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Task-level Object Grasping for Simulated Agents

Abstract
Simulating a human figure performing a manual task requires that the agent interact with objects in the
environment in a realistic manner. Graphic or programming interfaces to control human figure animation,
however, do not allow the animator to instruct the system with concise "high-level" commands. Instructions
coming from a high-level planner cannot be directly given to a synthetic agent because they do not specify
such details as which end-effector to use or where on the object to grasp. Because current animation systems
require joint angle displacement descriptions of motion - even for motions that incorporate upwards of 15
joints - an efficient connection between high-level specifications and low-level hand joint motion is required.
In this paper we describe a system that directs task-level, general-purpose, object grasping for a simulated
human agent. The Object-Specific Reasoner (OSR) is a reasoning module that uses knowledge of the object of
the underspecified action to generate values for missing parameters. The Grasp Behavior manages
simultaneous motions of the joints in the hand, wrist, and arm, and provides a programmer with a high-level
description of the desired action. When composed hierarchically, the OSR and the Grasp behavior interpret
task-level commands and direct specific motions to the animation system. These modules are implemented as
part of the Jack system at the University of Pennsylvania.
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Abstract

Simulating a human �gure performing a task requires that the agent interact with

objects in the environment in a realistic manner� In this paper we describe a system

which directs task�level� general�purpose� object grasping for a simulated human agent�

The Object Speci�c Reasoner �OSR� generates parameters for underspeci�ed task�

level instructions such as �pickup jack hammer�� The Grasp behavior manages si�

multaneous motions of the joints in the hand� wrist and arm� When composed hi�

erarchically� the OSR and the Grasp behavior interpret task�level commands to the

animation system� These modules are implemented as part of the Jack project at the

University of Pennsylvania�
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� Introduction

Our research is concerned with building a general�purpose system to animate a simulated human

character manipulating objects� This paper focuses speci�cally on grasping tasks� Grasping is

one of the most complex of the agent�object manipulation tasks� The human hand has 	
 joints

and �� degrees of freedom� To generate a realistic grasp of an object� each digit of the agent
s

hand must close down around the object simultaneously� The wrist must be compliant as the palm

moves to �t to the object� For an animator to enumerate the motions required by each involved

joint is di�cult and tedious� In circumstances where an animator is not used� for example� in

virtual reality manipulations of real�tie task simulation� a program must create the appropriate

agent�object grasp interactions�

We are building a task�level interface which allows the animator to instruct the system with

intuitive� concise commands� This interface generates the individual joint motions required by the

behavior and integrates two special�purpose components� an intermediate reasoning system �the

Object Speci�c Reasoner� and an agent motor behavior which simulates grasping�

��� Jack

The research described here uses software developed in the Center for Human Modeling and Sim�

ulation �HMS� at the University of Pennsylvania� The Jack R� modeling system runs on Silicon

Graphics workstations and provides �D�modeling capabilities� as well as extensive human factors

and analysis tools �BPW���� Jack provides a simulation system and behaviors for any agent �BB����

Behaviors manage and schedule sets of joint motions to execute simultaneously� Grasping has been

implemented as one of the basic Jack motor behaviors�

Becket �BB��� provides an integrated behavioral architecture tightly bound with the Jack virtual

environment� as illustrated in Figure 	� The unshaded modules in Figure 	 illustrate the components

�and their integration� described in this paper� As is shown� adding these two modules will�

hopefully� span the gap between the high�level planner and the Jack virtual environment�
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Figure �� Placement of the OSR and Behavioral Simulator in system�

��� Parallel Automata� PaT�Nets

Parallel Transition Networks �PaT�Nets� are control structures which execute within Jack
s simu�

lation system� A full discussion of the PaT�Net is not within the scope of this paper� for a more

detailed description� see �CPB���� MGR�
a� MGR�
b� Bec����� PaT�Nets are essentially �nite

state automata which execute in parallel� consisting of nodes connected by directed arcs called

transitions� An action is associated with each node� this action consists of arbitrary LISP code

which can directly �for example� by adjusting a joint angle� or indirectly �for example� by con�

straining the arm to move to a certain location� a�ect the simulation� Each transition has an

associated condition� an arbitrary piece of LISP code which evaluates to true or false� On each

simulation step� the action associated with the current node is executed� the �rst transition with a

true condition is taken� The simulation proceeds at the next clock tick by evaluating the action of

the node to which the PaT�Net transitioned� and so forth� Although evaluated code can perform

arbitrary computations� invocations of Jack motor behaviors are of particular interest�

