The Political Economy of Workers' Compensation: Lessons For Product Liability

Patricia. M. Danzon
University of Pennsylvania

Follow this and additional works at: http://repository.upenn.edu/hcmg_papers
Part of the Labor Economics Commons, and the Other Public Health Commons

Recommended Citation

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/hcmg_papers/66
For more information, please contact repository@pobox.upenn.edu.
The Political Economy of Workers' Compensation: Lessons For Product Liability

Disciplines
Economics | Labor Economics | Other Public Health

This journal article is available at ScholarlyCommons: http://repository.upenn.edu/hcmg_papers/66
Tort awards for product-related injuries have risen rapidly in recent years. This trend reflects the outcome of court-made decisions, tempered only recently by modest statutory constraints. The workers' compensation (WC) system, under which employers are strictly liable for work-related injuries, is governed entirely by statute at the state level. It provides much lower benefits than does the tort system. There is little presumption that statutory choices for product liability reflect a social optimum, since voters in each state bear a larger share of the costs than the benefits of limiting consumers' rights against product manufacturers, many of whom are located out of state. By contrast, given the standard assumption that the costs and benefits of WC are borne by workers through compensating wage differentials, the WC system provides evidence on collective choices for compensation when costs and benefits of the political choices are internalized within the decision-making jurisdiction. This paper analyzes the political economy of the WC system. The purpose is to investigate whose preferences are reflected in the choice of the WC benefit structure and what lessons can be learned for the optimal design of compensation for product-related injuries and other injuries currently compensated through the tort system.

One caveat is in order. The formal analysis of this paper views WC benefits as designed to provide compensation, thereby ignoring their effect on incentives for care by employers and employees. Ignoring deterrence is appropriate only if employee moral hazard is negligible and if compensating wage demands for job risk provide employers with optimal incentives for safety. To the extent deterrence concerns are different in product liability, and if the single tort award must serve the dual function of deterrence and compensation, normative inferences from WC to product liability are tentative.

Previous analyses of WC have tended to conclude that WC benefits provide suboptimal compensation. The policy-oriented literature has long argued that WC benefits are inadequate (for example, The Report of the National Commission…, 1972). In a recent study, W. Kip Viscusi and Michael Moore conclude that the observed rate at which workers are willing to trade off base wage rates for higher levels of compensation greatly exceeds the actuarial rate of trade-off, even taking into account the administrative costs. These results suggest that benefit levels in 1976 were suboptimal, provided that one abstracts from moral hazard considerations.

[1987, p. 260]

Certain features of WC benefits seem inconsistent with basic principles of optimal insurance. Payment is more generous for routine minor injuries than for permanent total disabilities. Some states still limit the duration or the total amount of benefits for permanent disabilities. For temporary and permanent total disabilities, the typical wage replacement rate of two-thirds provides roughly full replacement of after-tax wages (ignoring noncash fringe benefits). But the maximum weekly benefit implies a sharply declining replacement rate at higher wage levels. The mean maximum benefit was .43 of the state average weekly wage in 1965; the mean rose to .81 in 1985, with a range of .36 to 2.32 (see my 1987 paper).
A finding that WC benefit levels are suboptimal (i.e., below the level that workers would be willing to pay for) would be surprising since it would imply failure to maximize utility of workers and to minimize costs for employers. However the conclusion that WC benefits are suboptimal ignores important differences between WC benefits and the model of the individual demand for compensation that underlies the inference of suboptimality. First, the WC benefit structure, like any social insurance program, is a public good for all individuals covered. With heterogeneity of worker preferences, the common benefit structure is unlikely to be simultaneously optimal for all workers. This raises both the positive question of how the common benefit structure is determined and the normative question of the optimal level of such benefits.

Second, the WC system is only one among several possible sources of insurance for wage loss and medical expense. The choice of state-level public coverages such as WC should be viewed as simultaneously determined with private health and disability insurance, taking as given the structure of federal programs such as SSDI and Medicare. The optimal structure of mandated public programs depends on the functioning of markets for private insurance. If private coverages were available at comparable cost to WC, since private coverages can be matched more closely to individual preferences, it would be irrational for a state to incur the deadweight cost of mandating uniform WC benefits. However, if private insurance markets are subject to adverse selection, myopia or free riding, mandatory coverages may be Pareto improving.

