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The Unique Games Conjecture and Some of Its Implications on Inapproximability

Abstract

In this report, we study the Unique Games conjecture of Khot [32] and its implications on the hardness of
approximating some important optimization problems. The conjecture states that it is NP-hard to
determine whether the value of a unique 1-round game between two provers and a verifier is close to 1 or
negligible. It gives rise to PCP systems where the verifier needs to query only 2 bits from the provers (in
contrast, Hastad's verifier queries 3 bits [44]). We start by investigating the conjecture through the lens of
Hastad's 3-bit PCP. We then discuss in detail two results that are consequences of the conjecture. The
first states that Min-2SAT-Deletion is NP-hard to approximate within any constant factor [32]. The second
result shows that minimum vertex cover is NP-hard to approximate within a factor of 2 - € for every € > 0
[34]. We display the use of Fourier techniques for analyzing the soundness of the PCP used to prove the
first result, and we display the use of techniques from extremal combinatorics for analyzing the
soundness of the PCP used to prove the second result. Finally, we present Khot's algorithm which shows
that for the conjecture to be true, the domain of answers of the two provers must be large, and we survey
some recent results examining the plausibility of the conjecture.
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Abstract

In this report, we study the Unique Games conjecture of Khot [32] and its implications on the hardness of
approximating some important optimization problems. The conjecture states that it is NP-hard to determine
whether the value of aniquel-round game between two provers and a verifier is closedonegligible.

It gives rise to PCP systems where the verifier needs to query2hlits from the provers (in contrast,
Hastad's verifier querie3 bits [44]). We start by investigating the conjecture through the lensastatl’'s

3-bit PCP. We then discuss in detail two results that are consequences of the conjecture. The first states that
Min-2SAT-Deletion is NP-hard to approximate within any constant factor [32]. The second result shows that
minimum vertex cover is NP-hard to approximate within a facta ef e for everye > 0 [34]. We display

the use of Fourier techniques for analyzing the soundness of the PCP used to prove the first result, and we
display the use of techniques from extremal combinatorics for analyzing the soundness of the PCP used to
prove the second result. Finally, we present Khot’s algorithm which shows that for the conjecture to be true,
the domain of answers of the two provers must be large, and we survey some recent results examining the
plausibility of the conjecture.
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1 Introduction

Many important optimization problems are NP-hard to solve exactly in the worst case. When faced with
such a problem, we have to settle for an approximate solution. An approximation algorithm for an NP-
hard problem is a Turing Machine that produces a feasible solution to the given problem that is within
a guaranteed factor of the optimum solution. Usually, this factor is taken to be greatel, tharfor a
maximization problem, an approximation algorithm that achieves a fd¢tproduces a solution whose
value is at least OP/IC, where OPT refers to the problem’s global optimum solution. For a minimization
problem, a facto€” approximation algorithm produces a solution whose value is at ®O&T. Finding an
approximation algorithm is one aspect of studying the approximability of an NP-hard problem. The other
aspect is proving, under certain assumptions, that the problem cannot be approximated within a certain
factor. Such results that rule out the possibility of an approximation algorithm are referrethaodagss
results orinapproximabilityresults. Usually, they are based on the assumption tgatH? thus ruling out

the possibility of a polynomial time approximation algorithm.

Early inapproximability results are due to Garey and Johnson [23]. However, strong inapproximability
results for many problems were not obtained until the connection between approximation hardness and
multiprover interactive proofs was discovered by Feggal. [19]. An interactive proof can be viewed as
a game between a computationally unbounded prover, and a polynomial time algorithm called the verifier
with access to random bits. The prover wants to convince the verifier of some fact, e.g. that a given string
is in a language, and the verifier (probabilistically) decides whether to accept the fact or not by querying
the prover. The Uniqgue Games conjecture [32] is about a certain type of interactive proa@fpwithers. It
implies strong inapproximability results showing for example that unles$\iP, Min-2SAT-deletion cannot
be approximated within any constant factor, and that under the same assumption vertex kaveiféonm
hypergraphs cannot be approximated within a factok ef € for everyk > 2 ande > 0. In particular,
this means that the conjecture would settle the vertex cover problem on graphs since there exists a factor
2 approximation algorithm for this problem. The conjecture would also settle the Max-Cut problem as it
would imply that the approximation factor achieved by the algorithm of Goemans and Williamson [25] is
the best possible [30, 39].

1.1 Brief History

Interactive proofs were introduced by Goldwasser, Micali and Rackof [26], and Babai [6]. BenaDf9]

defined the notion of multiprover interactive proofs where the verifier interacts with provers who cannot
communicate with each other. Fortnow, Rompel and Sipser [21] showed that the class of languages that have
multiprover interactive proofs equals the class of languages that have (in today’s terms) probabilistically
checkable proofs (PCP) with polynomial randomness and query complexity (the number of bits examined
by verifier), i.e. MIP= PCRpoly, poly). In a PCP, instead of interacting with the verifier, the provers write
down the entire proof. The verifier decides whether to accept or reject the proof by checking a few randomly
selected positions of the proof.

A breakthrough result of Lundt al.[37] demonstrated the power of interactive proof systems by using
algebraic techniques to show that all co-NP statements have interactive proofs. Using these techniques,
Shamir [43] showed that all decision problems which may be solved using a polynomial amount of mem-
ory have interactive proofs and vice versa, i.e. #FPSPACE. The result of Babai, Fortnow and Lund
[7] showing that MIP= NEXP further established the power of interactive proofs and enabled the con-
nection with hardness of approximation. Femgeal. [19] made the connection by showing that NEXP
C PCRpoly, poly) implies that Max-Clique is hard to approximate unless EXPTIMBENEXP. They



achieved a hardness of approximation result under an assumption closef téFPby showing that NP
C PCRlognloglogn,lognloglogn). This established that Max-Clique is hard to approximate within any
constant factor unless problems in NP can be solved’iffs°¢™) time.

Following the result of Feiget al. improved characterizations of NP were sought. Arora and Safra
[5] formalized and named the class PCP. They introduced the idea of proof composition, which turned out
to be fundamental in all subsequent developments, and showed that languages in NP have PCP verifiers
that use logarithmic randomness and sub-logarithmic query complexity. At@la[3] reduced the query
complexity to constant, thus proving the celebrated PCP Theorem (Thm. 2.8). They also showed that Max-
3SAT cannot be approximated within some constant factor. Bellare, Goldreich and Sudan [8] showed that
this constant i®7/26. Their result showed that in order to get strong hardness results, one needs to design
PCP’s with the specific application in mind.

Max-3SAT is a constraint satisfaction problem with three variables per constraint. Following the phi-
losophy of [8], Hastad [44] proved that unless=PNP, Max-3SAT cannot be approximated within a factor
of 8/7, which is a tight result, by constructing a PCP whose query complexilyiig. the verifier only
needs to read bits of the proof. The approach used to prove this result is similar to that of [8]. The starting
point is a multiprover protocol, which comes from a combination of the PCP Theorem and Raz'’s parallel
repetition theorem [40]. The protocol is transformed into a PCP by writing down the prover’'s answers in
coded form. Histad showed that the encoding introduced by [8] enables the verifier to check the proof by
reading only3 bits. The verifier in the multiprover system is known as the Raz Verifier, and the verifier that
reads the encoded proof is called the inner verifiéstad’s result also implies that Max-2SAT is NP-hard to
approximate within any factor less thap/21. This factor is, however, not tight. Max-2SAT is a constraint
satisfaction problem with two variables per constraint and we seem to have no techniques for constructing
PCP’s where the verifier can read odlpits. Khot [32] suggested the Unique Games conjecture as a possi-
ble direction for designing such PCP’s. The Unique Games conjecture stipulates the existence of a verifier
with stronger properties than the Raz Verifier. Having this powestuer verifier enables the design of
inner verifiers to prove strong inapproximability results for such problems as Max-2SAT and vertex cover.
Nonetheless, even with such a powerful outer verifier, the inner verifiers are typically non-trivial relying on
deep theorems in Fourier analysis.

1.2 Organization of the Report

The main focus of this report is understanding the Unique Games conjecture and presenting the results of
[32, 34] based on it.

Section 2 defines some of the problems we consider and provides some necessary background. It ends
with a description o2-proverl-round games and the Raz Verifier, thus setting up the stage for the discussion
that follows.

We investigate the Unique Games conjecture by studyiasgtati’s3-bit test. The Uniqgue Games con-
jecture enables the design of a similar test that quérlgts of the witness proof. We will provide intuition
behind the need for the third bit in&dtad’s verifier and how the conjecture alleviates this need. This is
done in Section 3. In Sec. 4 we show how thbit test allows us to prove that it is NP-hard to distinguish
between instances of Max-2SAT that dte— ¢)-satisfiable and instances that gte— e%“(l))-satisfiable
for all sufficiently smalle > 0. We also briefly present a verifier based on the Unique Games conjecture that
shows a tight hardness result for coloring-aniform hypergraph witt8 colors, and we state some recent
results based on the conjecture.

Section 5 presents the result of Khot and Regev [34] which shows that vertex cover is hard to approx-
imate within2 — € for anye > 0 assuming the Unique Games conjecture. The construction of the hard
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instance of vertex cover is very similar to that of [14] which shows that vertex covewumform hyper-
graphs is NP-hard to approximate within any constant factor smaller|théj, £ > 4. In fact, the two
constructions coincide wheln = 2. Given this graph construction, we show how the proof of the latter
result cannot be used to profe- ¢ hardness for vertex cover on graphs. We also discuss why the proof
of [34] fails to give the desired result if the graph construction is based on the Raz Verfier. Assuming the
construction is based on the Unique Games conjecture, we present the proof of [34].

Finally, the plausibility of the conjecture is discussed in Sec. 6. We end with a presentation of Khot's
SDP based algorithm [32], which shows that for the conjecture to be true, the domain of answers of the
provers must be large.

2 Background

2.1 Problems Considered

In this section, we define some of the problems we will be considering.

Definition 2.1 (Max-kLin-p). Let p be a prime. MaxtLin-p is the problem of given a system of linear
equations over the field, with exactlyk variables in each equation, find the maximum number of equations
that can be satisfied by any assignment.

We will specifically be interested in the problems Max-3Lin-2 and Max-2Lin-2.

Definition 2.2 (Max-kSAT). Max-kSAT is the problem of givenklaCNF formula (i.e. each clause contains
exactlyk variables), find the maximum number of clauses that can be satisfied by any assignment.

We will specifically be interested in Max-3SAT and Max-2SAT. The minimization version of Max-2SAT,
where the objective is to find the minimum number of constraints that cannot be satisfied by any assignment,
is called Min-2SAT-Deletion (or Min-2CNF-Deletion).

A g-uniform hypergraphd = (V, E) consists of a set of verticds and a set of hyperedgds where
every hyperedge is a subset of vertices of giz& hypergraph is said to be-colorable if each of its vertices
can be assigned a color from a setko€olors such that no hyperedge is monochromatic, i.e. not all its
vertices have the same color. A non-monochromatic hyperedge is saidctarreetly colored We will
mostly be interested in the maximization version of hypergraph coloring defined below.

Definition 2.3 (Hypergraph k-Coloring). Hypergraphk-Coloring is the problem of given a-uniform
hypergraph and: different colors, find an assignment of colors to the vertices so as to maximize the number
of correctly colored hyperedges.

The minimization version is called Approximate Coloring, and it is the problem of givesaorable
hypergraph, color it with as few colors as possible.

A vertex covenof a hypergrapltH is a subset of verticeB’ C V that contains at least one end point of
each hyperedge € F, i.e.e NV’ # (). The complement of a vertex cover is callediatiependent set.e.
it is a subset of vertices that does not contain any hyperedge entirely within it.

Definition 2.4 (Ek-Vertex-Cover). Ek-Vertex-Cover is the problem of given a hypergragh= (V, E),
find a minimum size vertex cover ih.

The problem B-Vertex-Cover is simply the minimum vertex cover problem on graphs.



2.2 The Classes NP and PCP

Before defining the class of languages that have Probabilistically Checkable Proofs (PCP’s) we recall the
definition of the class NP in terms of the existence of a deterministic polynomial time verifier that can check
language membership proofs.