Several PaT�Nets can exist in a single simulation� indeed� several instances of the same PaT�Net

can execute simultaneously� as in the grasping PaT�Nets described below�
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Figure �� An Example Opposition Space� The thumb and �rst two �ngers exert equal and

opposite forces in order to grasp the ball stably�

� Simulated Human Grasping

��� An Overview of Human Prehension

The opposition of the thumb and �ngers is the most important ability of the human hand� allowing

for the highly adaptive manipulation we call grasping �Nap���� Our most basic interactions with

the world involve the manipulation of objects with our hands� even the infant quickly develops

schemas for basic grasping �Pia
��� Any simulation of task�level human abilities must account for

this most basic of human skills�

Recent work in robotics and cognitive science describes stable prehensile grasps �i�e� grasps

adapted for manipulation� in terms of opposition spaces �IBA��� MI���� grasps in which an oppo�

sition vector exists between surfaces of the hand� Figure � shows a three��ngered grasp between

the pads of the �ngers� with the opposition vectors overlaid� An opposition vector describes the

relationship between two or more virtual �ngers� which exert forces su�cient to control the target

object along the line of opposition� Once a mapping from virtual �ngers to real �ngers has been
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determined� a stable grasp has been achieved�

There are three basic types of oppositions used in human prehension�

� PAD opposition� the opposition vector runs between hand surfaces in a direction parallel to

the palm �see Figure ���

� PALM opposition� the opposition vector runs between hand surfaces in a direction generally

perpendicular to the palm�

� SIDE opposition� the opposition vector runs between hand surfaces in a direction generally

transverse to the palm�

In human prehension� two steps follow after the selection of a particular grasp for a speci�c

task� In the �rst step� the hand preshapes while the palm orients to the object� Preshaping

involves opening the hand su�ciently to span the object �MML���� Palm orientation� as described

in �Ibe��a� AIL�
�� is a �ballpark� process in which the hand nears the object but has no speci�c

target location relative to the object� The second step involves a tactilely driven �nger closure in

which the hand attempts to close into the selected grasp posture while using sensory information

from the hand surfaces to adapt the grasp to the target geometry�

Finally� studies of grasping �for a survey� see �MI���� have suggested that prehension proceeds

serially� with individual components of the grasp occuring in parallel� For example� while preshaping

the hand� the palm is oriented and transported towards the target� The �ngers close in parallel

with the thumb and further re�nements to the position of the palm� A grasping system should

therefore incorporate both the serial and parallel aspects of human prehension�

��� Previous Approaches to Simulated Grasping

There is some previous work in the graphic simulation of automatic human prehension� notably

�RG�	� MTN��� MTT�	� and �KKKL���� Rijpkema and Girard present an inverse kinematics

approach to control of the �ngers and thumb� This computationally expensive approach denies the
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close connection between sensory input and the resultant grasp� Furthermore� they concentrate

primarily on pad grasps� neglecting the palm opposition usually seen in power grasps�

Koga� et al also address the issue of grasping and the more general problem of multi�arm

manipulation �KKKL���� Their grasping approach requires signi�cant overhead� objects to be

manipulated must be tagged with speci�c target sites for each �nger and for each di�erent grasp�

Grasping is then treated as an inverse kinematics problem where the goal sites have been determined

in advance� Their work also addresses multi�arm manipulation and a special�case form of path�

planning� whereas our work seeks to describe task�level general instruction commands particularly

related to grasping�

Magnenat�Thalmann �MTN��� MTT�	� provides an interesting account of human body defor�

mations and the interaction between the forces of a gripping hand and a deformable object� but

does not address the issue of grasping� only the animation of realistic deformation�

The robotics literature contains a signi�cant amount of work in automated grasping� Iberall

