [x1]. This statement is formalized in Lemma 5.13 below. A
similar lemma shows the existence of a subsetV0 ⊆ C[x2] with a large family of extensionsH2 such that
H2∪V0 ∈ F [x2]. Since both families are “large”, Lemma 5.12 gives us two setsH1,H2 in their intersection
such thatH1 ∩H2 = ∅ allowing us to complete the proof.

We will use the core-families given by Lemma 5.10 with their core fattenings to prove Lemma 5.13.
Note that nowRX = RY = R.

Lemma 5.13. [34, Lemma 4.3] There existsU0 ⊆ C[x1] such that defining

R′ def
= R \ (C[x1] ∪ C[x2]); and,

H[x1]
def
= {H : H ∈ 2R′

,H ∪ U0 ∈ F [x1]} ,

we haveµR′

p[x1](H[x1]) ≥ 1− 8η/δ.
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Proof. The idea of the proof is the following. If we chooseU0 ⊆ C[x1] andU0 ∈ F̂ [x1], then roughly
speaking, for anyG ⊆ R \ C[x1] there is a good chance thatU0 ∪ G ∈ F [x1]. This will follow
from the fact thatF̂ [x1] is a core-family (hence,U0 ∪ G ∈ F̂ [x1]) that well-approximatesF [x1] (as
µR

p[x1](F [x1] ∆ F̂ [x1]) < η), and that has significant weight (asµR
p[x1](F̂ [x1]) ≥ δ/4).

Let us formalize this intuition. We are saying that ifG = {G ⊆ R \ C[x1] : G ∪ U0 ∈ F [x1]}, then

µ
R\C[x1]
p[x1] (G) is large. The setG looks very similar toH[x1] except that sets in the latter family do not include

any element fromC[x2]. Suppose we can ensure that

G ∈ G ⇐⇒ (G ∪ U0) \ C[x2] ∈ F [x1] , (13)

then we would have that

G ∈ G ⇐⇒ (G \ C[x2]) ∪ U0 ∈ F [x1] ⇐⇒ G \ C[x2] ∈ H[x1] , (14)

which follows sinceU0 ∩ C[x2] = ∅ by our assumption thatL[x1] ∩ L[x2] = ∅ and from the definition of
H[x1]. We can ensure (13) by slightly modifying the definition ofG. Let,

G = {G ⊆ R \ C[x1] : G ∪ U0 ∈ F ′[x1]}; where,

F ′[x1] = {F ∈ F [x1] : F \ C[x2] ∈ F [x1]} .

With this new definition ofG, (14) implies that,

µ
R\C[x1]
p[x1] (G) = µR′

p[x1](H[x1]) . (15)

However, we have a relationship between the core-familyF̂ [x1] andF [x1], whereas we now need a re-
lationship between̂F [x1] andF ′[x1]. This is where the set Infl[x1] comes in. Again, by the assumption
L[x1]∩L[x2] = ∅ we haveC[x2]∩ Infl[x1] = ∅, which implies that the elements inC[x2] have influence at
mostη′ onF [x1]. A technical lemma in [34, Lemma 2.4] gives

µR
p[x1](F [x1] ∆ F ′[x1]) ≤ η ,

by settingη′ to be a small enough constant. Hence,

µR
p[x1](F̂ [x1] ∆ F ′[x1]) ≤ µR

p[x1](F̂ [x1] ∆ F [x1]) + µR
p[x1](F [x1] ∆ F ′[x1]) < 2η .