Definition 2.5 (NP). A languageL is in NP if and only if there exists a deterministic polynomial time
verifier V such that given a string € {0, 1}" it satisfies,

o Completeness: If € L, then there is a string with |y| = n°(") such thatl/ (z,y) = 1
e Soundness: I ¢ L, then for ally with |y| = n°M, V(z,y) = 0.

The running time of is assumed to be polynomial in the lengthwofWe say thal” acceptsc when
it outputs1; otherwise, we say thatigjectsz. We will refer toy in the above definition as th@oof.

A PCP is described by a probabilistic verifier that randomly examines a few bits of a writtengproof
We say that the verifiet’ hasoracle access$o y, and we writel’¥ to indicate thatl” does not receive
explicitly. We are interested in two propertiesiof namely, the number of coiris flips and the number of
bits of the proof it reads.

Definition 2.6. A (r(n), ¢(n))-restricted verifier is a probabilistic polynomial time Turing machine such
that given inpute of lengthn and oracle access to progf it usesr(n) random bits to lisi(n) positions of
y, queriesy at these positions, and accepts or rejectsased on the values it receives.

The running time ol is again assumed to be polynomial in the size of the inpMNote that-(n) and
q(n) are bounded by the running time &f. Futhermorel is non-adaptive- it simultaneously decides
which queries to make. The paramei€n) is called the query complexityf V. We can now define the
class of languages PCHr(n), ¢(n)].

Definition 2.7 (PCP). A languageL is in PCPR. s[r(n), ¢(n)] if there exists &r(n), ¢(n))-restricted verifier
V such that given a string € {0, 1}" it satisfies,

e Completeness: If € L, then there is a proof : Pr[V¥(z) =1] > ¢ ;
e Soundness: i ¢ L, then for ally, Pr[V¥(z) =1] <s

where the probabilities are taken ovEr's choice of random bits an@l < s < ¢ < 1. Furthermore, for any
Y, |yl < q(n) -2,

The bound onjy| is determined by the number of possible positiong tfatl” can examine. All other
bits of y are irrelevant. It = 1 we say that the verifier hggerfect completenesand ifc = 1 — o(1), we
say it hasalmost perfect completeness L € PCR. ;[r, ¢|, we say thaf has a PCP with parametgs q).

2.3 The PCP Theorem

It is immediate from definition 2.7 that NB PCR (0, poly(n)). The PCP Theorem states the following
suprising result:

Theorem 2.8.[3, 5] NP = PCPL% [O(logn),O(1)]



One side of this equality, PGR[O(logn),O(1)] € NP, is easy to see. Given a languagec
PCF’lé[O(log n), O(1)] with verifier V, we can construct a deterministic verifigf that simulated” on

all 20(ogm) — poly(n) random coin flips and accepts if and onlylifaccepts on all runs.

The PCP Theorem provides a “robust” characterization of the class NP in the sense that any proof of a
false statement must be wrong almost everywhere since in order to reject with probability more than a half,
it suffices for the verifier to check only a few a bits of a proof. As we will see below, this robustness allows
us to reduce a languandec NP to a 3SAT formula such thatif € L, then the formaula is satisfiable, and
if x ¢ L, then no assignment can satisfy more than e fraction of the clauses of the formula. This shows
the relationship between the PCP Theorem and the inapproximability of Max-3SAT, where the objective is
to satisfy the maximum number of constraints in a given formula. The gap in the reduction implies that
Max-3SAT does not have@d + ¢)-approximation unles® = N P. In fact, the PCP Theorem is equivalent
to the inapproximability of Max-3SAT.

Theorem 2.9. [3] NP = PCPL%[O(Iog n),O(1)] if and only if there is a constant > 0 for which there
exists a polynomial time reductighfrom any languagd. € NP to Max-3SAT such that

o If x € L, OPT(f(z)) =1,
o ifx g L,OPT(f(x)) <1—e.

Here, OPTf(x)) refers to the maximum fraction of constraints of the formfia) that any assignment
can satisfy. In general, OPT will be clear from context. The reduction above is cafjag-atroducing
reductionas it introduces a gap of factdy (1 — €) between the two classes of instances of Max-3SAT (those
constructed from instancase L and those constructed from instaneeg L). As noted above, this gap
establishes the approximation hardness of Max-3SAT. Suppose theig ([$ & ¢) factor approximation
algorithm A for Max-3SAT. Then ifx € L, A(f(x)) > (1 — ¢)OPT(f(z)) = 1 —¢, and ifz ¢ L, then
A < 1 — e. Hence, usingd we can decide any NP languafea contradiction unless P = NP. Even though
the proof of the above theorem can be found in many places (see for example [2]), we will give the proof here
as it shows that the choice df2 is arbitrary and can be replaced by any small constant, and it displays the
importance of designing PCPs that are very closely connected to the optimization problem whose hardness
we are trying to prove.

Proof of Theorem 2.9(if) Assume that. € NP and there is a gap-introducing reductipas in the state-
ment of the theorem. Given input the PCP verifier we construct first rufio create a Max-3SAT formula
f(x). It then randomly selects a clausefrom f(z) using itsO(logn) random bits. Let a prooj corre-
spond to an assignment of the variablesf@f:). The verifierV reads the values of th& variables inC
from y, and accepts if and only if the variables satiéty Hence, ifx € L, letting y be a satisfying as-
signment tof (z) we havePr[V¥(z) = 1] = 1. On the other hand, if ¢ L, then for any assignment
Pr[V¥(xz) = 1] < 1 — e. Sincee is a constant, this probability can be reduced @ (or any other small
constant) at an exponential rate by a constant number of repetitions.

(only if)y Assume thaf. € NP. By the PCP Theorenh, € PCPL% [clog n, q] wherec andg are constants.
Let V be its PCP verifier. Given input of lengthn, let y be a proof to which/ has oracle access. For a
random string of lengthlog n, V queriesqg positions of the proof and decides to accept or reject based on
the values it receives from We generate a boolean variable corresponding to each positiosothaty
corresponds to an assignment to those variables). Further, we generate a boolean fmdimse domain
is {0, 1} for each random string of lengthclogn. The functionf, : {0,1}? — {0, 1} takes as input the



values assigned by to theq variables that correspond to theositionsV queries giverr. The output of
frislifand only if V accepts. By simulatin§y” on alln® random strings we gei® such boolean functions.
The truth table of each boolean function can be represented by af@sENF clauses, and each such
clause can be transformed to at mgst- 2) 3CNF clauses in the standard way. Hence, we end up with a
3CNF formulag with n“29(q — 2) clauses.

Now if € L, then there exists a proof such that every test calisesaccept; hence, the formula is
satisfiable. Ifx ¢ L, then any proof; causes more tham/2 of the tests to reject. Hence, the fraction of
unsatisfied clauses in our formulasis(n¢/2)/(n¢29(g—2)) = 1/(297(¢—2)) = €. Thatis OPT¢) < 1—¢
ande is a constant. m

2.3.1 The Relationship to Constraint Satisfaction Problems

The gap in Thm. 2.9 is so small because the translation from boolean functions with dénigifito 3SCNF
clauses produced a large number of clauses. Intuitively, we can get a better approximation hardness result
if we had a PCP verifier that needs to read a smaller number of bits. Max-3SAT is a constraint satisfaction
problem on3 variables. In fact, we now highlight the relationship between PCP’s and the hardness of
approximating constraint satisfaction problemsfomariables £-CSP’s) in general. In &-CSP, we are
given a set of variables and a set of constraints. Each constraint depends on kexaciiples. The goal
is to find an assignment to the variables that maximizes the number of satisfied constraints. Designing a
specific verifier whose query complexity isimplies a hardness result forklaCSP. We let the positions
of the proof be the variables of the problem and the verifier's possible tests (given its random bits) be the
constraints. A proof defines an assignment to the variables. Hence the acceptance probability of the verifier
equals the fraction of satisfied constraints, and the hardness factor is obtained from the ratio between the
completeness and soundness of the constructed PCP system.

The next section shows a different characterization of NP that will allow us to design PCP’s with lower
query complexity.

2.4 2-Prover 1-Round Games

In order to design PCP’s with low query complexity, we will need a detailed description of the queries
made by the PCP verifier. We will design a new proof system with two provers and a simple probabilistic
verifier. The system is best thought of as a game between the préyeand P» and the verifiel where

the provers are trying to convince the verifier of the validity of an NP statement of len@tly. a formula

that is claimed to be satisfiable). The two provers are cooperating and infinitely powerful. They can make
any agreement before the start of the game, however, once the interaction with the verifier starts, they can
no longer communicate. The verifier is allowed to ask each prover only one question; hence, the game
is 1-round. It has access t@n) random bits, which it uses to generate two questignand ¢ without
communicating with the provers. Note that this implies that the verifier is non-adaptive as it does not
produce the second question based on the first answer it receives. The verifier simultaneouglytedhds

andg, to P,. ProverP; does not have accessdg, and proverP, does not have accessdp The provers
answer withP; (¢;) and P>(g2). Since the verifier can ask the two provers for the same information, the
provers’ ability to cheat gets restricted. The verifier decides whether to accept or reject after receiving both
answersP; (¢1) andP»(q2). We now define the class of languages 2PJRn)| that are recognized by such
verifiers.

Definition 2.10. [44] A languageL is in 2P1R 4[r(n)] if there exists a probabilistic polynomial time verifier
V that receives:(n) random bits such that given a string € {0, 1}" it produces two querieg; and g2

7



based only on its random bits andand satisfies,

e Completeness: I € L, there exist two prover$, and P, whose answer®;(q;) and P(g2) to
queriesq; andg» respectively caus® to accept with probability at least ;

e Soundness: If ¢ L, then for any two prover®, and P;, the probability thafl” accepts based on the
answersP; (q1) and Py(q2) is at mosts

where the probabilities are taken ovErs choice of random bits, antl < s < ¢ < 1.

Thevalueof a 2-prover 1-round game (2P1R) is the maximum acceptance probability of the verifier.

Note that the number of random bits availableltdimits the domain of question®” can ask. This
in turn limits the number of answers the provers need to prepare. We can thus turn the above game into a
PCP simply by writing down each prover’s answers indexed by the quedtiarten ask the prover. It is
noteworthy that if the game is not 1-round, then we cannot thinRofnd P, as written proofs since the
provers are infinitely powerful and hence can be considered adaptive. Next we construct a 2-prover 1-round
PCP with logarithmic randomness that captures NP.

A PCP with Low Query Complexity and Soundness close td. Given a languagé. € NP, we use

the gap-introducing reductiofigiven in Thm. 2.9 to transform any instanee¢o a Max-3SAT formulap,..
Supposep, hasn variables andn clauses. Our 2P1R verifier works as follows. It assumes that prover
Py is a string containing a truth assignment to theariables (i.e. each position takes one of two values).
Furthermore, it assumes that proveris a string containing for each claussatisfyingassignment to it8
variables (i.e. each position takes one of 7 values). It usé¥(itsz n) random bits to pick a claugg from

¢z, and a random variableoccurring inC'. It queriesP; atx and P, atC. It receives a-bit answerpP; (z)

from the first prover and &-bit answerP,(C') from the second prover. Note th&s(C') implicitly contains

an assignment te. The verifier accepts if and only #;(z) and the implicit assignment toin P,(C') are
equal.

If z € L theng, is satisfiable and clearly there are prodfsand P, that make the verifier accept with
probability 1.

If x ¢ L, then more tham fraction of the clauses af, are not satisfiable whereis the constant in
Thm. 2.9. SinceP, is an assignment to the variables, more thanclauses are not satisfied by it. Suppose
we pick an unsatisfiable claugé This happens with probability €. Since P, contains only satisfying
assignments, its assignment@amust differ fromP, in at least one variable. The probability that we catch
this inconsistency is at leasf3. Hence, the soundness of this 2P1R game is lesslthagy/ 3.

