Penn

Libraries ) , University of Pennsylvania
O UNIMERSITY 0f PENNSYLVANIA 4 ScholarlyCommons
Center for Human Modeling and Simulation Department of Computer & Information Science
March 1994

How Animated Agents Perform Tasks: Connecting
Planning and Manipulation Through Object-
Specific Reasoning

Libby Levison

University of Pennsylvania

Norman L. Badler

University of Pennsylvania, badler@seas.upenn.edu

Follow this and additional works at: http://repositoryupenn.edu/hms

Recommended Citation

Levison, L., & Badler, N. 1. (1994). How Animated Agents Perform Tasks: Connecting Planning and Manipulation Through Object-
Specific Reasoning. Retrieved from http://repositoryupenn.edu/hms/78

Presented at Toward Physical Interaction and Manipulation, AAAI Spring Symposium Series, 1994.

This paper is posted at ScholarlyCommons. http://repositoryupenn.edu/hms/78

For more information, please contact libraryrepository@pobox.upenn.edu.


http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fhms%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/hms?utm_source=repository.upenn.edu%2Fhms%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis?utm_source=repository.upenn.edu%2Fhms%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/hms?utm_source=repository.upenn.edu%2Fhms%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/hms/78?utm_source=repository.upenn.edu%2Fhms%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/hms/78
mailto:libraryrepository@pobox.upenn.edu

How Animated Agents Perform Tasks: Connecting Planning and
Manipulation Through Object-Specific Reasoning

Abstract

Creating animations of a human figure performing a task requires that the agent interact with objects in the
environment in a realistic way. Agent-object interaction is not completely specified from a task description
alone. In this paper we sketch an architecture for the Object-Specific Reasoner (OSR), an intermediate
planning module which tailors high-level plans to the specifics of the agent and objects. As plans are
elaborated, the OSR generates a sequence of motion directives which are ultimately executed by a simulator.
Descriptions of failures can be used to identify possible tools for the agent to use. An Object-Specific
Reasoner is necessary in a system which allows an agent, equipped with a set of action behaviors, to interact in
a semiautonomous fashion with the world.

Keywords
object manipulation, motion planning, animation, tools

Comments

Presented at Toward Physical Interaction and Manipulation, AAAI Spring Symposium Series, 1994.

This conference paper is available at ScholarlyCommons: http://repositoryupenn.edu/hms/78


http://repository.upenn.edu/hms/78?utm_source=repository.upenn.edu%2Fhms%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages

How Animated Agents Perform Tasks:
Connecting Planning and Manipulation
Through Object-Specific Reasoning

Libby Levison & Norman 1. Badler
Center for Human Modeling and Simulation
Department of Computer and Information Science
University of Pennsylvania,

Philadelphia, PA 19104-6389
{libby@linc & badler@central}.cis.upenn.edu

Keywords: Object Manipulation, Motion Planning, Animation, Tools

Abstract

Creating animations of a human figure performing a task requires
that the agent interact with objects in the environment in a realis-
tic way. Ageni—object interaction is not completely specified from a
task description alone. In this paper we sketch an architecture for
the Object-Specific Reasoner (OSR), an intermediate planning module
which tailors high-level plans to the specifics of the agent and objects.
As plans are elaborated, the OSR generates a sequence of molion di-
rectives which are ultimately executed by a simulator. Descriptions
of failures can be used to identify possible tools for the agent to use.
An Objectl-Specific Reasoner is necessary in a system which allows an
agent, equipped with a set of action behaviors, to interact in a semi-
autonomous fashion with the world.

1 Introduction

Suppose you had a computer system which could animate a human figure by
making it reach for things, grasp them, pick them up, or walk along a path in



a semi-autonomous fashion.! Now suppose that you want to generate realistic

simulations of the character performing different tasks. Suppose further that you
have a task-level interface to this agent, so that you can give commands such as
(pickup jack glass) or (open betty door).? These high-level descriptions of
action must somehow be mapped to the agent’s control language: the command
(pickup jack glass) must be converted to fully-parameterized motor commands
which specify details such as where on the glass to grasp, how high to lift the glass
and where to stand in relation to the glass.