It remains to show∃U0 ⊆ C[x1], U0 ∈ F̂ [x1] such thatµR\C[x1]
p[x1] (G) ≥ 1− 8η/δ, or equivalently,

Pr
G∈µ

R\C[x1]

p[x1]

[
G ∪ U0 6∈ F ′[x1]

]
≤ 8η/δ . (16)

Now,

2η > µR
p[x1](F̂ [x1] ∆ F ′[x1]) ≥ Pr

G∈µR
p[x1]

[
G ∈ F̂ [x1] andG 6∈ F ′[x1]

]
(17a)

≥ Pr
G∈µR

p[x1]

[
G 6∈ F ′[x1] | G ∈ F̂ [x1]

]
· δ

4
(17b)

=
δ

4

∑
U⊆C[x1]

Pr
G∈µ

R\C[x1]

p[x1]

[
G ∪ U 6∈ F ′[x1] | G ∪ U ∈ F̂ [x1]

]
(17c)
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where (17b) follows from the fact thatµR
p[x1](F̂ [x1]) ≥ δ/4 in Lemma 5.10. Settingη < δ/4, the fact

thatµR
p[x1](F [x1]) ≥ µR

p (F [x1]) ≥ δ/2 (by Lemma 5.11 and the monotonicity ofF [x1]), combined with

Freidgut’s Theorem, which saysµR
p[x1](F [x1] ∆ F̂ [x1]) < η, guarantee this lower bound on the weight of

F̂ [x1]. Now, for our choices ofG andU in (17c),

G ∪ U ∈ F̂ [x1] ⇐⇒ (G ∪ U) ∩ C[x1] ∈ F̂C [x1] ⇐⇒ U ∈ F̂C [x1] ⇐⇒ U ∈ F̂ [x1] .

Therefore,
8η

δ
>

∑
U⊆C[x1],U∈ bF [x1]

Pr
G∈µ

R\C[x1]

p[x1]

[
G ∪ U 6∈ F ′[x1]

]
,

implying that∃U0 ⊆ C[x1], U0 ∈ F̂ [x1] satisfying (16) and completing the proof.

The bijections simply rename the spaceR, and with bijections (as opposed to identities) the lemma
would be stated as: (For ease of notation, we writeπyxj (S) := πjS)

Lemma 5.14. There existsπ1U0 ⊆ π1C[x1] such that defining

R′ def
= R \ (π1C[x1] ∪ π2C[x2]); and,

H[x1]
def
= {H : H ∈ 2R′

,H ∪ π1U0 ∈ π1F [x1]} ,

we haveµR′

p[x1](H[x1]) ≥ 1− 8η/δ, whereπ1F [x1] = {π1F : F ∈ F [x1]}.

Analogously, we have a lemma stating the existence ofπ2V0 ⊆ π2C[x2] with the familyH[x2] of
extensions such thatµR′

p[x2](H[x2]) ≥ 1 − 8η/δ. The proofs of the two lemmas are similar to the proof
of Lemma 5.13 modulo the renaming of variables. Armed with these two lemmas, we can complete the
proof. Letp∗ = 1

2 −
ε
2 . Note thatH[x1] andH[x2] are both monotone subfamilies of2R′

. Therefore by
Lemma 5.11,µR′

p∗ (H[x1]) ≥ µR′

p[x1](H[x1]) ≥ 1 − 8η/δ and similarly forH[x2]. Hence, the intersection of
the two families satisfies,

µR′
p∗ (H[x1] ∩H[x2]) ≥ 1− 16η

δ
>

1
2

,

by choosingη < δ/32. Therefore, settingk = 2 in Lemma 5.12 implies that there exist setsH1,H2 ∈
H[x1] ∩ H[x2] such thatH1 ∩ H2 = ∅. Now defineG1 = π1U0 ∪ H1 andG2 = π2V0 ∪ H2. By the
definition ofH[x1] andH[x2], we haveG1 ∈ π1F [x1] andG2 ∈ π2F [x2]. Furthermore,

F1 = (πyx1)
−1(G1) ∈ F [x1]; and,

F2 = (πyx2)
−1(G2) ∈ F [x2],

by the definition ofπ1F [x1] andπ2F [x2]. Thus,〈x1, F1〉 and〈x2, F2〉 are vertices in the supposed IS and
they form an edge since,

π1F1 ∩ π2F2 = G1 ∩G2

= (π1U0 ∩ π2V0) ∪ (π1U0 ∩H2) ∪ (π2V0 ∩H1) ∪ (H1 ∩H2)
= ∅ .