The above PCP is good in thit queries only bits of the proof; however, its acceptance probability
is always close td. As in the proof of Thm. 2.9, we would like to use a constant number of repetitions
to reduce the acceptance probability in the soundness case. Repeating the above proice@pendent
times reduces the error probability to — ¢/3)“. If we do that, however, the game is no longer one round.
We will use a different technique known parallel repetition

2.5 The Raz Verifier

Parallel repetition simply means th&t randomly chooses clauses(C;)¥ ; and for each claus€); it
chooses one variablg at random. The verifier sends = (z;)}", to P andgs = (C;)i, to P all at
once. It assumes that each positionAnis indexed byu variables and contains an assignment tosthe
variables. Thus, the length @ is n* and each position takes one 2f values. Furthery assumes each
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position in P, is indexed byu clauses and contains a sequence of satisfying assignmentsdaigses.
Thus, the length oP; is m" and each position takes one®fvalues. Verifie/” then receives the answers
from P, and P, and accepts if all, variable assignments it receives frdfpare consistent with atl clause
assignments it receives from.

Since the provers can see all answers, it is not clear that the error probability of this gameds3)"
In fact, the error probability can be greater than that; however, in [40], Raz showed that the error probability
indeed decreases exponentially with

Theorem 2.11.[40] Given a 2-prover 1-round game with soundness 1 and answer sizé, there exists
s’ < 1 that depends only onsuch that for all integers, the soundness af parallel repetitions of the game
is ('),

Hence, since the answer size of our original game is constant, by choodmfpe a large enough
constant, we can make the soundness arbitrarily small. However, the number of bits queried is Baw
Note that the size of the domain of answers of the provers is a constant that depends on the soundness
parameter. This 2P1R game with perfect completeness and arbitrarily low soundness is knowRaas the
Verifier. In [44], Hastad uses the Raz Verifier to constru@-hit PCP. We will reserve the discussion of
Hastad's PCP to the next section where we motivate the Unique Games conjecture.

3 The Unique Games Conjecture

The Unique Games conjecture (UGC) [32] is the following:

Conjecture 3.1 (Unique Games Conjecture).For arbitrarily small constants(,§ > 0, there exists a
constantt = k(¢, d) such that it is NP-hard to determine whether a unique 2-prover 1-round game with
answers from a domain of sizehas value at least — ¢ or at most.

Why is the UGC stated as such? In this section we attempt to answer this question. We feel that the best
way to provide intuition behind the conjecture is to descrildestdd’'s3-bit PCP. We will also definanique
games and describe a problem called Label Cover that is equivalent to a 2P1R game.

3.1 Overview of Hastad’s PCP
Hastad's result is the following:

Theorem 3.2.[44] For all ¢, > 0,

NP = PCP, O(logn), 3] .

—6,%—1—7][
Moreover, the acceptance condition of the verifiers is linear (i.e. if the three bits read from the préef are
bs andbs, the acceptance condition is eithigr+ by + bs = 0 Or by + by + bz = 1).

The starting point of Bistad’s PCP is the Raz Verifier described in Sec. 2.5. We will refer to the Raz
Verifier as theouter verifier Recall that this verifier has perfect completeness and arbitrarily low soundness.
The problem, however, is that it reads answers from a large alphabet that is dependent on the soundness
parameter. To achieve our goal, we will build a new verifier calledrther verifierthat expects as a proof
encodings of the provers’ answers using a predefined encoding scheme. With a suitable encoding, the inner
verifier can perform its test efficiently. A cheating prover, however, may not abide by the encoding. Hence,
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besides checking the consistency of the answers, the inner verifier must also check if the encodings of the
answers are correct.adtad’s construction integrates these two tasks into a single test that readsisly

The test does not explicitly check that the encodings are correct. Instead, it is shown that if a proof makes the
inner verifier accept with high probability, then there is a way to “decode” the proof and extract strategies
for the provers that would make the outer verifier accept with probability greatersthd@his leads to a
contradiction if the soundness of the outer verifier is less thafhe strategies are extracted by analyzing

the encoded answers using Fourier Analysis.

It suffices for our purposes to describe thbit test. Even though we will not go over the soundness
analysis of this test, the technique of using discrete Fourier transforms to extract strategies from encoded
answers will be displayed when we analyze a different test in Sec. 4.2.3. We start by describing the encoding
expected by the inner verifier.

3.2 The Long Code

Thelong codewas introduced by [8]. The long code of an element {0, 1}* is a string of lengt22". It
is a wasteful encoding; however, it is very useful for our purposes.

Definition 3.3 (Long Code). Let Fj, be the family of boolean functiorfs: M — {0, 1}. The long code of
an element: € M isamapA, : Fy — {0,1} whereA,(f) = f(x).

The usefulness of the long code is apparent when we consider the type of questions the inner verifier
should ask. In order not to waste any bits, the inner verifier will ask boolean questions. Suppose that the
answer to the outer verifier’s first queryds The question the inner verifier will ask abaouis, “Doesx
belong to the following set of values?” Singas au-bit string, there ar@" possible values far, and hence
22" possible subsets the inner verifier can inquire about. Noteutirabur case is a constant depending on
the number of parallel repetitions the outer verifier performs, thus the inner verifier can ask such questions
in constant time. The long code encodes the answer of the prover for every possibleSsabgét 1}*.

Hence, the long code far is a22* bit string where position = 1 if z € S;, and0 otherwise (we use an
arbitrary but fixed convention to order the subset$@fl } ).

We can identify a se$’ C {0, 1}" by a functionfs : {0,1}* — {0,1}. Thatis,S = {z € {0,1}* :
fs(z) = 1}. Asking if z is in S is equivalent to evaluatings at z. Now since the set of all subsets of
{0,1}* corresponds to the family of functiorfs: {0,1}* — {0, 1} we arrive at definition 3.3 above.

When working with long codes, it is sometimes more convenient to work with boolean variables from
{1, —1} rather than the standaf@, 1}. We let—1 denote true so that multiplication represents the exclusive-
or of two bits. The reason we use this multiplicative representation will become apparent when we utilize
Fourier techniques to analyze the long codes. However, we use it below to define the mechdolidimgof
introduced by [8].

Definition 3.4 (Folding). A functionA : F; — {1,—1} isfolded if forall f € F, —A(f) = A(—f).

A correct long code is clearly folded, since f8rC M, x € S iff = ¢ S. In order to implicitly ensure
that a long code written by a prover is folded, we store (in an arbitrary but fixed mannar) for each pair of
functions(f, —f) one representative. When we want to access the other function, we negate the result we
read. Supposg is chosen for example. Then, if we want to evalugie), we simply readd () whereA,
is the long code for. If we wish to evaluate- f(z), then we readd,. () and negate the result.

10



The fact that the number of parallel repetitions executed by the Raz Verifier is constant allowed the inner
verifier to use the long code to encode the provers’ answers. Another important property of the Raz Verifier
is described below and it will allow us to design Bwbit test. A modification of this property given by the
Unique Games conjecture allows us to designlat test.

3.3 The Raz Verifier's Projection Property

Let us a look at a concrete example of a round of interaction between the Raz Verifier and the provers. Let
the number of parallel repetitions lme= 2. Suppose the verifidr randomly picks the clausés’;, Cy) =

(1 V@2V x3,21 Vxg V x5) and the variableszy, z9) = (x1, x5). The verifier then probes the provers and
receives answerB; (z1, z2) and P»(C1, Cy). Note that given the set of probes afigls answer, there is a
unique answer oP; that would makéd” accept. In our example, If receiveg110,010) from P, then the

only answer received fror®; that would maké’” acceptig(1,0). That is, the accepted answer®f is the
projectionof the answer of?» at (x1,x5). This implies that for every possible pair of questi@nsgs to
proversP; and P, there is a projectiom,, 4, : [7*] — [2"] such thatl” accepts if and only if the answers
Pi(q1), P>(g2) satisfymg, 4, (P2(q2)) = Pi(q1). This projection property is almost all we need to design the
inner verifier.

Let Ry, Rx be the sets of possible answers the outer verifier can receive from prBvernsd P,
respectively. Thatis,Ry| = 2%, and|Rx| = 7" wherew is the number of parallel repetitions. Suppose
the outer verifier receives answey (resp. a) from P; (resp. P) in response to questian (resp. g2).
We are trying to verify if the two answers are consistent, i.e. if they satigfy2(a2) = a1. For ease of
notation, definer := w41 4o. The inner verifier will pick a random sét from the rangef?y- of the projection
m, and it will ask P, if a1 belongs toF'. If a; € F, then the set of consistent answers received fidgm
is limited to F' = 7~!(F) C Ryx. The inner verifier will accept if and only if; € F anday € F’, or
a1 € F anday ¢ F' resulting in a2-bit test (i.e. the exclusive-or of the two provers’ answerg)isNote
that since the long codes are folded, the provers cannot always pass the test by simply aristoarirgy
guery. Nonetheless, this test does not work as it can disclose the set of variadples iR. Intuitively,
this is because even thoughis random, the values if” are correlated allowing?, to infer F' andq; [18].
Knowing ¢; enablesP, to pick an assignment to the clausesynthat is consistent withP;'s assignment
to the variables iny, thus ensuring that the outer verifier accepts. Recall that the provers can make any
agreement before the start of the interaction with the outer verifier, and specifically, they can agy&e on
assignment. Note that this does not contradict the soundness of the outer verifier as its soundness depends
on the fact that each prover does not know the question directed to the other prover i§.eidden from
P, and vice versa). Going back to the pair of clauses in our example above, suppose for simplicity that
F' = {(100,001),(110,001), (010, 100), (010,101)}. Then, it is easy to see that = (x3,z4) and

F = {(0,0)}.

Hastad’s Inner Verifier. In order to overcome this difficulty, the inner verifier askstwo questions. It
picks a random se&t from the domainR x and asks;, if a, belongs taz and ifas belongs to the exclusive-
or of G and F’ denotedG @ F’. The two sets now appear randomp and do not enable it to infef'.
In terms of long codes, the test is as follows. l&be the long code od; and B be the long code aofs,.
The inner verifier picks a random functigh: Ry — {0, 1} and a random functiop : Rx — {0,1}. The
function f corresponds to our sét above, andy corresponds to sét. Note that the functiorf o =, where
(fom)(x) = f(m(x)) for z € Rx corresponds to the set' ! (F) = F'. Leth : Rx — {0, 1} be a function
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such thath = g @ (f o 7). The verifier reads the bitd(f), B(g) andB(h), and accepts if and only if,
A(f)® B(g) © B(h) =0 ,

which is a linea-bit test. There is a crucial part of the test that we have omitted. The funci®im fact
defined asi = g @ (f o) ® u wherep : Ry — {0, 1} is chosen by setting(z) = 1 with probability

e andu(x) = 0 with probability 1 — e independantly for each € Rx. If h is not defined withu, then it

can be shown (see for example [33, p. 33]) the test would accept with probakehtyn if B is not a long

code. This reduces the completeness of the verifier-ta, but this is all that we can hope for since perfect
completeness would have implied tHat= N P. Recall the relationship between PCP’s and CSP’s given in
Sec. 2.3.1. Bistad’s PCP implies that it is NP-hard to determine if the maximum fraction of clauses that can
be satisfied in a Max-3Lin-2 instance is at least ¢ or at mostl /2 + ) for all ¢, > 0. If we had perfect
completeness, then the set of linear equations in the resulting Max-3Lin-2 instance could be solvable and
using Gaussian Elimination we can determine in polynomial time if a system of linear equations over a field
(Z+ in this case) is solvable.

3.4 Unique Games and Khot's Conjecture

A 2P1R game is callednique(e.g. see [36, 17]) if the answer of one prover uniguely determines the
answer of the other provemd vice versa Suppose that the Raz Verifier were a unique 2P1R game with
almost perfect completeness and arbitrarily low soundness. (Walsegstperfect completeness because

it is trivial to determine if a uniqgue game has valuas shown in Thm. 3.7 below.) Having the uniqueness
property means that that for every possible pair of questjpng to proversP; and P, there is aijection

Tq .00 - B — R such thatV” accepts if and only if the answefd (¢1), Px(q2) satisfymy, ¢, (P2(q2)) =

Pi(q1). Note that the two provers provide answers from the same dofaimntuitively, having these
bijections would eliminate the need for the inner verifier we describe above to make the third query since
the pre-image of a random set under a bijection is simply a permutation of the set and is also random. The
Unique Games conjecture stipulates the existence of such a powerful outer verifier that would allow us to
construct boolean 2-query PCP’s. We will se2-hit test based on our discussion in Sec. 4.2.1.

