February 2006

Two-Step Sintering of Ceramics with Constant Grain-Size, II: BaTiO$_3$ and Ni–Cu–Zn Ferrite

X.-H. Wang
Tsinghua University

X.-Y. Deng
Tsinghua University

Hai-Lin Bai
Tsinghua University

H. Zhou
Tsinghua University

Wei-Guo Qu
Tsinghua University

See next page for additional authors

Follow this and additional works at: https://repository.upenn.edu/mse_papers

Recommended Citation

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/mse_papers/91
For more information, please contact repository@pobox.upenn.edu.
Two-Step Sintering of Ceramics with Constant Grain-Size, II: BaTiO$_3$ and Ni–Cu–Zn Ferrite

Abstract
We investigated the preparation of bulk dense nanocrystalline BaTiO$_3$ and Ni–Cu–Zn ferrite ceramics using an unconventional two-step sintering strategy, which offers the advantage of not having grain growth while increasing density from about 75% to above 96%. Using nanosized powders, dense ferrite ceramics with a grain size of 200 nm and BaTiO$_3$ with a grain size of 35 nm were obtained by two-step sintering. Like the previous studies on Y$_2$O$_3$, the different kinetics between densification diffusion and grain boundary network mobility leaves a kinetic window that can be utilized in the second-step sintering. Evidence indicates that low symmetry, ferroelectric structures still exist in nanograin BaTiO$_3$ ceramics, and that saturation magnetization is the same in nanograin and coarse grain ferrite ceramics.

Comments

Author(s)
X.-H. Wang, X.-Y. Deng, Hai-Lin Bai, H. Zhou, Wei-Guo Qu, L.-T. Li, and I-Wei Chen

This journal article is available at ScholarlyCommons: https://repository.upenn.edu/mse_papers/91
Two-Step Sintering of Ceramics with Constant Grain-Size, II: BaTiO$_3$ and Ni–Cu–Zn Ferrite

State Key Laboratory of New Ceramics and Fine Processing, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, China

I.-W. Chen

Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104-5272

We investigated the preparation of bulk dense nanocrystalline BaTiO$_3$ and Ni–Cu–Zn ferrite ceramics using an unconventional two-step sintering strategy, which offers the advantage of not having grain growth while increasing density from about 75% to above 96%. Using nanosized powders, dense ferrite ceramics with a grain size of 200 nm and BaTiO$_3$ with a grain size of 35 nm were obtained by two-step sintering. Like the previous studies on Y$_2$O$_3$, the different kinetics between densification diffusion and grain boundary network mobility leaves a kinetic window that can be utilized in the second-step sintering. Evidence indicates that low symmetry, ferroelectric structures still exist in nanograined BaTiO$_3$ ceramics, and that saturation magnetization is the same in nanograin and coarse grain ferrite ceramics.

I. Introduction

Two-step sintering is a promising approach to obtain fully dense nanograin ceramics because it suppresses grain growth in the final stage of sintering. This was demonstrated for Y$_2$O$_3$, which has a cubic, defective fluorite structure, and for Y$_2$O$_3$ doped with either Mg or Nb that enhances or suppresses grain boundary kinetics, respectively. Application of this method to other ceramics seems possible, as the mechanisms for two-step sintering rely on the general features of kinetics and structural changes on the grain boundary, which do not depend on the crystal structure/chemistry of Y$_2$O$_3$. One promising area to employ two-step sintering is in electroceramics, where theitors (MLCC) or multi-layer-chip inductors or beads (MLCI or MLCB) to become ever thinner and smaller. As the grain size should be no more than one-tenth of the layer thickness in a multilayer assembly, as the layer thickness approaches micrometer and submicrometer range, nanograin ceramics will be in demand. Moreover, there is also a continuing trend to lower the sintering temperature of MLCC, MLCI, and MLCB in order to satisfy the co-firing requirement with Ag electrode (which melts at 961°C). In this respect, the two-step sintering method offers an additional advantage as it requires a substantially lower sintering temperature than conventional sintering methods.

In this paper, we studied two prototypical electroceramics, perovskite-structured BaTiO$_3$ (BT) and spinel-structured Ni$_{0.1}$Zn$_{0.6}$Cu$_{0.2}$Fe$_2$O$_4$ (Ni–Zn–Cu) ferrite to assess the feasibility of two-step sintering for electroceramics. BT is extensively used as the base material for high dielectric constant capacitors, PTC resistors, transducers, and ferroelectric memories. It is well known that above the Curie temperature (130°C), its structure is cubic and paraelectric, below which the structure is distorted and three ferroelectric polymorphs with nonzero dipole moments appear at various temperatures. Thus far, the finest grain size of dense BT ceramics reported was 50 nm, fabricated by spark plasma sintering with a uniaxial hot-pressing pressure of 100 MPa. In the case of ferrite, the present ceramic manufacturing technologies typically result in micrometer-sized grains and require sintering aids (typically Bi$_2$O$_3$ and V$_2$O$_5$), which form a liquid at the sintering temperature and induce compositional segregation in the fired ceramics. The finest reported grain size of dense ferrite is about 1–2 μm fabricated by ultrafine powders, but the need for fine grain ceramics has been recognized.