The last line follows since
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• (π1U0 ∩ π2V0) = ∅ by the assumption thatπ1L[x1] ∩ π2L[x2] = ∅,

• (π1U0 ∩H2) = (π2V0 ∩H1) = ∅ by recalling thatH1,H2 ⊆ R′ = R \ (π1C[x1] ∪ π2C[x2]); and,

• H1 ∩H2 = ∅ by Lemma 5.12.

This completes our investigation.

In summary, assuming the Unique Games conjecture, we obtain the tightest possible hardness of ap-
proximation result for vertex cover. On the other hand, the best known inapproximation result for vertex
cover starting with the Raz Verifier and utilizing similar tools (including biased long codes, Friedgut’s The-
orem, and theorems from extremal combinatorics) is by Dinur and Safra [16] who were able to show a1.36
hardness factor. Their result comes about five years after Håstad’s7

6 hardness result [44].

6 The Plausibility of the Unique Games Conjecture

In light of its consequences, it is important to investigate the plausibility of the Unique Games conjecture.
One important aspect of the conjecture is the domain sizek = k(ζ, δ) of the provers’ answers. For example,
it is easy to see thatk must be at least1/δ. By choosing their answers uniformly at random from the domain
of possible answers, the provers can make the verifier always accept with probability1/k. Hence,1/k ≤ δ.
Khot [32] also relates the domain size toζ through the following theorem,

Theorem 6.1. [32, Thm. 1] There exists a polynomial time algorithm such that given a unique 2-prover
game with value1− ε and answers from a domain of sizek, it finds prover strategies that make the verifier

accept with probability1−O(k2ε1/5
√

log
(

1
ε

)
).

We present the algorithm of Khot that gives this theorem below. The theorem implies that for the Unique
Games conjecture to hold, it must be the case that,

1− ck2ζ1/5

√
log

(
1
ζ

)
≤ δ , (18)

wherec is some constant; for otherwise, we would be able to distinguish between instances of unique
games whose value is at least1 − ζ and instances whose value is at mostδ. Expression (18) implies that
k ≥ 1/

(
ζ1/10√c(log(1/ζ))1/4

)
. 4 Khot notes that disproving the conjecture may require an algorithm that

gives a theorem similar to Thm. 6.1, but whose performance is independent ofk. Indeed, Trevisan [46]
provides such an algorithm that disproves a stronger version of the conjecture. Namely, for a constantc and
for everyε > 0, the Unique Games conjecture with completeness1− c(ε3/(log |Π|)3) and soundness1− ε
is false. Here,Π is the set of constraints in the game, i.e. the completeness parameterζ is not a constant, but
is dependent on the input.

Nonetheless, a weaker version of the conjecture was recently confirmed by Feige and Reichman [20].
In [32], Khot raised the question of whether the value of a unique 2P1R game with domain sizek is hard
to approximate within factorf(k) wheref(k) →∞ ask →∞. Feige and Reichman answer this question
positively:

Theorem 6.2. [41, 20] There is someγ > 0 such that for every primep it is NP-hard to approximate the
value of a unique 2P1R game with answers from a domain of sizep to within a factor smaller thanpγ .

4In [32], it is stated thatk must be at least1/ζ1/10. It seems though thatk need only be greater than the expression here.
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For arbitrarily smallδ > 0, we can choosep large enough so thatpγ ≥ 1/δ. Hence, Thm. 6.2 can be
restated as follows,

Corollary 6.3. [20, Cor. 2] For any arbitrarily small constantδ > 0, there exists a constant0 < ζ < 1 and
a primep such that it is NP-hard to determine whether a unique 2P1R game with answers from a domain of
sizep has value at least1− ζ or at mostδ(1− ζ).

Technically, this result is weaker than the Unique Games conjecture since in the latter, both constants
δ andζ are arbitrary. Furthermore, the result does not provide the desired gap provided by the UGC since,
as noted in [46, 12], the value of the instances produced by the proof is very small. Prior to this result,
it was only known that approximating the value of unique games withinsomeconstant factor is NP-hard.
This comes from the fact that Max-2Lin-2 is NP-hard to approximate within a factor12

11 − ε [44], and via a
reduction that shows given an instance of Max-2Lin-2 that isµ-satisfiable, we can transform it to a unique
game whose value is1+µ

2 (see, e.g., [41]).