3.5 Label Cover

A 2P1R game with the property that the answer of the second prover uniquely determines the answer of the
first prover is equivalent to a problem called Label Cover first defined in [45]. We will use the definition of
a weighted Label Cover from [32].

Definition 3.5. A weighted Label Covef (G (Y, X), Ry, Rx, {myz}, {py=}) consists of a complete bipar-
tite graphG with bipartitionY’, X. Each edgdy, =) has a weighp,, with Zw pyz = 1. Every vertexin

Y is supposed to get a label froRy-, and every vertex itX is supposed to get a label froRy . With every
edge(y, z) there is an associated projection,, : Rx — Ry. The goal is to find a labeling of the vertices,
that is find functiond.y : Y — Ry andLx : X — Ry, that maximizes the weight of satisfied edges. An
edge(y, x) is satisfied ifry, (Lx(z)) = Ly(y). OPT(L) is defined to be the maximum weight of edges
satisfied by any labeling. A Label Covemsiqueif Rx = Ry = R and every functiom,, : R — Risa
bijection.

It is clear how a label cover problem is the same as a 2P1R gam#&’,étbe the sets of questions the
verifier can ask the two provers, afty-, Rx, respectively, be the set of their possible answers. Hence, the
Unique Games conjecture can be stated as follows:
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Conjecture 3.6 (Uniqgue Games conjecture)[32] For arbitrarily small constants(, s > 0, there exists a
constantc = k((, ) such that it is NP-hard to determine whether a unique Label Cover instance with label
sets of sizé (i.e. |R| = k) has optimum at least — ¢ or at most).

The following theorem shows why the completeness parameter of the UGClIis not
Theorem 3.7. Deciding if a unique Label Cover has optimum equal is in P.

Proof. Given a unique Label Cover instan€edefined as in Def. 3.5, the following simple algorithm finds

a labeling that satisfies all the edges if one exists. First, we get rid of edges with Weighhey do not
contribute to the optimum. For every connected component of the resulting graph, we do the following.
Mark all the component’s vertices False. Pick an arbitrary vertex X and assign it an arbitrary label
L(z0) from R. Now do the following:

- For every labeled vertex marked False,

- If v € X, then assign each unlabelgdn the neighborhood of the labelr,,(L(v)). If somey was
already labeled witlL(y), then check ifL(y) = 7y, (L(v)). Markv True if all tests pass; otherwise,
start over with a different label farg.

- If v € Y, then assign each unlabeledn the neighborhood of the label(r,,)~!(L(v)). If somex
was already labeled with(z), then check ifL(z) = (my:) ~(L(v)). Mark v True if all tests pass;
otherwise, start over with a different label fog.

If some label tary causes all the vertices in the connected component to be marked True, then the component
is satisfied. If we can satisfy all components ti@R7'(£) = 1. Otherwise, there is no labeling that has
valuel. O

4 Hardness Results based on the Unique Games Conjecture

This section is mainly dedicated to showing that Min-2SAT-Deletion is NP-hard to approximate to within
any constant factor [32]. The proof of Min-2SAT-Deletion closely follows that in [32]. We include it here

as it displays the powerful technique developed tstdd ([44, 27]) of analyzing the tests of an inner
verifier using Fourier analysis. We also present the inner verifier and the test used to pravariiatm
hypergraphs-coloring is hard to approximate within any factor less t@arWe omit the test’'s soundness
anlysis, however. Finally, we cite other results announced in [32] and point out some exciting more recent
results by Khotet al.[30], Chwalaet al.[12] and Dinuret al.[15]. All these PCP constructions essentially
start with the Unique Games conjecture as the outer verifier and construct suitable inner verifiers to prove
the hardness of the considered problems.

4.1 Fourier Analysis

The soundness proof of the inner verifier for Min-2SAT-Deletion depends heavily on Fourier analysis. Let
F be the family of functiong : M — {1, —1}. Fors C M, the basis functiongs : 7 — {1, —1} used to
define the Fourier transforms are

xs(H) =1 1w .

yep
Note thatyg is the point-wise product of long codes, and whgh = 1, xz is just the long code of the
element ing.
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Proposition 4.1. [28] For any 5 C M,

> xs=

ferF

{2M| if3=0

0 otherwise

For functionsA, B mappingF to R define their inner product as,

(A, B) =2"MIN" A(f)B(f) = Ef[A(f)B(f)] -

fer

Under this inner product, the Fourier basis form a complete orthonormal system since their number is
2/M| and for anyw, 8 C M,

(Xa> x8) = Ef[xa(f)xs(f)]
=Ef[[] r@ [ rw)

TEQ yeps
=B [ f@)
zealAp

= 1if a = § and0 otherwise

where A denotes the symmetric difference of two sets. The third equality follows from the fact that if
x € ang, thenf(z)f(x) = 1, and the last equality follows from Prop. 4.1. Hence, any functionF — R
can be written as a linear combination of the basis functions,

AN = Asxs(f) (1)

BCM

whereds = (A, x5) = Ef[A(f)xs(f)]. Equation (1) is the Fourier inversion formula, aAd is called the
Fourier coefficient ofd at setg.

Theorem 4.2 (Parseval’s identity).For any function4 : 7 — R,

> AR =27MIN"A2(f)

BEM JeF

A proof of Parseval’s identity can be found in [28] for example. Specifically, whéas rangd 1, —1},
i.e. A: F — {1,—1}, Parseval's identity says that 5, /1% = 1. Furthermore A is a measure of the
correlation ofA with x3. Forany C M andf € F, Ietl{A:XB}(f) indicate ifA(f) = x(f). Clearly,
forany f € F, 1ia—y,1 (f) = (A(f)xs(f) + 1)/2. Taking expectations we have,

EfAUxs(N+1 _ A +1
2 2 '

PrA() = xa(f)] = )

This implies that ifA is the long code of some € M, thenA{x} = 1 and by Parseval’s identity all other
Fourier coefficients are.
The next lemma shows the effect of folding (see Def. 3.4) on the Fourier coefficients of a long code.
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Lemma 4.3. [44] If A is folded, then for al|p € M, if 215 # 0 then|s| is odd (and in particularg is not
empty).

Letw : M — M be a permutation. The following proposition relates the Fourier basis functipi of
to that of f.

Proposition 4.4. [32] x5(f o 7) = xx(g)(f)-

Proof. Sincer is a bijection, we have

xs(fom) =[] fx@) = [ f&) =xx(f) -

z€eB yen(B)

4.2 Hardness of Approximating Min-2SAT-Deletion

In this section we outline the proof of the following theorem.

Theorem 4.5.[32] The Unigue Games Conjecture implies that for ev§r<y t < 1 and for any sufficiently
small constant > 0, it is NP-hard to distinguish between the instances of Min-2Lin-2 where the fraction of
satisfied equations is at leakt- ¢ and those where it is at most— ’.

Theorem 4.5 implies the same gap for Max-2SAT using the following simple reduction. We transform
an equation of the form + y =, 0 to the two clauses Vv § andz V y, and we transform equations of
the formx + y =2 1tox vV y andz Vv g. If an equation is satisfied, then the two corresponding clauses
are satisfied; otherwise, exactly one clause is not satisfied. Hence, if therequations in a Max-2Lin-2
instance andn are not satisfied, there will b clauses in the constructed Max-2SAT instance g
fraction will not be satisfied. It immediately follows that it is NP-hard to distinguish between the instances
of Min-2SAT-Deletion where the fraction of unsatisfied clauses is at mastl those where it is at least
for any% < t < 1. Hence, Min-2SAT-Deletion cannot be approximated within any constant factor.

Related Algorithmic Results. The gap of(1 —¢,1 — e%”(l)) for Min-2SAT-Deletion is tight since, on
an instance whose optimum is— ¢, the algorithm of Goemans and Williamson [25] produces a solution
with valuel — O(y/€). Zwick’s algorithm [48] for Max-2SAT finds &1 — O(e!/?))-satisfying assignment
when given a(1 — ¢)-satisfiable 2CNF formula. And Agrawakt al. [1] recently gave arO(y/logn)-
approximation algorithm for Min-2SAT-Deletion.

4.2.1 The PCP

The PCP we construct will be composed from an outer verifier and an inner verifier. The unique Label Cover
instancel(G(Y, X), R, {my. }, {py }) guaranteed by Conjecture 3.6 serves as our PCP outer verifier. The
inner verifier expects the proof to contain the long codes of the labels applied tojeeely andz € X.
The long codes are assumed to be folded.

The inner verifier will pick an edg@y, ) and check if labels of andx satisfyr,,. Letp, = > x pye
and defingy, : X — [0, 1] asqy(x) = py./py- The verifier will pick an edge by first picking a vertgxc Y
with probability p,, and then picking a vertex € X with probability ¢,(x). That is, it will choosex
conditioned on the fact that it already chagse€The full test is as follows:
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1. Picky € Y with probabilityp,. Let A be the supposed long code of the label,oRecall thatA is
indexed by all functiong : R — {1, —1}.

2. Pick arandom functiotf : R — {1, —1}.

3. Pick a functioru : R — {1, —1} by defining independently for each lakeE R

1 with probability1 — €
pula) = . -
—1 with probabilitye

4. With probability% select one of the following actions:

(a) (Codeword test) Accept if and only#f(f) = A(fu)

(b) (Consistency test) Pick a vertexc X with probabilityg, (x). Let B be the supposed long code
of the label ofz, and letr = 7y,

Accept if and only ifA(f) = B(f on).

It would seem at first glance that the “perturbation” function should be added to the consistency test, i.e.
A(f) = B((f om)p), for otherwise the test can always be made to accept with probabiéten if B is

not a long code. Consider the following exampleet A be the long code of somee R, and letB = X3

for somes C R where|] is odd,|3| > 1, andn(b) = a forall b € 3. Then,

A(f) = f(a) = [[ fx(6)) = xp(f o) = B(f o) .

bep

The second equality follows from the fact that the cardinality &f odd. Nonetheless, the functiprensures

that the verifier rejects codes whose Fourier spectrum depends significantly on sets of large size, and we will
see in the soundness analysis that it suffices to include it only in the codeword test. For intuitigrfplet
example, be the product of long codes, i.e.Aet x, for somea C R with || > 1, then the probability

the codeword test accepts is

ErlAUNAGF) +1 _ Epplllaea FP(@p(a)] _ (1 -2 41

2 2 2 ’

which decreases d&/| increases. Recall that il is the long code of some € R, then all its Fourier
coefficients aré except forA,y which is1

4.2.2 Completeness

The completeness of the verifierlis- % In a correct proofA and B are the long codes of someb € R

wherea (resp. b) is the label of the vertey € Y (resp. x € X) that we picked. The verifier selects a

test with probabilityl /2. Now the codeword test fails wher{a) = —1, which happens with probability.

The consistency test, on the other hand, fails when we pick an unsatisfied edge in the unique Label Cover
instancel, which happens with probability. When we pick a satisfied edge, the consistency test succeeds
sincef(a) = A(f) = B(fom) = f(w(b)) = f(a). Note that by the Unique Games conjecture, we can
assume to be arbitrarily small. The completeness of the verifier follows.