I. Individual Choice of Benefits

Consider first the case where insurance is a pure private good. In each period the worker faces an exogenous probability of injury \(p \). If no injury occurs he receives a wage \(W \); if an injury occurs he receives wage replacement benefits \(K \). A cost-minimizing employer would select the cash wage \(W \) and benefits \(K \) to maximize the employee's utility, subject to the constraint that the expected cost of the compensation package is equal to the potential wage with zero benefits \(W^e \), which is also the value of marginal product under profit maximization. The utility-maximizing level of benefits satisfies

\[
U_0 = U_1(1 - t)(1 + h),
\]

where \(t \) is the worker's marginal tax rate; \(h \geq 0 \) is the administrative cost per dollar of expected benefits (the load on the employer’s insurance); and subscripts 0 and 1 denote the states of injury and no injury, respectively.\(^1\) The individual's preferred replacement rate \(k = K/W \) can be written

\[
k^* = k(W^e, t, p, h).
\]

Comparative statics analysis indicates that \(k^*_p < 0 \). With state independent utility and decreasing absolute risk aversion, \(k^*_w < 0 \) and \(k^*_t < 0 \) if taxes are proportional. With progressive taxes \((dt/dW^e > 0) \), \(k^*_t \) would be positive; indeed, if \((1 - t)(1 + h) < 1 \), then \(k^* \) would exceed unity. But if there is moral hazard with respect to either the occurrence of injuries or the duration of claims, this would impose the additional constraint \(K \leq W^e(1 - t) \); with progressive tax rates this implies \(k^*_t < 0 \) and \(k^*_w < 0 \).\(^2\) However, the very sharply declining replacement rate implied by the maximum benefit is not predicted. These results may not hold if utility is state dependent.

II. Collective Choice of Benefits

Since the WC benefit structure is a public good within each state, equation (2) cannot be estimated for individuals. Given the small number of states, the assumption of Tiebout sorting of individuals to achieve homogene-

\(^1\)This condition for optimal compensation when wages are taxed is also derived in Viscusi and Moore.

\(^2\)For derivations, see my earlier paper. Although large firms are self-insured or self-rated, perfect experience rating at the firm level may be insufficient to eliminate moral hazard at the level of the individual worker. R. J. Butler and J. D. Worrall (1983) conclude that there is a positive elasticity of claims with respect to benefit levels.
ity of preferences within states is not plausible. Following T. E. Borcherding and R. T. Deacon (1972) and T. Bergstrom and R. Goodman (1973) the choices of benefit levels across states can provide information about individual preferences under certain assumptions, specifically: 1) each voter chooses the \(k \) that maximizes his (or her) utility, given his "tax price" \(s \) per unit of \(K \); 2) each voter’s tax price \(s \) does not vary with the level of \(K \); 3) in each state, the quantity supplied is the median quantity demanded, which is the quantity demanded by the individual of median income (i.e., there is no vote trading); and 4) income distributions are proportional, as defined by Bergstrom and Goodman (p. 286). Given these assumptions, each observation is an observation on the demand curve of a consumer with median income given his tax price.

The most difficult variable to measure is the tax price \(s \). For publicly provided services such as education, each voter’s tax share is determined by legislation. But, for public goods where the publicness lies in the mandating of a common level of private purchase, each individual’s price depends on the prices he faces in private markets. In the short run (with all factors fixed in their current employments), the supply price per unit of \(K \) to the \(i \)th worker in firm \(j \) is simply
\[
s_{ij} = (1 + h_j) p_j / (1 - p_j),
\]
assuming that firms are perfectly experience rated and each worker pays a fully compensating wage offset. Let \(k_{ij}^* \) denote the preferred replacement rate of the \(i \)th worker in firm \(j \), given \(s_{ij} \). It is the solution to equation (1) given the short-run supply price.

But, in the long run, the effective supply price of \(K \) to any worker depends on the distribution of preferences of other workers, and on general equilibrium adjustments to the mandated level of benefits. Assume that the state arbitrarily mandates a replacement rate \(\tilde{k} \) such that for workers of type \(L \), \(\tilde{k} > k_{ij}^* \) and for workers of type \(H \), \(\tilde{k} < k_{ij}^* \). In the long run, type \(L \) workers who would prefer less than the statutory level of benefits \((k > k_{ij}^*) \) would not be willing to pay a fully compensating wage offset if they could get \(k_{ij}^* \) in another state or in the uncovered sector of the economy. Similarly, any type \(H \) worker for whom \(\tilde{k} < k_{ij}^* \) and who can get \(k_{ij}^* \) elsewhere would require additional wage compensation. Thus mandatory benefits impose a tax on workers for whom \(k \neq k_{ij}^* \). The tax for the \(i \)th worker is equal to the difference between the cost to the employer and the worker’s valuation of benefits:
\[
T_{ij} = p_j / (1 - p_j) \left[(1 + h_k) - U_0 / U_1 (1 - t_j) \right] (\tilde{k} - k_{ij}^*)
\]
assuming within-firm homogeneity. The incidence of the tax depends on general equilibrium adjustments in factor and product markets. For any worker, the long-run supply price of \(K \) thus depends his share of the "tax" from mandating nonoptimal benefits for other workers.