Tackling Max-2Lin-p seems to be a fruitful approach for proving the Unique Games conjecture. Feige
and Reichman state Thm. 6.2 [20, Thm. 4] for a variant of Max-2Lin-p, they callproper Max-2Lin-p, which
they show is equivalent to a unique game. Also, as stated in Sec. 4.4, [39] show that if for allε > 0 there is
ap = p(ε) such that Max-2Lin-p has(1− ε, ε)-hardness, then the Unique Games conjecture is true.

On the other hand, Khotet al. [30] show that the Unique Games problem is formally easier than im-
proving the approximation guarantee for Max-Cut, which may provide encouragement for attacking unique
games algorithmically. The SDP of Khot, and Trevisan’s algorithms are steps in this direction.

Instead of attacking the Unique Games conjecture, another interesting avenue of exploration would be
to prove at least some of the results it implies using Khot’s [31] Smooth Label Cover or the multi-latyered
version of it. The maps in a Smooth Label Cover have the smoothness property (see Sec. 4.3, Eq. (10)),
which is a weaker analogue of the bijection property of the maps in a Unique Label Cover. Khot used the
multi-layered version of smooth label cover to confirm Conjecture 4.7 about the hardness of approximating
NAE3,3, which is based on Unique Label Cover. Most interesting would be to achieve a hardness factor
better than1.36 for Vertex Cover.

Proof of Theorem 6.1. We now present the semidefinite programming based algorithm of [32] that gives
Thm. 6.1 and we provide a sketch of its proof. The full details can be found in [32].

Assume we are given a weighted unique Label Cover instanceL(X, [k], {πuv}, {wuv}) where the con-
straint graph need not be bipartite. Namely,X is a set ofn variables which take values from the domain
[k]. For every pair(u, v), there is a constraint which is a bijectionπuv : [k] → [k] with weightwuv where∑

u,v wuv = 1. A constraintπuv is said to be satisfied by an assignmentA : X → [k] if πuv(A(u)) = A(v).
The goal is to find an assignment that maximizes the weight of satisfied constraints.

We first formulate this problem as a strict quadratic program (where each monomial in the objective
function and the constraints have degree2 or 0), and then relax the program to a vector program. For each
u ∈ X we createk new variablesu1, . . . , uk whereui indicates if variableu is assigned the valuei ∈ [k].
Clearly, if u is assignedi0 ∈ [k] we wish to haveui0 = 1 andui = 0 for all i 6= i0. This is achieved by the
following constraints:

u2
1 + u2

2 + · · ·+ u2
k = 1 ∀u ∈ X (19a)

uiuj = 0 ∀u ∈ X and∀i 6= j (19b)
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We wish to maximize the following objective function∑
u,v

wuv

(
u1vπuv(1) + u2vπuv(2) + · · ·+ ukvπuv(k)

)
. (20)

Before relaxing the program, we need to make sure that the solution to the vector program has the same type
of symmetries as the solution to the quadratic program. Therefore, we add the next two constraints which
are implied by constraints (19)

uivj ≥ 0 ∀u, v ∈ X and∀i, j (21a)∑
1≤i,j≤k

uivj = 1 (21b)

The relaxation is standard. Each auxiliary variableui will be replaced with a vector~ui in <kn, and each
degree2 term in the objective function and the constraints will be replaced by the corresponding inner
product. The complete program is,

maximize
∑
u,v

wuv

(
~u1 · ~vπuv(1) + · · ·+ ~uk · ~vπuv(k)

)
(22a)

subject to ~u1 · ~u1 + ~u2 · ~u2 + · · ·+ ~uk · ~uk = 1 ∀u ∈ X (22b)

~ui · ~uj = 0 ∀u ∈ X ∀i 6= j (22c)

~ui · ~vj ≥ 0 ∀u, v ∈ X ∀i, j (22d)∑
1≤i,j≤k

~ui · ~vj = 1 (22e)

Clearly, any feasible solution to the quadratic program yields a solution to the vector program having the
same objective function value by setting~ui = (ui, 0, . . . , 0).