1This example is given in [33] to show how, without Hastad's3-bit can always fail.
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4.2.3 Soundness

We will show that the soundness of the verifier is at niost%ctet for any% < t < 1 whereg; is a constant
dependent om (from Thm. 4.6), and whereis that of the “perturbation” functiop.. We will use Fourier
analysis to show that if the verifier accepts with probability greater mamcte then we can extract a
(probabilistic) labeling of reasonable weight using the Fourier coeff|C|ents of the codes provided. Since
OPT(L) < ¢, this would lead to a contradiction provided we choéde be small enough. The analysis
uses the following result of Bourgain [11] as stated in [32],

Theorem 4.6 (Bourgain). Let A be any boolean function (for instance a supposed long codefand)
an integer. Then for ever% < t < 1, there exists a constanf > 0 such that,

N A 1
> Al<cek™ then > A2 < — .
a |a|>k ‘A |< 4—k2
The probability of acceptance of the inner verifier is,

" A(];)A(fu)] LB, [1 T A(f)QB(f o 7r)”

1
Pr[Accept = B {Ey,m [

This can be shown, for example, by the indicator method as we did for Eq. (2) in Sec. 4.1.
Using the Fourier transform we have,

Eru[A(f)A(f1)] = Byl Z AOCIAOQXOQ (f)Xaz(f)Xaz(w)]; and 3)
Ef[A()B(f om)] = Ef[D>_ AaBsxa(f)xs(fom)] . 4)
a8

NOW, Xa; (f)Xas (f) = Xa1aa, @nd as shown in Sec. 4.1 its expectation otés 1 if ayAay = () and
0 otherwise. Hence, (3) is non-zero onlyif = ay = . SinceE,[xa(11)] = (1 — 2¢)l°l, we have that,

By ulA( Z A%(1—2¢)l (5)

Using Prop. 4.4, we similarly see that (4) is non-zero only i 7(3). Sincer is a bijection,3 = 7! («)
and we have that,

Ef[A(f)B(f o7)] ZA Br-i(a) - (6)

The probability of acceptance becomes,

Pr[Accept = % + %Ey S A1 20+ ALE, [Bwl(a)}]

1 1
D) + ZEy[Dy +Gyl

Suppose this probability is greater than- %ctet wheret and¢; are from Bourgain’s Theorem. Then
we haveE,[D, + Cy] > 2 — ¢,€!, which implies by Markov’s inequality that over the choiceyofwith
probability at Ieas%, D, + Cy, > 2 — ¢;e'. Fix any such “good?y. By Parseval’s identityD, < 1 and we
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have thatC;, > 1 — ¢! > 4 where the last inequality follows by choosilg;mall enough. Similarly, by
Cauchy- Schwarz and Parseval s identity < 1 and we have thab, > 1 — ¢;¢'. This last fact combined
with the term(1 — 2¢)l°l introduced by allows us to show that

S A <ad, ™

o jal>e !

and applying Bourgain's Theorem, we get,

1
> A<ﬁ. (8)

1 —e—2
o |Ag|<fsa—e

Equation (7) says that for the given code its Fourier coefficients at sets of large size are insignificant,
while Eq. (8) says that the code is determined by a few coefficients. Ideally, in a correct proof, a long code
is determined by only one coefficient at a set of size one (see Sec. 4.1).

We summarize the rest of the argument. Galtgood” if o is nonempty,ja| < ¢!, and|/1a| >
1—104*672. All other o C M are “bad”. It is shown that the contribution of bat to the termC), introduced
by the consistency test is small. Firstpif= (), then by lemma 4.34, = 0. Next, if la| > 71, then (7)
is used to show thaf, < v/cel. Finally, if |A,| < %4—6_2, then (8) is used to show that, < 1/10.
Combined with the fact thaf’, > 1/2, the above implies that when restricted to geds, C, remains at
leastl /4.

Hence, if the acceptance probability of the inner verifier is greaterlhar%ctet, the codes provided
by the provers must be “close” to long codes in a sense that they are determined by a few coefficients at
sets of small size, namely those coefficients with gatsd We will depend on those coefficients to define
a (probabilistic) labeling for the edges ih of total Weigth(e42€72). This will contradict the fact that
OPT(L) < ¢ if § is chosen to be sufficiently small implying that the acceptance probability of the verifier is
at mostl — %ctet. Note that by the Unique Games conjecture, we can assumbe arbitrarily small.

The labeling we define is as follows. For a good verjex Y, pick a with probabilityfla. Pick a
random element af and define it to be the label gf For anyz € X, pick 3 with probabilityBg. Pick a
random element gf and define it to be the label af

Now, let (y,z) be an edge with a good and leta andb be the labels of) andx respectively. The
probability that we pick a certain; and3; = 7~ (o) is A Bfr o) Given this event, the probability
thatm(b) = ais 1/|as| sincea andb are randomly chosen elementsafand ; respectively, and since
|| = |Bi|. Therefore, with probability",, A2 B2, o) ‘a| the edgd(y, x) is satisfied. Lep, = 3y Pya
i.e. if an edge is picked with probability equal to its weighy,is the probability that the right end point is
x. The expected weight of satisfied edges is then,

PO 1
ZPWZA?XBE;*(ME ZAa ™ 1(cv)‘ |
Y, T «@

Note that we are assuming thais good, which happens with probability at leag. The above expression
is shown to beﬂ(e42€72) by the properties of good's and the fact thaf’, > 1/4 even when restricted to
gooda’s. This concludes the soundness analysis.

> el

» AB2, (a)] . (9)

« good

4.3 Hardness of Coloring3-uniform Hypergraphs with 3 Colors

In this section we will outline the PCP used to prove the following theorem.
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Theorem 4.7.[32] The Unique Games conjecture implies that givedraniform hypergraph and colors,
it is NP-hard to determine whether there exists a coloring of the vertices that correctly doloedraction
of the hyperedges or any coloring correctly colors at rr%)st e fraction of the hyperedges, where> 0 is
an arbitrarily small constant.

The problem of coloring a-uniform hypergraph wittk: colors can be thought of as a constraint satisfac-
tion problem. The vertices of the graph are the variables of the CSP, and the edges are its constraints. Since
each edge is a set gfvertices, each constraint has exagtlariables. Thé: colors correspond to a domain
of sizek from which we will assign values to the variables. A constraint is satisfied if nat\&riables
in the constraint have the same value. Hence, satisfying a constraint is equivalent to correctly coloring the
corresponding edge. The optimum of the CSP is the maximum fraction of constraints that can be satisfied
by any assignment. As in [31], we will call this CSP NAE

Definition 4.8. [31] The problem NAE,, is said to have th&andom Threshold Properityit is NP-hard to
do strictly better than a random assignment. That is, it is NP-hard to distinguish whether the optimum is at
leastl — e or at mostl — kq—{l + ¢ for arbitrarily small e > 0.

Hence, Conjecture. 4.7 asserts that NAlBas the random threshold property. In [31], Khot proves this
result (with gap(1, % + €)) unconditionally In fact, it is shown that NAE,, for everyk > 3 has the random
threshold property. Recall that in a unique Label Cover instance, themapst — R are bijections. The
main technique in [31] is to obtain a weaker notion of this property. Khot (see also [33, Thm. 4.2.2]) shows
the hardness of Label Cover when the maps : Rx — Ry satisfy the followingsmoothnesproperty:

For everyz € X and every pair of distinct labels o’ € Ry,

fl’/r[ﬂyx(a) # my(a)] =~ 1 . (10)

This property is combined with thaulti-layeredversion of Label Cover from [14] to prove the result. Note
that for the only other case, namely NAE Zwick’s algorithm [47] performs strictly better than a random
assignment.

4.3.1 The PCP

The unique Label Cover instan€gG (Y, X), R, {7y}, {py« }) guaranteed by the Unique Games conjecture
again serves as the outer verifier in the PCP we construct. Hence, the construction of the PCP again reduces
to the construction of a suitable inner verifier. The inner verifier expects the proof to contain the long codes
of the labels of all the vertices if. Let F3, be the family of functions : R — {1,w,w?}. The long code
Aofalabela € Risindexed by all functiong € F3, and is defined ad (f) = f(a). The verifier will read

three symbols from the proof and accept if and only if the three symbols are not all equal. The verifier's test

is as follows:

1. Picky € Y with probabilityp,,.

2. Pick three vertices;, x andx3 with probabilitiesg, (1), ¢, (x2) andg, (z3) respectively. Letd, B,
andC be the supposed long codesgf z» andx; respectively.

3. Pick two random functiong, g € ;. Leth = f - g wheref(a) is the complex conjugate gf(a).
4. Pick a function : R — {w,w?} by defining for eachu € R, p(a) = w with probability% and
p(a) = w? with probability .
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5. Accept if and only if not all ofA( f o 1y, ), B(g © s, ), andC((h o my,.,) - p) are equal.

The completeness of the verifier is— 3¢. The verifier picks3 edges from the unique Label Cover
instance and each can be unsatisfied with probaljilifuppose all edges are satisfied. In a correct pAgof
B andC are the long codes of somgb, ¢ € R respectively where, b andc are the labels of, z2 andx;
respectively. Furthermore,,, (a) = 7y, (b) = mye,(c) = d for somed € R (d is the label ofy). Suppose

A(f 0 myey) = f(d) = g(d) = B(g © mys,). ThenC((homy,) - 1) = F(d)g(d)n(c) = F(d)2u(c) =
f(d)pu(c) # f(d) sinceu(c) € {w,w?}. Hence, if the edges are all satisfied, not all three symbols read can
be equal.

The soundness of the test is shown togbe e for arbitrarily smalle > 0 by showing that if the inner
verifier accepts the not-all-equal test with a probability bounded away @rdhren it is possible to define a
labeling for the vertices of of reasonable weight. Since OP) < 4, this leads to a contradiction provided
we choose small enough.

4.4 Other Hardness Results

Minimum Multicut and Sparsest Cut. Chawlaet al. [12] note that, as implied by the approximation-
preserving reduction from Min-2SAT-Deletion to Minimum Multicut of [35], Thm. 4.5 also shows that
Minimum Multicut is hard to approximate within any constant factor. Recall that Minimum Multicut is
the problem of given a grapfi andk pairs of vertice{(s;, t;) le, find a minimum-size subset of edges
whose removal disconnects every, t;) pair. Sparsest Cut is the problem of given a grépHind the cut
with smallest edge expansion where the edge expansion of(&cti} is defined asE (S, S)|/ min{S, S}.
Using a stronger version of the Unique Games conjecture, [12, Cor. 1.4] shows for some fixed constant
¢ > 0 thatitis NP-hard to approximate Min-2SAT-Deletion, Minimum Multicut and Sparsest Cut to within
factor cloglogn. The stronger version of the conjecture requires that the parangeteend the answer
domaink = k(¢, §) satisfymax{¢,d} < 1/(logn)*™ andk = O(logn). (We will show in Sec. 6 that for
the UGC to holdx must be at leashax{ }, which does not exclude the parameters required by
the stronger version).

On the algorithmic side, the algorithm of [24] approximates Minimum Multicut to within a factor of
O(log k), and [4] give a0 (+/log n)-approximation algorithm for Sparsest Cut.

_ 1 1
¢(1/10)’ 0

Max-Cut. In [30], Khot et al. show that assuming the Unique Games conjecture, it is NP-hard to approx-
imate Max-Cut to within any factor greater thénJr % (= .909155). 2 If they further assume a conjecture
they refer to as th#lajority is Stablestonjecture together with the UGC, then they show that it is NP-hard
to approximate Max-Cut to within a factergy, + € for all e > 0. Here,agwy = ming<g<, #:9)/2
which is exactly the approximation factor of the Goemans-Williamson algorithm [25]. The currently best
known gap for Max-Cut i§1, 1S + €) due to Hastad [44].

A generalization of the Majority is Stablest conjecture was recently confirmed by Mekaél[39,
Thm. 4.4]. Besides implying that based on the UGC the Goemans-Willim&38rapproximation algo-
rithm is the best possible for Max-Cut, their theorem also implies that based on the UGC, Max-2Lin-2 and

Max-2SAT have a gap dfl — ¢, 1 — O(/€)). Furthermore,

Theorem 4.9.[39, Thm. 2.12] UGC implies that for each> 0 there exists; = ¢(¢) such that given an
instance of Max-2Lin-q it is NP-hard to distinguish between the case wherd lit-ise)-satisfiable and
e-hardness. Indeed, this statement is equivalent to UGC.