In the following we report how two-step sintering was successfully applied to obtain dense fine-grained BT and ferrite ceramics that sinter at low temperatures to ≥ 96% of relative density without grain growth. To illustrate the utility of this approach, we limited our study to stoichiometric BaTiO$_3$ and Ni–Cu–Zn ferrite, without any sintering additive. In addition, as the Ti-rich BT composition is known to have a eutectic temperature of 1317°C, we kept the sintering temperatures well below this value to avoid any influence of liquid. Using two-step sintering, dense fine grain (35 nm for BT and 200 nm for ferrite) ceramics were obtained for the first time. In addition, the kinetics of two-step sintering was documented and compared with that of Y$_2$O$_3$, about which considerable understanding was already derived from our previous studies. Lastly, we will demonstrate that the obtained structures of nanograin electroceramics possess salient features that ensure their ferroelectric and magnetic properties.

II. Experimental Procedures

High-purity BT nanocrystalline powders used here were synthesized by a modified oxalate precipitation method as described previously. The starting materials were barium acetate (Ba(CH$_3$COO)$_2$), tetrabutyl titanate (Ti(OC$_4$H$_9$)$_4$), oxalic acid (H$_2$C$_2$O$_4$) as a precipitator, and alcohol as a solution medium. The precursor was calcined at different temperatures (650–900°C) to produce phase pure nanocrystalline BT powders. The mean particle size, determined by transmission electron microscopy (TEM, TEM-200CX, JEOL, Tokyo, Japan) and X-ray diffraction (XRD, D/max, Rigaku Co., Tokyo, Japan), was 10–30 nm depending on the calcination temperature. The Ba/Ti atomic ratio was determined by X-ray fluorescence analysis to be 1 ± 0.003 for all the powders.

High-purity nanocrystalline ferrite powders with a composition of Ni$_{0.2}$Cu$_{0.2}$Zn$_{0.6}$Fe$_2$O$_4$ were prepared by a previously...
reported citrate process. The raw materials were reagent-grade iron nitrate, nickel acetate, copper acetate, citric acid, and ammonia. The citric precursor gel was dried, ignited, and combusted, or calcined at 600°C to leave a green compacts were sintered using various two-step firing techniques by counting at least 500 grains. TEM was also used to determine the particle size of powders. Final density (average of three duplicate pellets) was determined to be within ±0.1 g/cm³ by the Archimedes method using distilled water as displacement liquid. The density after first-step sintering was estimated from the weight and dimension of duplicate specimens; the estimates were consistent with the data of dilatometry. In addition, Raman spectra of BT were recorded using a confocal microscopic Raman spectrometer (RM2000, Renishaw, U.K.) over the temperature range from −150°C to 200°C. The saturation magnetization of ferrite ceramics was measured using an LDJ 9600 vibrating sample magnetometer, and their DC resistivity was determined using an HP 4040B meter (Palo Alto, CA).

III. Results and Discussion

(1) Characterization of Nanocrystalline Powders

An example of BT powders used in this study is shown in Fig. 1(A) for powders obtained after 750°C calcination. They have a homogenous, nearly spherical shape with a size from 20 to 30 nm. This is consistent with XRD, which indicated an average crystallite size of 28.4 nm using estimation from the broadening of the (111) perovskite peak. (Here we assume a cubic perovskite structure as there was no splitting of (002) and (200) reflections). They will be referred to as 30 nm BT powders below. Figure 1(B) shows an example of ferrite powders obtained after combustion, which had an average particle size of 8–10 nm. This is consistent with the XRD result, which indicated an average particle size of 10.3 nm. XRD also indicated a spinel structure with Ni/Cu/Zn occupying the A site and Fe occupying the B site. They will be referred to as 10 nm ferrite powders.