Two central observations motivate this work: 1) different expansions of a task
arise for different agents and objects, and 2) different expansions of a task arise
for different intentions. At the same time, controlling animated figures requires
specifying details of the desired motions which are rarely present in high-level com-
mands. Our research is concerned with building an intermediate reasoning system
which maps a small set of high-level commands to the language of the animation
system. We are investigating whether this mapping can be done by considering
action commands in terms of each agent’s resources, the object attributes, the
intention, and the situation. The entire process of elaborating high-level com-
mands can be seen as grounding symbolic action descriptions in ‘numeric’ motion
descriptions.

We are building the Object Specific Reasoner (OSR), which is implemented in
the SopaJack system, which itself is part of the AnimNL Project (Animation
from Natural Language Instructions) at the University of Pennsylvania [BPW93,
WBDT193]. The goal of the AnimNL project is to generate realistic animations of
human figures carrying out tasks specified through natural-language instructions.
The SODAJACK system covers the plan expansion and simulation planning portions
of the AnimNL project.

1.1 Bridging Planning and Action

High-level planning is performed by a module ‘above’ the OSR. The high-level
planner is responsible for recognizing the task, and selecting from a library a plan
to accomplish that task. This planner breaks the plan down into steps — task-
actions — for the agent to perform. (While the high-level planner might consider

!By ‘semi-autonomous’ we mean to imply that instructions are given to the agent, who
attempts the task, and reports back to the instructor with the result of the action. If the
action failed it is the role of the instructor to select another course of action.

?The first term indicates the action to take; the second term is the agent to do the
action; the third term refers to the object of the action. Assume that object names are
uniquely identified with an object in the animation scene.



these task-actions basic or primitive, they are not necessarily primitive in terms
of the motions which must be performed.)

Below the OSR, a simulator manages motor-control issues for agents and ob-
jects. This reactive [KR90, Bro86] module provides situational knowledge to the
OSR (and the high-level planner) and relieves the OSR and the high-level planner
of details of motion planning and motor control. The reactive nature allows many
motion control decisions to be made internally, such as how to go around obstacles
in the reach or locomotion path.

The simulator is invoked with detailed motion commands or motion directives.
The high-level planner might use a step like (grasp jack glass); the motion
control system, however, requires the motion directive grasp to indicate which
hand to use, what type of grip to use, the approach vector for the hand, and the
region of the object to grasp.?

The problem is this dichotomy between task-actions and motion directives.
The high-level planner does not know enough about the physical description of an
object to determine the grip-site; neither does the simulator know enough about
the intention behind the action to select the grip-site. It is the role of the OSR
to break task-actions into sets of fully-specified motion directives. To generate
realistic behavior of the simulated agent manipulating objects, the agent’s physical
motions must be fully described.

1.2 Implementation of SodaJack and the OSR

A prototype of the OSR exists in Lucid Common LISP. The OSR takes a task-
action, with the object references fully resolved, and generates a set of motion
directives to send to the simulator. The modules sketched above are implemented
by: the Intentional Planning System (ItPlanS) [Gei92] decomposes high-level plans
into task-actions, and object reference resolution and object locating is performed
by Search Plans [Mo0093]. Finally, agent and object motion simulation, and per-
ceptual requests about the current state of the world will be handled through
the Behavioral Simulator [BB93]. The Behavioral Simulator is, in essence, an
operating-system, as it manages both agent and control resources, thus allowing
for simultaneous motions. The language is similar to McDermott’s RPL [McD90],
with an emphasis on managing a behavioral mechanism [Bec94].

ItPlanS, Search Plans and the OSR are integrated into the SodaJack system
[GLM94]. Built on the Jack™ software platform [BPW93], SODAJACK is named

3We use ‘hand’ through out this discussion, as the animated figure we work with has
two hands.
t Jack is a registered trademark of the University of Pennsylvania.



after its first domain, a soda fountain in an ice cream shop. The animated agent
takes orders, and manipulates objects such as bowls, glasses, ice cream scoops, and
refrigerator doors. SODAJACK is not currently fully integrated with the Behavioral
Simulator; the OSR writes out a set of motion directives which are run through
the Behavioral Simulator separately.

SopaJack is invoked with a command to ItPlanS: serve soda. [tPlanS re-
trieves from its plan library a plan to serve sodas, and expands the plan to task-
actions. At the same time, ItPlanS invokes Search Plans to find a soda in the
animation scene. ItPlanS sends each completely specified task-action, one at a
time, to the OSR.