For all u ∈ X, let ~u =
∑k

i=1 ~ui. In any feasible solution of the SDP and for any two variablesu, v,
constraint (22e) implies that~u · ~v = 1, and constraints (22b) and (22c) imply that‖~u‖ = ‖~v‖. Hence for all
u, v ∈ X, ~u = ~v. Denote~s = ~u which is the same for all variablesu.

The following algorithm produces an assignment whose expected weight is1 − O(k2ε1/5
√

log
(

1
ε

)
),

which is sufficient to prove Thm. 6.1 as it shows that there exists an assignment with this weight. Recall
that the weight of an assignment is the total weight of edges it satisfies. In a 2-prover game an assignment
corresponds to a strategy of the provers and its weight is equal to the probability of acceptance of the verifier
given this strategy.

Algorithm 1:

1. Solve vector program (22a)

2. Pick~r to be a uniformly distributed vector on thenk-dimensional unit sphere.
Assume~r · ~s ≥ 0 by replacing~r with −~r if needed.

3. Construct the following assignmentA. For everyu ∈ X, let

A(u) = i0 where i0 = arg max
1≤i≤k

(~r · ~ui) .
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Let αuv =
∑

i ~ui · ~vπuv(i), i.e. αuv is the part if the SDP objective function corresponding to the
constraint(u, v). We are given that

∑
u,v wuvαuv ≥ 1− ε. A simple calculation shows∑
αuv≥1− 1

2
ε4/5

wuv ≥ 1− 2ε1/5 . (23)

Hence, if with probabilityp we can satisfy the pairs(u, v) for which αuv is close to1, then the expected
weight of the assignment produced will be at leastp(1 − 2ε1/5). Specifically, the proof shows that for any

αuv ≥ 1 − 1
2ε4/5, Pr[πuv(A(u)) = A(v)] = 1 − O(k2ε1/5

√
log

(
1
ε

)
); therefore, the expected weight of

the assignment produced is1 − O(k2ε1/5
√

log
(

1
ε

)
) as desired. In the remaining part of the argument, let

π := πuv.
The case whenαuv = 1 provides some intuition behind the proof. Whenαuv = 1, we have,

2αuv = 2
∑

i

~ui · ~vπ(i) =
∑

i

~ui · ~ui +
∑

i

~vπ(i) · ~vπ(i) , (24)

since constraint (22b) ensures each sum on the r.h.s. is1. Expression (24) can be rewritten as,∑
i
‖~ui‖2 + ‖~vπ(i)‖2 − 2~ui · ~vπ(i) = 0

⇒∀i ‖~ui‖2 + ‖~vπ(i)‖2 − 2~ui · ~vπ(i) = 0

⇒∀i ‖~ui‖2 + ‖~vπ(i)‖2 − 2‖~ui‖‖~vπ(i)‖ = 0

⇒∀i ‖~ui − ~vπ(i)‖ = 0

The second and third lines follow from the fact that for alli, ‖~ui‖2 + ‖~vπ(i)‖2 ≥ 2‖~ui‖‖~vπ(i)‖ ≥ 2~ui ·~vπ(i).
Hence, for alli, ~ui = ~vπ(i) and for any vector~r, if i0 is the index that maximizes~r · ~ui, then~r · ~vπ(j)

is maximized at indexπ(i0). The algorithm thus assignsA(u) = i0 andA(v) = π(i0) satisfying the
constraint. Whenαuv is close to1, however, a similar calculation to the one above only guarantees that for
all i, ‖~ui − ~vπ(i)‖ ≤ ε2/5.