<table>
<thead>
<tr>
<th>Sample</th>
<th>ρ₀ (%)</th>
<th>T_1 (°C)</th>
<th>t_1 (h)</th>
<th>ρ₁ (%)</th>
<th>G_1 (nm)</th>
<th>t_2 (h)</th>
<th>ρ₂ (%)</th>
<th>G_2 (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BaTiO₃-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BaTiO₃-2</td>
<td>46</td>
<td>980</td>
<td></td>
<td>78</td>
<td>68</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BaTiO₃-3</td>
<td>46</td>
<td>1100</td>
<td></td>
<td>73</td>
<td>148</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BaTiO₃-4</td>
<td>46</td>
<td>1100</td>
<td></td>
<td>73</td>
<td>148</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BaTiO₃-5</td>
<td>46</td>
<td>1150</td>
<td></td>
<td>78</td>
<td>200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BaTiO₃-6</td>
<td>46</td>
<td>1150</td>
<td></td>
<td>78</td>
<td>200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BaTiO₃-7</td>
<td>46</td>
<td>1180</td>
<td></td>
<td>83</td>
<td>290</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BaTiO₃-8</td>
<td>46</td>
<td>1180</td>
<td></td>
<td>83</td>
<td>290</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BaTiO₃-9</td>
<td>46</td>
<td>1200</td>
<td></td>
<td>87</td>
<td>495</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BaTiO₃-10</td>
<td>46</td>
<td>1200</td>
<td></td>
<td>87</td>
<td>495</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BaTiO₃-11</td>
<td>46</td>
<td>1200</td>
<td></td>
<td>87</td>
<td>495</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BaTiO₃-12</td>
<td>46</td>
<td>1200</td>
<td></td>
<td>87</td>
<td>495</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BaTiO₃-13</td>
<td>46</td>
<td>1230</td>
<td></td>
<td>90</td>
<td>795</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BaTiO₃-14</td>
<td>46</td>
<td>1230</td>
<td></td>
<td>90</td>
<td>795</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ferrite-1</td>
<td>46</td>
<td>850</td>
<td></td>
<td>76</td>
<td>198</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ferrite-2</td>
<td>46</td>
<td>850</td>
<td></td>
<td>76</td>
<td>198</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ferrite-3</td>
<td>46</td>
<td>850</td>
<td></td>
<td>76</td>
<td>198</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ferrite-4</td>
<td>46</td>
<td>890</td>
<td></td>
<td>81</td>
<td>397</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ferrite-6</td>
<td>46</td>
<td>890</td>
<td></td>
<td>81</td>
<td>397</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ferrite-7</td>
<td>46</td>
<td>910</td>
<td></td>
<td>87</td>
<td>495</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ferrite-8</td>
<td>46</td>
<td>910</td>
<td></td>
<td>87</td>
<td>495</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ferrite-9</td>
<td>46</td>
<td>910</td>
<td></td>
<td>87</td>
<td>495</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ferrite-10</td>
<td>46</td>
<td>930</td>
<td></td>
<td>91</td>
<td>792</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ferrite-11</td>
<td>46</td>
<td>930</td>
<td></td>
<td>91</td>
<td>792</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ferrite-12</td>
<td>46</td>
<td>930</td>
<td></td>
<td>91</td>
<td>792</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Ten nanometer powders.
without grain growth in the second step. One sample (ferrite #6) even reached full density within the accuracy of our measurement. In contrast, in conventional sintering high density could not be reached at comparable temperatures. (For example, when 950°C was used to sinter BT for 20 h in conventional sintering, only 80% density was obtained.) These experiments also showed that, for BT, the lowest starting density for the second step was 73%. For ferrite, it was 76%. (Runs of lower starting density did not reach high density at T₂, and thus are not included in Table I. For example, for BT, when T₁ = 1050°C, ρ₁ = 68%, T₂ = 950°C/20 h, final density = 85%, or when T₁ = 1080°C, ρ₁ = 71%, T₂ = 950°C/20 h, final density = 89%.) For Y₂O₃, we found that a similar critical starting density of about 75% was required to allow sintering at T₂ to successfully proceed. This is because below the critical density the pore size is so large, compared with the grain size, that pores are thermodynamically stable according to Kingery and Francois. For Y₂O₃, there is a kinetic window for second-step sintering, expressed in grain size and T₂, outside which high density (≥ 96%) without grain growth can not be achieved even when the starting density is above critical. Similar windows determined for BT and ferrite are shown in Fig. 3 in which the solid symbols indicate successful T₂ sintering, open symbols above the upper boundary indicate grain growth at T₂, and open symbols below the lower boundary indicate incomplete densification despite long soak times at T₂. As in the case of Y₂O₃, the slope of the upper boundary is positive, while the slope of the lower boundary is slightly negative. These similarities suggest very similar mechanisms operating in second-step sintering in all three systems, even though they have very different chemistry and crystal structures. (In Y₂O₃, the same features of kinetic window were observed when different dopants—Mg and Nb—were introduced.) The upper boundary was explained by the increasing driving force for grain growth at smaller grain sizes, so the growth of finer grains begins at a lower temperature. The lower boundary was explained by the threshold effect on interface kinetics, which emerges at small grain sizes. This effect diminishes at larger grain sizes, allowing the kinetic window to extend to lower temperatures.