The OSR converts task-actions to motion directives which are in turn passed
to the Behavioral Simulator. In addition to animating the human figure and all
of the objects in the scene in a time-sliced manner, the Behavioral Simulator pro-
vides “sensory” feedback to ItPlanS, Search Plans and the OSR (e.g., the current
location of the agent or an object); this knowledge is used for incremental decision-
making and plan specification.

Within the SopaJAcCK system, the OSR distinguishes between checking the
feasibility of the task-action and invoking the Behavioral Simulator. ItPlanS in-
vokes the OSR with a task-action; if the OSR finds that a task-action is feasible, it
returns this analysis to ItPlanS (the basis for this decision is discussed below.) It-
PlanS then uses this knowledge in deciding which plan expansion to pursue. When
ItPlanS elects a task-action to perform, the OSR generates the motions directives
and invokes the Behavioral Simulator. If the Behavioral Simulator cannot suc-
cessfully perform a motion, the OSR is alerted to the failure, and relays the error
message to the high-level planner. The OSR does not do any replanning at the
task level.

2 OSR Architecture

2.1 Assumptions

The previous sketch of how the OSR functions and the other modules it relies on
serves as an introduction to some of the assumptions we make in our work.

The OSR is not a stand-alone module. It does not handle natural language
input, does not resolve object reference, does not do plan decomposition, nor does
it deal with the agent’s motor control system. The OSR is defined as a necessary,
intermediate reasoning process in a complex system.

We assume that all object references are already identified in the world. Lo-



cating an object gives us access to mechanical and functional knowledge about the
object. (Object knowledge is discussed further below.)

We also assume that the agent is endowed with a certain number of skills
or behaviors which it can perform. For example, we assume that the agent can
locomote between two points (including planning the path), can place its end-
effector on the surface of an object (without causing illegal collisions), and can
take control of an object, (e.g., grasp the object, or bring an end-effector into
contact with the object). How an agent’s physical behaviors are performed and
interleaved is handled by the underlying simulator.

2.2 Terminology

TASK-ACTION: A task-action is one of the steps in the high-level task plan sent
to the OSR. Currently the list includes: goto, move, grasp, release, look,
co-locate?, pickup, carry, open and close.

A task-action is of the form: ((pickup jack soda) serve). The first term
is the requested task-action itself, here pickup; the second term is the agent to
perform the task-action. After this, each task-action requires different parameters:
most task-actions require an object (but goto requires a destination and not an
object). In the above example, soda is the object of the task-action. Other
optional arguments are destination, hand, and direction. The final term in
any task-action is the intention governing the action.

INTENTION: We take intention to be the goal that the agent is committed to
achieve. Each task-action from the high-level planner specifies the intention gov-
erning the task-action. At the present time, the intention is usually the next
task-action to be performed: the performance of a motion is influenced by knowl-
edge of the subsequent motion. Thus, the set of intentions is the set of task-actions,
plus two additional intentions: use-function: which captures the notion of ma-
nipulating an object with the intention of using it for its inherent function; and
poise-for-action: which commands the agent to assume a neutral stance until
the next task-action is known.

OBJECT KNOWLEDGE: The OSR distinguishes between two kinds of object
knowledge. The first is TYPE, or category, knowledge of an object (it is a ToOL,
its function is to contain things, what its part/subpart structure is). The second
is TOKEN, or instance, knowledge which includes particular details of the object

4Co-locate: cause two objects to be at the same location.



instance being manipulated (it is 8 inches wide, ferrous, and red). This knowl-
edge is stored in two knowledge bases: TYPE information is stored in a symbolic
knowledge base; TOKEN knowledge is stored in the graphics database.

AcCTION OUTLINE: The action outline is an underspecified description of the
motions to be performed; they are scripts [SA77], but at a lower, behavior level.
The task-action and the type of the object is used to select the action outline:
for example, the task-action move has different definitions for objects that are
containers and those that are tools (the former requires the additional constraint
that the object should not be turned on its side when it is moved; the latter has
a preferred motion path).

An action outline is a list of steps which are either other action outlines or
OSR-motions (see below). Because every action outline is type sensitive, when
an action outline is expanded, a step which is defined by another action outline
automatically selects the correct version or set of motions based on the type of its
object.

OSR-MOTION: The OSR uses an intermediate language to describe the re-
quired motions. OSR-motions are agent-independent, allowing the OSR to reason
abstractly about the required motion before substituting a particular agent’s be-
haviors. Examples of OSR-motions are locomote and get-control-of: these are
general concepts which are performed differently by each agent to achieve the same
goal.