Again, let i0 ∈ [k] be the index that maximizes~r · ~ui. The proof shows that with probability1 −
O(k2ε1/5

√
log

(
1
ε

)
) we have,

∀i 6= i0, |~r · (~ui0 − ~ui)| ≥ 5ε2/5

√
log

(
1
ε

)
, (25)

and, using the fact that‖~ui − ~vπ(i)‖ ≤ ε2/5, we have,

∀i, |~r · (~ui − ~vπ(i))| ≤ ε2/5

√
log

(
1
ε

)
. (26)

Expressions (25) and (26) imply that ifi 6= i0,

~r · ~ui0 − ~r · ~vπ(i) ≥ 4ε2/5

√
log

(
1
ε

)
.

But expression (26) says~r · ~ui0 − ~r · ~vπ(i0) ≤ ε2/5
√

log
(

1
ε

)
. Therefore,π(i0) is the index that maximizes

~r · ~vi, and the algorithm setsA(v) = π(i0) = π(A(u)).
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[10] Avrim Blum and David Karger. AñO(n3/14)-coloring algorithm for 3-colorable graphs.Inf. Process.
Lett., 61(1):49–53, 1997.

[11] J. Bourgain. On the distribution of the fourier spectrum of boolean functions. InIsrael Journal of
Mathematics, volume 131, pages 269–276, 2002.

[12] Shuchi Chawla, Robert Krauthgamer, Ravi Kumar, Yuval Rabani, and D. Sivakumar. On the hardness
of approximating multicut and sparsest-cut. InIEEE Conference on Computational Complexity, June
2005. To appear.

[13] Irit Dinur, Venkatesan Guruswami, and Subhash Khot. Vertex cover on k-uniform hypergraphs is hard
to approximate within factor(k− 3− epsilon). Electronic Colloquium on Computational Complexity
(ECCC), (027), 2002.

[14] Irit Dinur, Venkatesan Guruswami, Subhash Khot, and Oded Regev. A new multilayered pcp and
the hardness of hypergraph vertex cover. InSTOC ’03: Proceedings of the thirty-fifth annual ACM
symposium on Theory of computing, pages 595–601, New York, NY, USA, 2003. ACM Press.

34



[15] Irit Dinur, Elchanan Mossel, and Oded Regev. Conditional hardness for approximate coloring, April 13
2005.

[16] Irit Dinur and Samuel Safra. On the hardness of approximating minimum vertex cover, 2004.

[17] Uriel Feige. Error reduction - the state of the art. Technical report, Weizmann Institute of Technology,
1995.

[18] Uriel Feige. Lecture notes for a course on probabilistically checkable proofs and hardness of approxi-
mation. http://www.wisdom.weizmann.ac.il/ feige/pcp.html, 2003.

[19] Uriel Feige, Shafi Goldwasser, Laszlo Lov&#225;sz, Shmuel Safra, and Mario Szegedy. Interactive
proofs and the hardness of approximating cliques.J. ACM, 43(2):268–292, 1996.

[20] Uriel Feige and Daniel Reichman. On systems of linear equations with two variables per equation. In
APPROX-RANDOM ’04, pages 117–127, 2004.

[21] Lance Fortnow, John Rompel, and Michael Sipser. On the power of multi-prover interactive protocols.
Theor. Comput. Sci., 134(2):545–557, 1994.

[22] E. Friedgut. Boolean functions with low average sensitivity depend on few coordinates.Combinator-
ica, 18(1):27–35, 1998.

[23] Michael Garey and David Johnson.Computers and Intractability: A Guide to the Theory of NP-
completeness. W. H. Freeman and Company, 1979.

[24] Naveen Garg, Vijay V. Vazirani, and Mihalis Yannakakis. Approximate max-flow min-(multi)cut the-
orems and their applications.SIAM J. Comput., 25(2):235–251, 1996.

[25] Michel X. Goemans and David P. Williamson. Improved Approximation Algorithms for Maximum Cut
and Satisfiability Problems Using Semidefinite Programming.Journal of the ACM, 42(6):1115–1145,
1995.

[26] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proof systems.
SIAM J. Comput., 18(1):186–208, 1989.

[27] Hastad. Clique is hard to approximate withinn1−ε. In ECCCTR: Electronic Colloquium on Computa-
tional Complexity, technical reports, 1997.