Micrographs of BT and ferrite are shown in Figs. 4 and 5, respectively, for a number of dense ceramics obtained by two-step sintering and conventional sintering. In Fig. 4, the finest grain size (35 nm) is that of BT ceramic A, obtained using 10 nm powders (calcined at 650°C), cold-die-pressed at 2 GPa to 61% relative density, and then two-step sintered using T₁ = 950°C and T₂ = 900°C (2 h). Another fine grain BT ceramic, B (70 nm), was obtained using 10 nm powder, isostatic pressed at 200 MPa, and then two-step sintered using T₁ = 980°C and T₂ = 900°C (4 h). The coarsest grain size (1.2 μm) is that of ceramic F obtained using 30 nm powders, densified by normal sintering at 1200°C for 2 h (its grain size/density trajectory shown in Fig. 2(A)). In Fig. 5, the finest grain size (200 nm) is that of ferrite ceramic A, which was from 10 nm powders, two-step sintered at T₁ = 850°C and T₂ = 800°C (6 h). The coarsest grain size (2 μm) is that of ceramic E, which also used 10 nm powders, but densified by normal sintering at 900°C for 4 h (its grain-size/density trajectory shown in Fig. 2(B)). In addition to the larger
grain size, it exhibits an inhomogeneous microstructure with discontinuous grain growth resulting in some grains of more than 5 μm. As a further comparison, Fig. 5(F) shows the microstructure of a sample obtained by conventional processing, using normal sintering and powders from solid-state reactions. These microstructure comparisons clearly demonstrate the advantage of two-step sintering over other processing methods in obtaining fine-grained, uniform ceramics. Indeed, for both BT and ferrite, this was the first time that such fine grain sizes were reported for dense ceramics.

(3) Ferroelectric and Magnetic Structures of Nanocrystalline Ceramics

A full description of the physical properties of dense, nanograin ceramics sintered in this study will be reported elsewhere. Here we provide some evidence that their structures possess salient features that ensure their ferroelectric and magnetic properties.

To reveal the structure of dense nanograin BT ceramics, we used Raman spectra, which are shown in Fig. 6 for a 35 nm ceramic at different temperatures. According to Perry and Hall,20 and Laabidi et al.,21 the 305 cm⁻¹ (sharp) and 715 cm⁻¹ bands are forbidden in cubic (C) symmetry, the peak position of the 240–270 cm⁻¹ broad band discontinuously drops during the tetragonal to orthorhombic (T/O) transition, and the sharp multi-peak at 170–190 cm⁻¹ band is a rhombohedral (R) characteristic, although in both O and T symmetries it still manifests as a weak, diffuse feature. Meanwhile, the small positive peak at 487 cm⁻¹ is also a characteristic R band. From Fig. 6, we can then definitely identify that in the 35 nm ceramic C symmetry exists at T = 150 °C and there is a T/O transition at 50 °C, which is sufficient to establish the existence of all three (T/O/R) symmetries. In addition, the nominally C spectrum at 200 °C still has weak features at 305 and 715 cm⁻¹ indicating T remnants. Therefore, the C/T transition was rather diffuse in this nanograin ceramic. The above Raman features provide evidence that there is a driving force for structure distortion of the same type that occurs in coarse grain BT. Therefore, nanograin ceramics should be capable of ferroelectricity at least on the local level. This has been verified in our ongoing study by piezoelectric imaging, dielectric constant, and high-resolution XRD.22

Evidence that nanograin ferrite ceramics are magnetically active was provided by measurements of saturation magnetization.
As shown in Fig. 7, σ_s is independent of grain size and processing method, indicating similar magnetic interactions at the atomic level. This would be assured if the same spinel structure with the same pattern of site occupancy by different cations is adopted. Because of the smaller grain size and more uniform composition/microstructure, the resistance of nanograin ferrites all exceeded $10^{10} \text{O} \cdot \text{C}^{-1} \text{cm}$, which is an additional advantage for ferrite applications.

IV. Conclusions

1. Two-step sintering was used to sinter BaTiO$_3$ and Ni–Cu–Zn ferrite ceramics to high density with unprecedentedly fine grain size, by suppressing grain growth in the final stage of densification. Second-step densification temperatures as low as 900°C for BaTiO$_3$ and 760°C for Ni–Zn–Cu apparently sufficed.

2. The processing windows for successful second-step sintering to achieve high density without grain growth were identified for BaTiO$_3$ and Ni–Cu–Zn ferrite ceramics. They share the same features as the one previously determined for undoped and doped Y$_2$O$_3$.

3. Dense BaTiO$_3$ ceramics with a grain size of 35 nm undergo distortions from cubic to various low-temperature ferroelectric structures. Dense fine grain Ni–Cu–Zn ferrite ceramics have the same saturation magnetization as their coarse grain counterparts.

References