BEHAVIOR: FEach agent has a set of behaviors which it can perform; for each
OSR-motion, each agent has an associated behavior. Behaviors are defined as
a sequence of motion directives in the simulator. For example, the OSR-motion
get-control-of can be achieved in different ways by different agents: one agent
might have a grasp behavior, while another agent might have a complex behavior
requiring pushing an object into a corner to get control of it.

MOTION DIRECTIVE: A motion directive is a fully specified call to the sim-
ulator. Currently the list of motions includes®: arm-motion, com-motion®,
look-motion, foot-motion, torso-motion, figure-motion (moves an inanimate

object, e.g., a box sliding), grasp-motion, and release-motion.

5These motion directives are defined by, and are the input language of, the Behavioral
Simulator. As the Simulator’s language expands, so too can the language of the OSR.
6“com”: center of mass.



[tPlanS
|

A ¢ .
Al Task Action OSR Return Key:
””” Parser
\ A: Failed Parse
B!
[ Action Outline . : .
Knowledge " selector B: Incompatible action
- Action outline & types
Bases | Outline
bolic | .. A Libran . .
sy"n olc c: C: Missing outlines
object R Outline Expansion <
geometric Bl . .
object i D: Fail, return discrepancy list
> Object
7 Instantiator . . i
i E: Fail, no existing motion
agent b /\ directive for agent
behaviors | . ------ Feasibility checker
’ F: Fail: unable to
A ¢ Motion sequence motions
E. Motion - | directive
****** Instantiator Lib . .
e G: Motion failure from
,,,,,,,,,,,,, J Behavioral Simulator
F ? Temporal
TUUTTTITT Contextualizer < | database
\ )
A ¢
G I Behavioral
Simulator

Figure 1: Detailed OSR system diagram, within SodaJack.

An example motion directive is: (arm-motion jack start end arm? site).
The first term is the motion directive to be performed, the second term identifies
the agent. The start time and end time are next, followed by a constant indicating
which of the agent’s arms to move. Finally, the destination is given as a site
(coordinate system) in space. Each motion directive requires slightly different
parameters. These are defined by the Behavioral Simulator.

2.3 The OSR System

The following two subsections explain the current architecture (see Figure 1).

2.3.1 Checking Action Feasibility

Checking the feasibility of a task-action is performed in five stages: selecting an
action outline, conditionally expanding all steps of the outline, using details of



the object of the current task-action to refine the outline, verifying that the agent
can perform the specific action on this specific object, and supplying the specific
agent’s behaviors for each motion in the task. If an outline can be found and
tailored to the details of the agent and the object, the task-action is judged to be
feasible.

(In a preprocessing stage (Task-action Parser), the input from the high-level
planner is parsed and converted to a representation which the OSR can use.)

In the first stage (Action Outline Selector), the task-action and the type of
the object are used to select an action outline from a library of outlines. This
library is indexed by both the task-action and a taxonomy of object types. For
each task-action, there may be separate action outlines for each type of object that
can appear as an argument. This step is implemented as a lookup table.

The second stage (Outline Expansion) expands all the steps in the action out-
line. Each step is either another action outline or a motion directive. Each step is
sensitive to the type of its object: expanding an action outline implies interpreting
each of its steps in terms of the object. The process continues until sets of OSR-
motions have been substituted for all action outlines. Action outlines may specify
temporal ordering constraints on the motions [All84].

The third stage (Object Instantiator) binds parameters of the OSR-motions
based on information about the specific object instance. This is also the stage at
which OSR-motion specific parameters (such as grasp-site, grip-type or approach-
vector) must be supplied. Currently a knowledge base is used to determine — from
the OSR-motion, the object TYPE and the intention of the task-action — these
additional parameters. This is similar to approaches taken by [IJLZ88, TBKS&7,
RGI1].

The fourth stage (Feasibility Checker) involves checking dependencies between
the agent resources and object attributes. Each OSR-motion includes a predicate
which specifies those pairs of resources and attributes to check. For example, the
OSR might check whether the agent’s hand is large enough to grip the handle of a
scoop. If all the dependencies for all the motions in the current outline are within
tolerance, the OSR reports that the task-action is feasible.