For any \(k \), the effective tax \(T \) is more likely to be positive in small firms, since the load \(h \) is an inverse function of firm size. The magnitude of the tax also depends on the cost of supplementary insurance. Let \(g \) denote the load on private insurance. If \(g < h \) (perfect private supplementation), then \(\tilde{k} < k_{ij}^* \) imposes no tax on \(H \). In practice, the per capita tax from \(k \neq k_{ij}^* \) is likely to be higher for \(k > k_{ij}^* \) than for \(k < k_{ij}^* \), with some differences by type of benefit. Sick pay and group long-term disability (LTD) insurance are very good substitutes for WC wage replacement for high-wage workers (at least in large firms). Although most lower-wage workers do not have LTD coverage, SSDI provides replacement rates at least equal to the maximum that private insurers would permit. There is no private coverage comparable to the permanent partial wage loss benefits provided by WC. Private group health insurance is a very good substitute for WC medical benefits for disabilities that leave the worker employable. But, if disability leads to loss of employment with access to group benefits, and if the individual does not qualify for medicare, private nongroup health insurance markets provide poor protection against the risk of becoming high risk. Policies are individually underwritten, preexisting conditions are often surcharged or excluded from coverage, and loading charges are typically between .8 and 1 (with
higher loads for policies that guarantee re-

newability) compared to loads of roughly .25

or less for WC medical benefits. Thus the

excess cost of suboptimal WC wage replace-

ment is probably negligible. For long-term

medical benefits and permanent partial wage

loss, there is less presumption of asymmetry

in the per capita excess cost from \(k < k^* \)

and \(k > k^* \).

If \(g \leq h \) (perfect private supplementation),

there would be unanimous choice of \(k = k^* \),

unless \(k_l^* \) is influenced by myopia or an

intention to free ride. Even if \(g > h \), type H

workers may nevertheless vote for \(k^*_l \) if \(g \) is

still less than their effective supply price of

WC benefits, including their share of the tax

imposed on type L workers by mandating

\(k > k^*_l \). Thus the effective price to \(H \) of

voting for \(k > k^*_l \) depends on the magnitude

and the incidence of the tax on \(L \), which

depends on elasticities of factor supply,

product demand and factor substitution. In

general, if type \(L \) workers are mobile and

type \(H \) workers are not, type \(H \) workers

may bear part of any excess tax on \(L \).

The incidence of a tax on one type of

labor, where the tax rate differs across states

can be analyzed using Peter Mieskowski’s

(1972) general equilibrium analysis of the

incidence of the local property tax on re-

producible capital.\(^3\) Assume three factors of

production: type \(L \) workers for whom \(k^*_l < k \);

type \(H \) workers for whom \(k^*_l > k \); and

capital \(F \) which includes imperfectly mobile

factors such as land and small entrepreneurs.

All factors are in fixed supply in the aggregate.

\(L \) is perfectly mobile among states but

\(H \) and \(F \) are imperfectly mobile. If the tax

on \(L \) is uniform across states, the full inci-

dence is on \(L \). But, if the tax rate differs

across states, \(L \) in high-tax states will not

bear the cost differential in these states since

wages of \(L \) (\(W_L \)) will be equalized in all

employments. \(W_L \) falls by the average cost of

benefits, including the average tax due to

nonoptimal benefits. But the incidence of the

deviations from the mean tax (both positive

and negative) is on consumers and other

immobile factors. Forward shifting may be

possible for nontraded goods such as some

retail trade, services, and construction. This

is more likely if small firms, that face a

relatively high tax rate due to higher costs of

providing insurance and safety, do not com-

pete in domestic markets with large firms

that face lower loads for insurance and econ-

omies of scale in producing safety. There

may also be backward shifting to imperfectionally

mobile factors in high-benefit states and, in

particular, to immobile factors in high-cost

firms in high-benefit states. Of course, if \(L \)
in high-cost firms is imperfectly mobile, then

it will bear (part of) the excess tax.

Thus with heterogeneous preferences and

a common benefit structure, the standard

assumption of an individually actuarially fair

compensating wage differential for WC ben-

efits may be incorrect and the choice of WC

benefit levels may be affected. If type \(H \) are

less mobile than type \(L \) workers, type \(H \) face

an increasing marginal cost per unit of \(K, h' \),

where \(h' \) is positively related to \((k - k^*_l) \),
to the elasticity of demand for domestically

produced goods and to complementarities in

production. If \(h' < g \), there would be unani-

mous choice of \(k^*_l \) (ignoring myopia and

free riding). This choice would be optimal in

the sense that it avoids any deadweight loss

from imposing a common level of benefits

on individuals with heterogeneous prefer-

ences. With \(h' > g \) mandatory benefits im-

pose a deadweight loss and there is no pre-

sumption that it will be minimized in the

aggregate with a median voter model of

political choice. However, provided the med-

ian voter bears some share of the excess

costs imposed on other workers, he would

vote for a lower \(k \) than if \(k \) were a pure

private good.