2For consistency with the cited work, the approximation factorsaie
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Approximate Coloring. The Approximate Coloring problem (cf. Sec. 2.1) can be stated as follows: Given
a graphG and a pair(q, ), decide if the chromatic number 6f, x(G) < g or x(G) > Q. Wheng = 3,

the best known polynomial time algorithm solves the problem(Jo& O(n3/14) wheren is the number

of vertices of the given graph [10]. The strongest hardness result, on the other hand, is due toé¢hanna
al. [29] and shows that the problem is NP-hard €= 5. Most recently, assuming a variant of the Unique
Games conjecture (called theConjecture), Dinuet al.[15] show that the problem is hard for any constant

@ > 3. They also show that for any> 4 and any constan® > 0, the problem is hard based on Khot'’s [32]
2-to-1 conjecture.

We end this section with Khot@-to-1 conjecture. A 2P1R game has thktd-1" property if the answer
of the second prover uniquely determines the answer of the first prover and for every answer of the first
prover, there are at mogtanswers for the second prover that would make the verifier accept.

Conjecture 4.10 (-to-1). [32] Let § > 0 be an arbitrarily small constant, then there exists a constant
k = k() such that it is NP-hard to determine whether a 2P1R game avtti 1 property and answers from
a domain of size at mosthas valuel or at mosts.

Khot states that th-to-1 conjecture implies &2 — e hardness for Vertex Cover. In [34], however, Khot
and Regev show that the Unique Games conjecture implies vertex cover is hard to approximate to within
2 — e. This result is the topic of Sec. 5.

5 Hardness of Approximating Vertex Cover

In this section, we present the following result due to Khot and Regev [34]:

Theorem 5.1. [34] Assuming the Unique Games conjecturé;¥ertex-Cover is NP-hard to approximate
within factork — e for everyk > 2 and arbitrarily smalle > 0.

In [14], Dinur et al. show an inapproximability factor Qfgj — ¢ for Ek-Vertex-Cover based on the Raz
Verifier using a construction similar to that of [34]. We will compare the two techniques and show how the
Unique Games conjecture is used to prove the stronger result.

One way of reducing the Raz Verifier ta:B/ertex-Cover is by introducing a block of vertices for each
variable inX andY (representing their long codes) and emulating each constraifty a set of hyperedges
consisting of both-vertices (vertices introduced by) andy-vertices (vertices introduced B). However,
this reduction has a basic “bipartiteness” flaw: The underlying constraint graph being bipartite (i.e. the Label
Cover instance) has a vertex cover whose size is at most half the number vertices. This translates to a vertex
cover in the hypergraph regardless of whether the PCP instance used to construct the graph is satisfiable or
not.

Dinur et al. [14] overcome this bipartiteness flaw by introducing a multi-layered PCP. Instead of two
“layers” X andY the multi-layered PCP haklayers X1, X», ..., X,. Each pair of layers represents an
instance of the Raz Verifier. In this PCP, it is NP-hard to distinguish between the case where there exists
an assignment that satisfies all the constraints, and the case where for every pair okleeasy ; there
is no assignment that satisfies afraction of the constraints betwee¥y and.X;. Using this multilayered
PCP and théviasedlong code introduced in [16], Dinugt al. show that E-Vertex-Cover is NP-hard to
approximate within a factor aft — 1 — ¢) for all £ > 3 wheree > 0 is any arbitrary constant. We introduce
the biased long code in the next section as we will also be using it for our construction.
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Another way to reduce the Raz Verifier t&&fertex-Cover is to construct the hypergraph only from
the variables inX. We introduce &!%x! block of vertices for each € X representing its long code, and
hyperedges connect vertices frafis block to vertices frones’s block only if there existy € Y such that
Tyz, andm,,, are constraints in the system. This construction is used both in [14] for showirtéjhtae
result, and in [34] for showing thie — € result but starting from the Unique Games conjecture instead of the
Raz Verifier. A stronger form of the UGC called tB#&rong Unique Label Coveor Strong LC for short, is
needed in [34].

A Strong LCL(Y, X, E, R,11) is defined as follows. We are given a bipartite graphX, F') possibly
with parallel edges in which all the degrees of the verticeX iare equal to some constaht Each vertex
in Y and X is supposed to get a label from With every edgéy, x) € E there is an associated bijection
Tye : B — R, my, € II. An assignment of labels to verticds: Y U X — R is said to satisfy edge
(y,z) € Eif mye(L(x)) = L(y).

Theorem 5.2. [34, Thm. 3.2] Assuming the Unique Games conjecture, for@any> 0 there exists con-
stantsk, d such that the following is NP-hard. Given a Strong £LCY, X, E, R, II) with |R| = k and the
degree of every vertex i is d, distinguish between the case where there exists as assignment in which at
leastl — ¢ fraction of theX vertices have all their edges satisfied and the case where no assignment satisfies
more thany of the edges.

This form of the Unique Games conjecture shares two key properties with the Raz Verifier that the
employed techniques use to prove hardness in our hypergraph construction:

1. (Regularity) The layer in the underlying constraint graph used to create the vertices of the hypergraph
is regular.

2. (Strong Completeness) The Raz Verifier has perfect completeness, i.e. the provers have a strategy
such that with probabilityl, after fixing the question to the second prover, the verifier accepts for
everyquestion to the first prover. In the Strong LC, this happens with probability very close to
(Recall that the original form of the UGC simply states that the provers have a strategy that convinces
the verifier with probability very close tb).

Toreiterate, in [14], the hardness achievep§$—e, and in [34] itisk—e. Both results use the same type
of hypergraph construction, which we briefly mentioned but will shortly formalize, for constructing a hard
instance of E-Vertex-Cover. Their underlying constraint graphs are made essentially similar by Thm. 5.2.
They differ in their proof techniques and in that the constraints are projections in one and bijections in the
other. We will investigate why the proofs fail to give the tight hardness result when the constraints are
projections. Since the two constructions coincide exactly when 2, we will proceed by constructing a
graph from the Raz Verifier first, and switching to the Unique Games conjecture to show the strong hardness
result.

5.1 Preliminaries
The following definitions are from [14] and [34]. We include them here for easy reference.

Definition 5.3. For a bias parametef < p < 1 and a ground seR, the weight of a sef’ C R is

def
pi(F) = plfl (1= p)FIL
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Hence, the weight of a subset is the probability of obtaining this subset when each elefmé&npioked
with probabilityp. The weight of a family of subsets C 2% is,

WBF) 9 ST W)
FeF

Note that since.?(2%) = 1 the bias parameter defines a distributiordn We denote this distribution/’.
We will use a combinatorial view of the long code, and we define the biased long code next.

Definition 5.4 (p-biased Long Code).Letp < 0 < 1 be a bias parameter. A-biased long code over a
domainR for an element € R is a2/ bit string indexed by all subsefs C R. The bit indexed by has
a weight, /' (F') attached to it and its value isif o € F and0 otherwise.

The only difference between this definition and Def. 3.3 is the weight attached to each bit in the long
code.

Definition 5.5 (Influence). For a family 7 C 2%, an elementr € R, and a bias parametey, the influence
of the element on the family is defined as,

Ianuenc?(]—", o) i Prpc,n [exactly one of F U {c}, F'\ {c} isinF] .

Theaverage sensitivitgf a family is defined as the sum of influences of all the elements:

as’(F) = > Influencd'(F, ) .

g€ER

Definition 5.6 (Monotone Family). A family F C 2 is called monotone if € F and F C F’ implies
F' e F.

Definition 5.7 (Core-Family). A family F C 2% is called a core-family with a cor€’ C R if there exists a
family F- C 2¢ such that,

VEe2M  FeFifandonlyif FNC e Fo .

Finally, we define the notion of astwise t-intersecting family. Denotg:] = {1,2,...,n} and2l"l =
{F : F C[n]}.
Definition 5.8. A family F C 2" is calleds-wiset-intersecting if for every setsF, b, ..., F, € F, we

have|F1 N FyN--- N Fs| > t.

5.2 The Construction

We start with an instance of the Raz Verifier, or the equivalent Label Cover instance, £alviiereY
(resp. X) corresponds to the set of questions the verifier can ask pivéresp. P,), and Ry (resp.
Rx) corresponds to the set of its possible answers.{kgf} be the set of projection constraints. We will
construct a weighted grapghi = (V, E) as follows. The set of vertices of the graph will correspond to the
bits of the long codes of the labels assigned to the verticés dlamely, the set of vertices is defined to be,

VY x woRx
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For eachr € X, we define thdlock of vertex:, B[z], as the set of vertices corresponding:tarhat is,

Blz] = {(z,F): F C Rx} .

The weight of each vertex is
def 1 Rx

weight (. F)) < <]

(F)
where0 < p < 1is a bias parameter.

The edges are defined as follows. For every pair of constrajptsandr, ., sharing a common variable
y € Y, we add the following edges between verticeBin:] and B[x4],

{{<(L‘1,F>, <(L‘2,G>} - Ty (F) ﬂﬂ'ym(G) = (Z)} .

That s, there is ne; € F andry € G such thatry,, (r1) = 7y, (r2). The intuition behind the construction
of the edges comes from the completeness proof. Essentially, when the Label Cover instance is satisfiable,
we wantG to have a large independent set.

5.3 Completeness

Assume’ has an assignmerit that satisfies all the constraints. The following is an independent gét in
IS={(z,F): 2z € X,A(x) € F} .

That is, the vertices aff corresponding to thel’ bits of the long codes of the labels assigned to the vertices
of X form an independent set. Consider an edge {(z1, F'), (x2,G)} and suppose botfr, F') and
(x2,G) are in IS. Then we know that(z,) € F andA(z2) € G. But since edge§y, z1) and(y, z2) for
somey € Y in the label cover instance are satisfied, we hayg (A(x1)) = A(y) andmy,, (A(z2)) =
A(y). Hence A(y) € my,, (F)) Ny, (G) and we reach a contradiction by recalling the construction of the
edges. Now,

weight(IS) = ) ~ weight(IS N Bz |X] > Pr [De{Fe2fx . A@x)eF}]=p.
rxeX rzeX

The desired completeness is achieved by sefiing % — e wheree is arbitrarily small. Now if starting

from the Raz Verifier, we could show in the soundness case that no independert $etdiweight) where

o is arbitrarily small, then we would obtain the desired hardness result for vertex cover. This is because
we would have shown that we cannot differentiate between graphs whose minimum vertex cover has size
< % — € and graphs whose minimum vertex cover has size— §.

5.4 Soundness

Assume that there is no assignment that satisfies evefraction of the constraints of our Label Cover
instancel. Following the usual paradigm, we will assume towards contradiction that the graphtains

an independent set IS of size We would like to show that in such a case, it is possible to “decode” the
long codes and define a labeling that satisfiesfeaction of the constraints of. The proofs in [14] and

[34] employ results from extremal combinatorics and sensitivity analysis of Boolean functions to do the
decoding. We will investigate why the proofs fail to produce the degired hardness when the constraints
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are projections (i.e. when starting with the Raz Verifier as we did). We will then switch to the Unique Games
conjecture to show the desired result.

For everyx € X let,
Flz]|={F: F C Rx,(z,F) € 1S} .

Let X* be the set of vertices such that/™x (F[z]) > 6/2, i.e. weightF[z]) > Sweight B[z]). Using
this, we have,

weightIS) = ) weight(F[z]) + > weight Flz])
reX* TEX*
N 5 < X7 o1X]| - | X7
- AXI 2 |X]
= (X = 5lX]

The crux of the argument lies in being able to associate a small set of [BpelsC Rx with every
x € X*, i.e. anyz such that the intersection of IS with[z] is large. We will try to satisfy only those
constraints that are incident . This is aj/2 fraction of all constraints since th€ side of the underlying
bipartite constraint graph is regular ahdi™*| > %|X|. Let Y* be the set of variables df that share a
constraint with some variable iK*. In order to be able to satisfy the constraints inciden&dnwe would
like to have,

mye(Ll]) N Ly # 0, (11)

for every constraintr,, with z € X* andy € Y*, whereL[y| is a small set of labels fay. We will depend
on the fact that the intersection of the IS wiltjz] for z € X* is large (.} (F[x]) > §/2) to infer L[z].
We do not, however, have such a direct handle on the variglde¥™. Notice though if we ensure that,

Ty (L[T1]) N Ty, (L)) # 0, (12)
for every two constraints,;, , Ty, With z1, 20 € X*, y € Y, and if we let,

Lyl Y 7y (Lz())

wherez(y) is somer € X* with whichy has a constraint, then condition (11) will be satisfied. Here is how
we would use condition (11) to define a labeling. Suppose there is a cohstanh that L[x]| < h for all
x € X*. The following probabilistic labeling completes the argument. #ar X* (resp.y € Y*) let A(x)
(resp. A(y)) be a randomly chosen elementijfr] (resp. L[y]). For each test,, with z € X*,y € Y*,
7y (L[z]) and L[y] intersect and both have size at mastHence, with probability at leadt/h? we have
that 7, (A(xz)) = A(y), which implies that the expected fraction of satisfied constraints is at %%@st
Therefore, there exists an assignment that satisfies at least this many constraints angl &eg%egNould
give the contradiction.