If the agent and object attributes fail the tolerance test, then control is returned
to ItPlanS along with a discrepancy list of those resource/attribute pairs that are
out of tolerance. How this list can be used is discussed in the next section.

The fifth stage (Motion Instantiator) supplies the agent’s behavior for each
OSR-motion. At this point the task-action has been completely converted to a set
of motion directives.



2.3.2 Action Execution

When called upon to output motion directives to Jack, the OSR must first pro-
vide a start time and an approximate duration for each motion (Contextualizer).
Durations are calculated from a temporal database which contains both rules to
generate times for parameterized motions (such as a reach) [EBJ89] and fixed
values for other motions. When the temporal information is added, task-action
refinement is finished, and the motion directives can be sent to Jack for anima-
tion. Errors (in the form of failed actions) may occur during animation; the OSR
aborts the remaining motions in the task-action expansion and relays errors back
to ItPlanS for replanning.

2.4 Summary

Using TYPE knowledge about the object, the OSR first builds action outlines for
the task-action; it then refines these partial plans with TOKEN knowledge. Adding
agent-specific knowledge, and selecting agent-specific behaviors, allows the OSR
to tailor a general task-action to the specific context and check its feasibility.

The number of possible variations of task-actions that an agent might be asked
to perform makes a strictly case-based approach (such as [Ham86], which enu-
merates all possible cases) impractical. The multi-stage OSR provides a robust,
mid-level planner which adapts task-actions to the agent, object, intention and
situation.

3 Action Failure May Not Be Harmful or,
Understanding Tools and their Usage

A mediated task-action is a task-action which requires the agent to employ a tool.
The term mediated comes from the fact that the tool mediates between the agent
and the object [WBD7193]. Mediated task-actions include med-open, med-grasp
and med-release.

3.1 Feasibility Failure

An agent is unable to manipulate an object when the agent lacks some resource
(e.g., is not strong enough) or when some set of the object’s attributes rule out
the action (e.g., a pot is too hot to be grasped, the object does not move). Task-
actions are not feasible, when the agent resources and the object attributes are



not in tolerance. The OSR places any resource/attribute pairs which are out of
tolerance on a discrepancy list, which is returned to the high-level planner.

Tools augment the agent’s resources, or filter the object attributes adversely
affecting the OSR-motion. In the OSR, tools are regarded as sets of attribute
modifiers which can be used to make the agent resources and the object attributes
compatible. An object whose attributes are described by the discrepancy list might
serve to make the motion feasible. Locating and using such an object — such a tool
— might license the task-action.

3.2 Determining Tool Types

We present three possible extensions to the OSR algorithm. First, as suggested
above, when there are discrepancies between resources and attributes, the dis-
crepancy list can be returned to the high-level planner as a way of describing the
failure. In this case, it is possible that the discrepancies can be used to select a
tool that can be used in performing the task.

The next two extensions are variations with mediated task-actions, and are
not presently implemented. In the first case, a mediated task-action is requested,
and a tool is specified, e.g. ((med-open jack bottle bottle-opener) serve).
Here, the tool’s attributes are added to the agent resources before the resources
are checked against the attributes by the dependency checker. If the tool has the
correct attributes, then the incompatibilities are reduced to the point that the
dependencies between agent and object are met when the motion is performed.

Third, a mediated task-action is requested, but no specific tool is specified, e.g.
((med-open betty bottle dummy-tool) serve). In this case, the discrepancies
are discovered and used to describe the attributes of the required (dummy) tool.
The difference between the first alternative and this, however, is in control: the
high-level planner calls the OSR with a tool requested but unidentified — the OSR
is invoked specifically to build the discrepancy list describing a possible tool. The
description is returned to the high-level planner, which attempts to locate such a
tool. If one exists, the high-level planner then has the option of requesting that
the OSR check the feasibility of the task-action with the discovered tool. Should
the high-level planner commit to the task-action, the OSR is called a third time
to invoke the motion directives.

10



4 Task Designs

Below are sketches for how the OSR might handle three tasks. Recall that the
high-level planner breaks tasks into sets of task-actions which the OSR handles
one at a time.

4.1 Example 1: Get a soda

The high-level planner is given the goal get soda. It selects a plan and breaks
that plan down into the following task-actions:

1. ((goto jack fridge) open). The intention on this task-action will restrict
where in front of the fridge Jack will stop — knowing that he is about to open it,
he will stop slightly to one side of the door.