II. Empirical estimates

Table 1 reports OLS estimates for the log

of the maximum weekly benefit (MAX) for

temporary total and permanent total disabil-

ity, for approximately 37 states in 1970, 1975,

1980, and 1985. MAX is a public good for

all workers with wages above the threshold

\(^3\)Paul Courant (1977) shows that the Mieskowski

model is only approximately correct, but that suffices to

establish the point being made here.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>t-Statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>4.724</td>
<td>3.52</td>
</tr>
<tr>
<td>Wage (LOG)</td>
<td>0.083</td>
<td>0.41</td>
</tr>
<tr>
<td>Injury Rate</td>
<td>-0.000</td>
<td>-0.04</td>
</tr>
<tr>
<td>POOR (^a)</td>
<td>-0.022</td>
<td>-3.15</td>
</tr>
<tr>
<td>SMALL (^a)</td>
<td>-0.047</td>
<td>-3.38</td>
</tr>
<tr>
<td>UNION (^a)</td>
<td>0.003</td>
<td>0.60</td>
</tr>
<tr>
<td>MANUF (^a)</td>
<td>0.004</td>
<td>0.76</td>
</tr>
<tr>
<td>AGRIC (^a)</td>
<td>0.280</td>
<td>6.38</td>
</tr>
<tr>
<td>MINING (^a)</td>
<td>0.007</td>
<td>0.36</td>
</tr>
<tr>
<td>CONST (^a)</td>
<td>0.026</td>
<td>-0.96</td>
</tr>
<tr>
<td>SERVICES (^a)</td>
<td>0.034</td>
<td>3.56</td>
</tr>
<tr>
<td>EDUC >12</td>
<td>0.007</td>
<td>1.16</td>
</tr>
<tr>
<td>D75</td>
<td>0.083</td>
<td>1.30</td>
</tr>
<tr>
<td>D80</td>
<td>0.196</td>
<td>2.09</td>
</tr>
<tr>
<td>D85</td>
<td>0.153</td>
<td>1.14</td>
</tr>
<tr>
<td>(R^2)</td>
<td>.739</td>
<td></td>
</tr>
</tbody>
</table>

\(n = 146\)

\(^a\) Measured as percent.

at which \(MAX\) is a binding constraint on the replacement rate, but for lower-wage workers it should be irrelevant if compensating wage differentials are individually fair and general equilibrium effects are irrelevant. The significant negative coefficient of the percent of low-income families (POOR) is consistent with the hypothesis that general equilibrium effects matter. Benefits are negatively related to the percent of workers in establishments of 20 or fewer employees (SMALL) which is consistent with a negative price elasticity of demand. The significant positive coefficients of percent of workers in agriculture (AGRIC) and services (SERVICES) could reflect the higher cost of private supplementation in these industries, as evidenced by the fact that a disproportionately high percentage of workers in these industries lack private insurance. Dummy variables for 1975, 1980, and 1985 are positive, although not highly significant. This suggests either that the threat of federal intervention following the National Commission had an effect or that WC is subject to some of the same influences that have lead to rising real tort awards and that these influences are not captured by the explanatory variables included here. The income elasticity (WAGE) is insignificantly different from zero. Unionization and other measures of industrial mix are also insignificant.

IV. Conclusions

This analysis has several implications for interpreting the choice of WC benefits and drawing inferences for product liability. First, no worker votes for less than the benefits he (or she) is willing to pay for, given the effective supply price, \(h^*\). But \(h^*\) depends not only on the load on his own employer's insurance but also of the difference between his preferences and those of other workers. General equilibrium adjustments in labor and product markets internalize to some extent to each worker the excess costs that his choices impose on other workers. Second, willingness to pay for state-level mandatory benefits also depends on the availability of private supplementary benefits and federally financed public programs. Thus for some workers WC benefits may appear to be suboptimal; but this is true only ignoring supplementation and ignoring the deadweight costs imposed on other workers from mandating higher benefits.

Both factors—supplementation and deadweight costs from imposing common benefits on heterogeneous individuals—apply equally in the case of insurance for product-related injuries. WC benefits therefore provide a reasonable guide for optimal compensation through the tort system, ignoring deterrence.

REFERENCES

Courant, P. N., “A General Equilibrium Model of Heterogeneous Local Property Taxes,”