But we need to show (12) provided that the sizes of the label sets are upper bounded by a constant. As
in [14], let’s try to use the following lemma abosrwise t-intersecting families.

Lemma 5.9. [14] For arbitrary €,§ > 0 and integers > 2 withp = 1 — 1 — ¢, there exists = (e, 6, s)
such that for anys-wise t-intersecting familyF C 2", pp(F) < 6. Moreover, it is enough to choose
t= Q(C%(log% + log(1 + é)))
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Consider anyr € X*. Sincep = 5 — e andp}X (F[z]) > §/2, by the above lemma, there exists
t = t(e, 3,2) and sets’¥, F¥ € Flz] such tha{F{ N F¥| < ¢, i.e. Fz] is not2-wise t-intersecting. Let
Llz] = F¥ N FZ.

Notice, however, we araot guaranteed for alby, 2o € X* andy € Y™ with constraintsry,, , 7z,
that ., (L[z1]) N 7y, (L[za]) # 0, even thouglzy, F{), (w1, Fy'), (ze, FT?), and(xs, Fy?) are in 1S3
Consider the following simple example,

Py = 7y, (F) = {1,2,3,7,8}
Py = 7y, (F31) = {4,5,6,7,8}
Q1 = Ty, (FF?) = {3.6,9, 10}
Q2 1= mya, (Fy?) = {1,4,9,10}

Note that none of?; N @, 7,5 = 1,2 is empty since otherwise we would have an edge in IS. Also,
Tyz, (L]z1]) € PLN Py = {7,8}, andmy,, (L[z2]) € Q1N Q2 = {9, 10}, which implies thair,,, (L[z]) N
Tyas (L[wa]) = 0.

This example shows a problem even if the constraints were bijections. Therefore, we need to explore
different avenues for constructing the small label sets and we turn to the techniques of [34].

We construct the labels in [34] partly from the next lemma. This lemma is obtained by combining the
fact that each familyF[z] is a monotone family with the Russo-Margulis identity [42, 38] and Friedgut’s
Theorem [22]. It is easy to see why eaéliz] is a monotone family. Lef' € F[z]. This means that
V(z',G) € 1S, my,(F) N my (G) # 0. But then, anyF” : F O F must satisfy the same constraints.
Hence, there is no edge betwegn F’) and any other vertex in IS implying th@&' € F[z]. Now, the
Russo-Margulis identity guarantees that a monotone family will have low average sensitivity, and Friedgut's
Theorem says that a family with low average sensitivity can be well approximated by a core-family with a
“small” core. We will use these cores as part of our label setsnLet0 be a sufficiently small “accuracy”
parameter:

Lemma 5.10. [34, Lemma 4.2] For every variable € X*, there exists a real numbeiz] € (1 — 5 —
e,1— 3 — &) and a core-familyF[z] C 27x with coreC[x] such that,

e The average sensitivity ﬁ% (Flz]) < 2.
e The size of’[z] is at mosthg, which is a constant depending only am, 7.
. Mf[;j (Flz] A Flz]) < n,andin particulamﬁ;‘} (Flz]) > 6/4 providedn < §/4.
We fatten each cor€'[x] with the following set to facilitate the analysis:
Infi[z] = {0 € Rx \ C[] : Influencg¥ (Flz],0) > '} ,

wheren’ > 0 is another accuracy parameter. Now,

linflfz]] < > |nﬂuence§;;] (Fla],0) <

c€ERx

a N

I

3In the construction of [14} = 4 and{(z1, F1), (z1, F2), (x2, G1), (x2, G2)} is an edge ifry., (FiNF2) Ny, (G1NG2) =
. Hence, it must be the case thaf,, (L[z1]) N 7yz, (L[z2]) # 0 for otherwise{(z1, FT'), (1, Fy'), (w2, FT?), (@2, F5?)}
would be a hyperedge in IS.
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by recalling the definition of the average sensitivity and using Lemma 5.10. We define the sets of labels of
eachr € X* as
Liz] ™ O] UInflz] .

The size of eacli[z] is at mosthg + e—f], “ h, which is a constant.

It remains to show condition (12) for every,,,, 7, Sharing the samg € Y*. Can we assume as in
[34] thatm,,, (L[z1]) N 7y, (L]z2]) = 0 and hope to reach a contradiction? The difficulty, both for us and
for [34], is thatL[z,] and L[z5] are not necessarily if[z1] and F[z2] respectively. If they were, we would
immediately reach a contradiction as we would have that the édge L[x1]), (z2, L[z2])} is contained
in IS. In [34], based on the definitions @fx;] and L]x2] and the assumption above, the existence of two
other setsF|, € Flz1] andF, € F[z,] is exhibited such that,,, (F1) N 7y, (F>) = 0, which leads to
the desired contradiction. In our case, however, it is possible that the image Bfsgyhas low weight in
the projected space, i.gugY({wyx(F) : F e Flz1]}) < 6/2. Consider the following extreme example.
Suppose for simplicityRx | = 23%. Let F[z;] be all non-empty subsets of the figst: — 2¢ + 2 elements
of Rx. Supposer,,, maps those elements to two element&inand maps the" — 2 remaining elements
of Rx to distinct elements oRy . Hence ' (F[x1]) > 3/22" + € and the weight of the image df[x1]
undery’v is < 3/2%" + e. Note that these are all constants singéhe number of repetitions, is constant.
This is a problem since it causes the proof of the analogue of Lemma 5.13 in the projected space to break
down. Such a situation does not occur when the constraints are bijections.

We continue by assuming that the underlying constraint graph used in the construction is based on the
Unique Games conjecture. We start with two general lemmas needed for the proof.

Lemma 5.11.[34, Lemma 2.2] ItF C 2% is monotone ang > ¢, thenpu(F) > plt(F).

Lemma 5.12. [34, Lemma 2.5] Let > 0 be an arbitrarily small constant and defipe= 1 — % — etobe
the bias parameter. Then, for a sufficiently large univekséhe following holds. For anyF C 2% such that
u{f(}") > 1 — 1 there exist: sets in the familyF whose intersection is empty.

The proof of the first lemma can be found in [16, Prop. 3.3] for example, and the proof of the second
can be found in [13, Lemma A.4].

The proof towards contradiction is continued in [34] assuming, and r,,, are identities. This
is indeed without loss of generality, and we shortly elaborate on this. With identities, the assumption
Tya, (L[z1]) N Tyey (L]z2]) = 0 implies L{z1] N L{z2] = @, which in turn implies the following: There
exists a subsel/y, C Cf[z] with a large family of extension&l that do not include elements from the
coresC|z1], C[z2] such thatH U Uy € F|xi]. This statement is formalized in Lemma 5.13 below. A
similar lemma shows the existence of a suliget_ C[x2] with a large family of extension&/, such that
HyUV, € Flxs]. Since both families are “large”, Lemma 5.12 gives us two 88tsH, in their intersection
such thatd; N Hy = () allowing us to complete the proof.

We will use the core-families given by Lemma 5.10 with their core fattenings to prove Lemma 5.13.
Note that nowRx = Ry = R.

Lemma 5.13.[34, Lemma 4.3] There existg C C|z;] such that defining

R R\ (C[z1] U Clza)); and
M) Y {0 He 2R HUU € Flu]}

we haveu!t \(H[z1]) > 1 8n/s.
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Proof. The idea of the proof is the following. If we choosg C C[z1] andU € Flz1], then roughly
speaking, for anyG C R\ Cf[z1] there is a good chance th&y U G € F|z;]. This will follow
from the fact thatF[z,] is a core-family (hencel/y U G € Flz1]) that well-approximatesF|z] (as
/Lf[xl](f[l‘ﬂ A Flz1)) < n), and that has significant weight (,asm(]?[xl]) > 0/4).
Let us formalize this intuition. We are saying thatif= {G C R\ Clz1] : GU Uy € Flx1]}, then
f\Clau] (G) is large. The sef looks very similar taH [z ] except that sets in the latter family do not include

pl1]
any element front'[z2]. Suppose we can ensure that

Geg — (GUUQ)\C[I’Q] 6.7:[:1/‘1] , (13)
then we would have that
Geg «— (G\C[acg])Uerf[ml] <~ G\C[xg]GH[.%'ﬂ , (14)

which follows sincel/y N C[z2] = () by our assumption that[z;] N L[zs] = () and from the definition of
H[z1]. We can ensure (13) by slightly modifying the definitionthfLet,

g= {G - R\C’[xl] :GUUp e .7-"'[:131]}; where
.7'—/[%'1] = {F S .7:[.1‘1] : F \ C[JL’Q] € .7:[1'1]} .
With this new definition ofG, (14) implies that,

i leilg) = . (i) (15)

However, we have a relationship between the core-farﬁi[lyl] and F|z:]|, whereas we now need a re-
lationship betweerf|x;] and F'[x;]. This is where the set Injft;] comes in. Again, by the assumption
Liz1] N L[z2] = 0 we haveCz2] NInfl[z1] = @, which implies that the elements @z2] have influence at
mostr’ on F[x1]. A technical lemmain [34, Lemma 2.4] gives

fopto)(Flaa] A Fllan]) <y
by settingr’ to be a small enough constant. Hence,

pl o (Flan) A Flan]) < plt o (Flaa] A Flaa)) + plh,  (Fla] A Flz)) < 21

It remains to shovilUy C C[z1], Uy € Flz1] such thawﬁllc][“](g) >1—8n/d, or equivalently,
Pr  [GUUy & F'lz]] <8n/d . (16)
GeyF\Clel
Hple;]
Now,
2> il (Fln] AF ) > Pr |G e Floi)andG ¢ Flr]| (172)
Hplay]
> Pr [G € 5’-"[951] ’ G e ﬁ[$1]} . é (17b)
Ge,uf[zﬂ 4
_9 ! T
-1 > P [G UU ¢ Fll1] |GUU € f[;vl]] (17¢)

UCClz1] F€Hpiay]
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where (17b) follows from the fact thatf[m](]?[xl]) > /4 in Lemma 5.10. Setting < §/4, the fact
thaty/t, | (Flz1]) > p(Fla1]) = 6/2 (by Lemma 5.11 and the monotonicity &z:]), combined with
Freidgut's Theorem, which says}fle](]-“[xl] A Flz1]) < n, guarantee this lower bound on the weight of
Flz1]. Now, for our choices off andU in (17c),

GUU € Flz1] < (GUU)NC[z1] € Felr1] < U € Folr1] < U € Floy] .

Therefore, .
Ui /
— P
5 > Z L R\rc[wl] [GU UgF [xﬂ] ,
UCCla1|,UeF[x1] = Hplaa]
implying that3U, C C|x4], Uy € f‘[xl] satisfying (16) and completing the proof. O

The bijections simply rename the spaBge and with bijections (as opposed to identities) the lemma
would be stated as: (For ease of notation, we write (S) := ;5)

Lemma 5.14. There existsr Uy C 71 C|x1] such that defining

R Y R\ (m1Cla1] UmaCla)]): and

Hiz]) Y {0 - H €28 HUmMUy € mFlaa)}

we haveu!t \(H[z1]) > 1 - 8n/s, wherem Flz1] = {m F : F € Flu1]}.