2. ((open jack fridge) (get soda)). The intention helps to determine how
much the door of the fridge must be opened. The agent must both be able to ‘see’
inside to get the soda, and the door must be open wide enough that the soda can
fit through the opening.

3. ((get-control-of jack soda) close). Jack must reach to the soda and
grasp it. Note that, while not yet implemented, the intention to close the fridge
should force the agent to first move the soda out of the fridge.

4. ((close jack fridge) poise-for-action). There is no other task-action in
this plan expansion, so the agent must poise-for-action and wait for the next
task-action.

4.2 Example 2: Tool Use

The OSR is given a mediated task-action which requires a specific tool: the task
is to get a scoop of ice cream with the ice cream scoop.

The OSR is given the task-action ((med-get-control icecream-ball
scoop) serve). The action outline is selected and expanded; the agent resources
and the object attribute values are set after inquiring their values from the Behav-
ioral Simulator and the knowledge bases.

Before dependencies are checked, the attributes from the scoop are also added
to the dependency template. If the agent resources and object attributes are
within tolerance for all OSR-motions, the OSR returns confirmation to the high-
level planner that the task-action is feasible.

11



4.3 Example 3: Tool Selection

The high-level planner uses the OSR to build a discrepancy list which will describe
a tool that might be used. The OSR is given a mediated action with the tool not
specified: the task is to open the soda bottle with a tool.

The OSR is called with the task-action: ((med-open betty sodabottle
dummy-tool) serve). The high-level planner recognizes that opening something
of type sodabottle requires a mediated action, but does not know what tool is ap-
propriate in this case. The high-level planner uses the OSR to build a description
of a possible tool.

The OSR checks the dependencies between the agent resources and the object
attributes. The discrepancy list indicates why the motion fails.

The high-level planner uses the discrepancy list to look for a tool, and finds
a bottle opener which matches the required attributes. The high-level planner
now re-invokes the OSR with the task-action: ((med-open betty sodabottle
opener) serve).

At this point, the OSR must still ascertain that the action outline can be
expanded to motion directives, and proceeds to do so. The OSR continues as in the
first example and verifies that the opener can be used to med-open the sodabottle,
and that ((med-open betty sodabottle opener) serve) is feasible.

5 Conclusion

While the current prototype is built on top of an animation system, we believe
that this work is of more general relevance. We have found few other systems
developing general methods to build plans to manipulate objects: the issue is
avoided either by selecting domains and tasks where manipulation is not crucial
[VB90, LR90, McD93, Fir87, ZJ91], or by concentrating on general manipulation
strategies (e.g., the “peg in hole” problem) when the task is generically specified
([IJLZ88, LPMT84]).

The OSR performs mid-level planning, tailoring high-level, “cognitive” plans
to the specific agents and objects of the particular task-actions. Further, the OSR
isolates the high-level planner from reasoning about object instance particulars,
and is in turn isolated from details of motion directive execution by the simula-
tor. This is necessary in a system which allows an agent, equipped with a set of
behaviors, to act in a semi-autonomous fashion in his world.

By checking agent-object dependencies, the OSR can estimate whether a task-
action is feasible for an agent. The resulting discrepancy list can be used to deter-
mine if there is a viable tool for the agent to employ. The strength of the proposed

12



OSR architecture is that it allows an agent, operating with partial knowledge and
a symbolic action plan, to function in its world.

6 Acknowledgements

We would like to thank the members of the AnimNL project for discussion and
reading earlier drafts of this paper. Thanks also to Bonnie Webber, Sandee Car-
berry, Mitch Marcus, Max Mintz, Tilman Becker and Beryl Hoffman.

This research is partially supported by ARO Grant DAAL03-89-C-0031 in-
cluding participation by the U.S. Army Research Laboratory (Aberdeen), U.S.
Air Force DEPTH contract through Hughes Missile Systems F33615-91-C-0001;
DMSO through the University of lowa; and NSF CISE Grant CDA88-22719.

References

[All84] James F. Allen. Towards a general theory of action and time. Artificial
Intelligence, 23:123-154, 1984.

[BB93] Welton Becket and Norman I. Badler. Integrated behavioral agent
architecture. Conference on Computer Generated Forces and Behavior
Representation, 1993.

[Bec94] Welton Becket. The Jack LISP API. Technical Report MC-CIS-94-01,
University of Pennsylvania, 1994.