[28] Jonas Holmerin.On Probabilistic Proof Systems and Hardness of Approximation. PhD thesis, Stock-
holm University, Stockholm, Sweden, 2002.

[29] Sanjeev Khanna, Nathan Linial, and Shmuel Safra. On the hardness of approximating the chromatic
number.Combinatorica, 20(3):393–415, 2000.

[30] Khot, Kindler, Mossel, and O’Donnell. Optimal inapproximability results for max-cut and other 2-
variable CSPs? InFOCS: IEEE Symposium on Foundations of Computer Science (FOCS), 2004.

[31] Subhash Khot. Hardness results for coloring 3 -colorable 3 -uniform hypergraphs. InFOCS ’02:
Proceedings of the 43rd Symposium on Foundations of Computer Science, pages 23–32, Washington,
DC, USA, 2002. IEEE Computer Society.

35



[32] Subhash Khot. On the power of unique 2-prover 1-round games. InIEEE Conference on Computa-
tional Complexity, page 25, 2002.

[33] Subhash Khot.New Techniques for Probabilistically Checkable Proofs and Inapproximability Results.
PhD thesis, Princeton University, Princeton, New Jersey, 2003.

[34] Subhash Khot and Oded Regev. Vertex cover might be hard to approximate to within2 − ε. In IEEE
Conference on Computational Complexity, pages 379–, 2003.

[35] P. Klein, A. Agrawal, R. Ravi, and S. Rao. Approximation through multicommodity flow. InProceed-
ings: 31st Annual Symposium on Foundations of Computer Science, volume 2, pages 726–737. IEEE
Computer Society Press, October 1990.

[36] Lszl Lovsz and Uriel Feige. Two-prover one-round proof systems: Their power and their problems
(extended abstract). InSTOC, pages 733–744, 1992.

[37] Carsten Lund, Lance Fortnow, Howard Karloff, and Naom Nissan. Algebraic methods for interactive
proof systems.J. ACM, 39(4):859–868, 1992.

[38] G. Margulis. Probabilistic characteristics of graphs with large connectivity (in russian).Probl. Pered.
Inform., 10(2):101–108, 1974.

[39] Elchanan Mossel, RyanODonnell, and Krzysztof Oleszkiewicz. Noise stability of functions with low
influences: invariance and optimality, March 13 2005.

[40] Ran Raz. A parallel repetition theorem.SIAM J. Comput., 27(3):763–803, 1998.

[41] Daniel Reichman. Master’s thesis, The Weizmann Institute, 2004.

[42] L. Russo. An approximate zero-one law.Z. Wahrsch. Verw. Gebiete, 61(1):129–139, 1982.

[43] Adi Shamir. Ip = pspace.J. ACM, 39(4):869–877, 1992.

[44] Johan H̊astad. Some optimal inapproximability results.J. ACM, 48(4):798–859, 2001.

[45] Jacques Stern, Lszl Babai, Sanjeev Arora, and Z. Sweedyk. The hardness of approximate optima in
lattices, codes, and systems of linear equations.J. Comput. Syst. Sci., 54:317–331, 1997.

[46] Luca Trevisan. Approximation algorithms for unique games.Electronic Colloquium on Computational
Complexity (ECCC), 2004.

[47] Uri Zwick. Approximation algorithms for constraint satisfaction problems involving at most three
variables per constraint. InSODA ’98: Proceedings of the ninth annual ACM-SIAM symposium on
Discrete algorithms, pages 201–210, Philadelphia, PA, USA, 1998. Society for Industrial and Applied
Mathematics.

[48] Uri Zwick. Finding almost-satisfying assignments. InSTOC ’98: Proceedings of the thirtieth annual
ACM symposium on Theory of computing, pages 551–560, New York, NY, USA, 1998. ACM Press.

36


	The Unique Games Conjecture and Some of Its Implications on Inapproximability
	Recommended Citation

	The Unique Games Conjecture and Some of Its Implications on Inapproximability
	Abstract
	Comments

	tmp.1163794065.pdf.Az9c8