Analogously, we have a lemma stating the existences0f) C moC[x2] with the family H|[xs] of
extensions such thatf;Q](H[m]) > 1 — 8n/é. The proofs of the two lemmas are similar to the proof
of Lemma 5.13 modulo the renaming of variables. Armed with these two lemmas, we can complete the
proof. Letp* = 1 — £. Note thatH[x1] andH[z,] are both monotone subfamilies oF'. Therefore by
Lemma 5.114[% (H[z1]) > ulf, (H[z1]) > 1 — 8n/6 and similarly forH[z2]. Hence, the intersection of
the two families satisfies,

$E (M) N ) > 1 % >

by choosingy < 6/32. Therefore, setting: = 2 in Lemma 5.12 implies that there exist séfs, H, €
H[z1] N H]zso] such thatd; N Hy, = (. Now defineG; = mUy U Hy andG2 = mVy U He. By the
definition of H[z1] andH[z2], we haveG; € 71 F[z1] andGy € maF|z2]. Furthermore,

Fy = (7ye,) H(G1) € Flay]; and
Fy = (mye,) N (G2) € Flaa),

by the definition ofry F[z1] andmeF|x2]. Thus,(z1, F1) and(z9, F») are vertices in the supposed IS and
they form an edge since,

mFLNmoFy = G1 NGy
= (7T1U0 ﬁ?TQVQ) U (7T1U0 N HQ) U (7TQVQ ﬂHl) U (Hl N Hg)
=0 .

The last line follows since
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o (mUyNmVp) = 0 by the assumption that L{x1] N woL{zs] = 0,
e (mUyN Hs) = (meVy N Hy) = 0 by recalling thati;, Hy C R’ = R\ (m1C[z1] U m2C|[z2]); and,
e HiN Hy={0bylLemmab5.12.

This completes our investigation.

In summary, assuming the Uniqgue Games conjecture, we obtain the tightest possible hardness of ap-
proximation result for vertex cover. On the other hand, the best known inapproximation result for vertex
cover starting with the Raz Verifier and utilizing similar tools (including biased long codes, Friedgut's The-
orem, and theorems from extremal combinatorics) is by Dinur and Safra [16] who were able to 536w a
hardness factor. Their result comes about five years aﬁetad’s% hardness result [44].

6 The Plausibility of the Unique Games Conjecture

In light of its consequences, it is important to investigate the plausibility of the Uniqgue Games conjecture.
One important aspect of the conjecture is the domainfsizek (¢, §) of the provers’ answers. For example,

it is easy to see thdt must be at least/J. By choosing their answers uniformly at random from the domain

of possible answers, the provers can make the verifier always accept with probigfdilitdence,l /k < ¢.

Khot [32] also relates the domain size¢dhrough the following theorem,

Theorem 6.1. [32, Thm. 1] There exists a polynomial time algorithm such that given a unique 2-prover
game with valud — ¢ and answers from a domain of sizgit finds prover strategies that make the verifier

accept with probabilityt — O(k2e'/, /log (1)).

We present the algorithm of Khot that gives this theorem below. The theorem implies that for the Unique
Games conjecture to hold, it must be the case that,

1 — ck®¢Y?, [log C_) <6, (18)

wherec is some constant; for otherwise, we would be able to distinguish between instances of unique
games whose value is at ledst- ¢ and instances whose value is at mésExpression (18) implies that
k> 1/ (¢ /e(log(1/¢))*/*). # Khot notes that disproving the conjecture may require an algorithm that
gives a theorem similar to Thm. 6.1, but whose performance is independéntiotieed, Trevisan [46]
provides such an algorithm that disproves a stronger version of the conjecture. Namely, for a ecarstiant
for everye > 0, the Unique Games conjecture with completeriessc(e3/(log |TI|)?) and soundness— ¢
is false. Here]l is the set of constraints in the game, i.e. the completeness paraniget®t a constant, but
is dependent on the input.

Nonetheless, a weaker version of the conjecture was recently confirmed by Feige and Reichman [20].
In [32], Khot raised the question of whether the value of a unique 2P1R game with domainisihard
to approximate within factof (k) wheref(k) — oo ask — oo. Feige and Reichman answer this question
positively:

Theorem 6.2. [41, 20] There is some > 0 such that for every primg it is NP-hard to approximate the
value of a unique 2P1R game with answers from a domain opgizavithin a factor smaller thap”.

“In [32], it is stated thak must be at Ieas]t/(l/lo. It seems though thdt need only be greater than the expression here.
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For arbitrarily smalld > 0, we can choosg large enough so that” > 1/6. Hence, Thm. 6.2 can be
restated as follows,

Corollary 6.3. [20, Cor. 2] For any arbitrarily small constand > 0, there exists a constaft< { < 1 and
a primep such that it is NP-hard to determine whether a unique 2P1R game with answers from a domain of
sizep has value at least — ¢ or at mosty(1 — ().

Technically, this result is weaker than the Unique Games conjecture since in the latter, both constants
0 and( are arbitrary. Furthermore, the result does not provide the desired gap provided by the UGC since,
as noted in [46, 12], the value of the instances produced by the proof is very small. Prior to this result,
it was only known that approximating the value of unique games wihimeconstant factor is NP-hard.
This comes from the fact that Max-2Lin-2 is NP-hard to approximate within a fa}étere [44], and via a
reduction that shows given an instance of Max-2Lin-2 that-gatisfiable, we can transform it to a unique
game whose value 5~ (see, e.g., [41]).

Tackling Max-2Lin-p seems to be a fruitful approach for proving the Unique Games conjecture. Feige
and Reichman state Thm. 6.2 [20, Thm. 4] for a variant of Max-2Lin-p, theypoafier Max-2Lin-p which
they show is equivalent to a unique game. Also, as stated in Sec. 4.4, [39] show that ikfor @llhere is
ap = p(e) such that Max-2Lin-p hagl — ¢, €)-hardness, then the Unique Games conjecture is true.

On the other hand, Khait al. [30] show that the Uniqgue Games problem is formally easier than im-
proving the approximation guarantee for Max-Cut, which may provide encouragement for attacking unique
games algorithmically. The SDP of Khot, and Trevisan’s algorithms are steps in this direction.

Instead of attacking the Unique Games conjecture, another interesting avenue of exploration would be
to prove at least some of the results it implies using Khot's [31] Smooth Label Cover or the multi-latyered
version of it. The maps in a Smooth Label Cover have the smoothness property (see Sec. 4.3, Eqg. (10)),
which is a weaker analogue of the bijection property of the maps in a Unique Label Cover. Khot used the
multi-layered version of smooth label cover to confirm Conjecture 4.7 about the hardness of approximating
NAE3; 3, which is based on Unique Label Cover. Most interesting would be to achieve a hardness factor
better tharl.36 for Vertex Cover.

Proof of Theorem 6.1. We now present the semidefinite programming based algorithm of [32] that gives
Thm. 6.1 and we provide a sketch of its proof. The full details can be found in [32].

Assume we are given a weighted unique Label Cover instéfég k|, {mu, }, {ww }) Where the con-
straint graph need not be bipartite. Namely,is a set ofn variables which take values from the domain
[k]. For every paifu,v), there is a constraint which is a bijectian, : [k] — [k] with weightw,, where
> uw Wuw = 1. A constraintr,, is said to be satisfied by an assignmént X' — [k] if 7, (A(u)) = A(v).

The goal is to find an assignment that maximizes the weight of satisfied constraints.

We first formulate this problem as a strict quadratic program (where each monomial in the objective
function and the constraints have deg?ear 0), and then relax the program to a vector program. For each
u € X we createk new variables., . .., u; wherew; indicates if variable: is assigned the valuec [k].
Clearly, if u is assigned, € [k] we wish to have:;, = 1 andu; = 0 for all i # iy. This is achieved by the
following constraints:

Wi tui4dtui=1 YueX (19a)
wiu; =0 Yu e X andVi # j (19b)
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We wish to maximize the following objective function

Z W (U1Vr,, (1) + U2Vmy,(2) +*+* + UkUpy (k) - (20)

u,v

Before relaxing the program, we need to make sure that the solution to the vector program has the same type
of symmetries as the solution to the quadratic program. Therefore, we add the next two constraints which
are implied by constraints (19)

wv; >0 Yu,ve X andVi,j (21a)
> uwi=1 (21b)
1<i,j<k

The relaxation is standard. Each auxiliary variabjewill be replaced with a vectoii; in ®*", and each
degree2 term in the objective function and the constraints will be replaced by the corresponding inner
product. The complete program is,

maximize Y " wyy (i1 - T, (1) + -+ + Gk - Try (1)) (22a)
subjectto iy - wy + o - Uiy + -+ U - Uk = 1 Yu e X (22b)
ﬁi'ﬂj:() Yue X Vi#j (22c)
iy - 17j >0 Yu,v € X Vi, j (22d)
> d - =1 (22e)

1<i,j<k

Clearly, any feasible solution to the quadratic program yields a solution to the vector program having the
same objective function value by settiig= (u;,0, ... ,0).

Forallu € X, letu = Zle i;. In any feasible solution of the SDP and for any two variahbies,
constraint (22e) implies that- v = 1, and constraints (22b) and (22c) imply thial| = ||7/||. Hence for alll
u,v € X, @ = ¢. Denotes = @ which is the same for all variables

The following algorithm produces an assignment whose expected weight i© (k%¢!/5, /log (1)),
which is sufficient to prove Thm. 6.1 as it shows that there exists an assignment with this weight. Recall
that the weight of an assignment is the total weight of edges it satisfies. In a 2-prover game an assignment
corresponds to a strategy of the provers and its weight is equal to the probability of acceptance of the verifier

given this strategy.
Algorithm 1:

1. Solve vector program (22a)

2. Picks to be a uniformly distributed vector on the-dimensional unit sphere.
Assumer - § > 0 by replacing”with —7if needed.

3. Construct the following assignment For everyu € X, let
A(u) =19 where iy = argmax(7- u;) .

1<i<k
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Let ayy = ) ;U - Up,, (i), 1-€. uy IS the part if the SDP objective function corresponding to the
constraint(u, v). We are given thaEW WypOyw > 1 — €. A simple calculation shows

Z Wy > 1 — 2617 . (23)

Oy >1— 1 €1/5
Hence, if with probabilityp we can satisfy the pairg:, v) for which «,,, is close tol, then the expected
weight of the assignment produced will be at lgadt — 2¢'/5). Specifically, the proof shows that for any
auy > 1 — 264, Primy(A(u)) = A(w)] = 1 — O(k%¢/5, /log (1)); therefore, the expected weight of
the assignment producediis- O(k%¢!/%, /log (1)) as desired. In the remaining part of the argument, let

T = -
The case when,,, = 1 provides some intuition behind the proof. Whep, = 1, we have,

since constraint (22b) ensures each sum on the r.his Egpression (24) can be rewritten as,
Zi\|ﬁi||2 + |1Tn (i) I — 2 - Tz = 0
=Vi (@l 4 ([T |? — 24 - Ty =0
Vi (1@ 4 1T I = 20 1 Trall = 0
=Vi ||t — rl| =0
The second and third lines follow from the fact that forial|@; ||? + || T |1* > 2||@ || |U(5)|| = 2%; - Tr(s)-
Hence, for alli, i; = ¥(; and for any vector, if iy is the index that maximizes - ;, theni - ()
is maximized at indexr(ip). The algorithm thus assignd(u) = iy and A(v) = w(ip) satisfying the
constraint. Wheny,, is close tol, however, a similar calculation to the one above only guarantees that for
all 4, ||ﬁl — ﬁﬂ(Z)H < €2/5,
Again, letiy € [k] be the index that maximizes- @;. The proof shows that with probability —
O(k2e'/3, [log (1)) we have,

1
Vi#io, |7 (W, — )| > 5e2/% [log () : (25)
€

and, using the fact thafti; — ;|| < €*/°, we have,

1
Vi, P (@ — Bg)| < P log< ) . (26)

€

Expressions (25) and (26) imply thatiit~ ig,

But expression (26) says: i, — - U(;,) < €2/°4/log (1). Therefores(io) is the index that maximizes
7 - ¥;, and the algorithm setd(v) = w(ip) = m(A(u)).
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