[BPW93] Norman I. Badler, Cary B. Phillips, and Bonnie L. Webber. Simu-
lating Humans: Compuler Graphics Animation and Control. Oxford
University Press, 1993.

[Bro&6] Rodney Brooks. A robust layered control system for a mobile robot.
IEEFE Journal of Robotics and Automation, RA-2(1), 1986.

[EBJ&9] Jeffery Esakov, Norman I. Badler, and M. Jung. An investigation of
language input and performance timing for task animation. In Graph-
ics Interface 89, pages 86-93, San Mateo, CA, June 1989. Morgan-
Kaufmann.

[Fir87] R. James Firby. An investigation into reactive planning in complex
domains. In Proceedings of the Sizth National Conference on Artificial
Intelligence, pages 202-206, 1987.

13



[Gei92]

[GLM94]

[Ham86]

[LJLZ8S]

[KR90]

[LPMT84]

[LR90]

[McD90]

[McD93]

[Mo093]

[RGO1]

[SA7T]

Christopher W. Geib. Intentions in means-end planning. Technical
Report MC-CIS-92-73, University of Pennsylvania, 1992.

Christopher Geib, Libby Levison, and Michael B. Moore. Sodajack:
an architecture for agents that search for and manipulate objects, Sub-
mitted to AAAIL 1994.

Kristian Hammond. Chef. In Proceedings of the 5! National Confer-
ence on Artificial Inlelligence, 1986.

Thea Iberall, Joe Jackson, Liz Labbe, and Ralph Zampano.
Knowledge-based prehension: Capturing human dexterity. In IFEF
Intl. Conf. on Robotics and Automation, pages 82-87, 1988.

Leslie Pack Kaelbling and Stanley J. Rosenschein. Action and plan-
ning in embedded agents. Robotics and Autonomous Systems, 6:35-48,
1990.

Tomas Lozano-Pérez, Matthew. T. Mason, and Russell H. Taylor.
Automatic synthesis of fine-motion strategies for robots. In Michael
Brady and Richard Paul, editors, Robotics Research, pages 65-95. MIT
Press, 1984.

John Laird and Paul Rosenbloom. Integrating execution, planning and
learning in SOAR for external environments. In Proceedings of the 8t
National Conference on Artificial Intelligence, pages 1022-1029, 1990.

Drew McDermott. Planning reactive behavior: A progress report. In
ARPA workshop, pages 450-4588, 1990.

Drew McDermott. Transformational planning of reactive behavior.
Technical Report RR-941, Yale University, 1993.

Michael B. Moore. Search plans. Technical Report MS-CIS-93-56,
University of Pennsylvania, 1993.

Hans Rijpkema and Michael Girard. Computer animation of
knowledge-based human grasping. In ACM: Compuler Graphics, pages
339-348, July 1991.

Roger Schank and Robert Abelson. Scripts, Plans, Goals and Under-
standing. Lawrence Erlbaum, Hillsdale, N.J., 1977.

14



[TBKS7]

[VB90]

[WBD*93]

[2J91]

Rajko Tomovic, George A. Bekey, and Walter J. Karplus. A strategy
for grasp synthesis with multi-fingered robot hands. In IEFEFE Initl
Conf. on Robotics and Automation, pages 83-89, 1987.

Steven Vere and Timothy Bickmore. A basic agent. Computational
Intelligence, 6:41-60, 1990.

B. Webber, N. Badler, B. Di FEugenio, C. Geib, L. Levison, and
M. Moore. Instructions, Intentions and Expectations. Technical Re-
port MS-CIS-93-61, University of Pennsylvania, 1993. To appear 1994:
Artificial Intelligence Journal, Special Issue on Computational Theo-
ries of Interaction and Agency.

David Zeltzer and Michael B. Johnson. Motor Planning: an Archi-
tecture for Specifying and Controlling the Behavior of Virtual Actors.
Journal of Visualization and Computer Animation, 2:74-80, 1991.

15



	University of Pennsylvania
	ScholarlyCommons
	March 1994

	How Animated Agents Perform Tasks: Connecting Planning and Manipulation Through Object-Specific Reasoning
	Libby Levison
	Norman I. Badler
	Recommended Citation

	How Animated Agents Perform Tasks: Connecting Planning and Manipulation Through Object-Specific Reasoning
	Abstract
	Keywords
	Comments


	tmp.1186604121.pdf.tIUMn