�Ibe��b� proposes a two�level architecture in which�

	� An object and task representation are mapped into a grasp�oriented task description�

�� The task description is mapped onto a grasping schema� whether an opposition space� tactilely

driven control� or analytical framework�

An approach by Stans�eld �Sta��� describes a two�level architecture for object grasping� but

this can be distinguished from the two�level architecture above� in that this is really a two�phase

architecture� In the �rst phase� the agent reaches for the object� in the second� the hand is

constricted around the object� While Stans�eld uses some symbolic knowledge� it is not clear that

the approach is su�ciently general for human grasping�

Cutkosky and Howe �CH��� present a hierarchy of manufacturing grasps which subdivides

Napier
s original distinction of power and precision grasps �Nap��� into 	� distinct grasps� which

are re�ected in Figure � below� This hierarchy represents grasps for a number of object geometries

�from spheres to cylinders to disks and cones� and task goals �from lifting to turning to exerting

	



torque��

Some recent e�orts have focused on heuristics for selecting grasps based on object geometry

and task information �see� for example� �BLTK���� an extension of �TBK����� Bekey focuses on

selecting both grasp types and grasp locations based on object representations� task speci�cations�

and object geometry� using both heuristics and a certain degree of table look�up� Tomovic
s earlier

paper addresses geometric models for classes of objects and the appropriate �nger closing algorithms

for these� Other examples of knowledge�based grasping techniques include �Sta���� �IJLZ���� and

�Ibe����

��� Grasping in Jack

As discussed in above� the second phase of human prehension constitutes the low�level �motor

control� of grasping� namely� the tactilely driven closure of the hand� During this phase� the

human hand �the �ngers� thumb� and palm� relays signals about contact with the object geometry

back to the central nervous system� which sends back commands on how to tailor the grasp to the

object geometry� This process continues until the hand grasps the object stably�

In Jack� we simulate the sense of touch by using collision detection� Collision detection and

an input parameter describing the desired opposition drive the closure of the �ngers� The sections

below describe this approach in more detail�

����� Simulating Tactile Sensation

Human prehension proceeds from tactile sensations delivered from the surfaces of the hand to

the central nervous system� This allows for the perception of object properties that might not

be immediately obtainable by visual inspection �for example� object texture is often not visually

apparent�� Furthermore� tactile sensing enables stable grasping by virtue of the direct accessibility

of grasping forces along the opposition vectors� in short� the �ngers can feel the forces they are

exerting� Tactile sensation enables the perception of the interacting forces between hand and object

which lead to a stable grasp� usually� the visual system cannot perceive these oppositions�






In Jack
s simulated grasping� collisions between the �ngers and the target object trigger tran�

sitions in the PaT�Nets which simulate the hand closing process� For example� in a power grasp�

where the palm is generally brought into contact with the target before the �ngers close� a collision

between the proximal digit of the �nger and the target object would trigger a transition into a state

in which the two distal segments of that �nger are closing while the proximal segment remains in

place� Power grasps require a high degree of contact between the surfaces of the �ngers and palm

with the object to be grasped� therefore� a collision between the proximal digit and the object

would be likely to be maintained as part of a stable grasp�

The transitions taken in these PaT�Nets depend on the desired opposition� For example� the

above collision between the proximal digit of the �nger with the target object would trigger an

entirely di�erent transition if the goal opposition were a pad opposition� speci�cally� it would pull

that �nger back a little bit to ensure a pad opposition� Thus� the same control structures generate

di�erent types of grasps based on the desired opposition type�

����� Parallel Execution

In order to achieve realistic looking grasps� the �ngers need to close in parallel� Building a single

controller for the entire hand� however� requires a complete description of the possible interactions

of the �ngers� thumb� and target object� Since Jack
s hand has �� degrees of freedom� determining

the number of possible interactions is a daunting task� Alternatively� a great deal of apparent

complexity can be achieved using simple PaT�Nets which interact to achieve a stable grasp�

Figure � shows a power�grasped hammer �a palm opposition grasp along the axis of the hammer

handle�� Each �nger and the thumb acted in parallel to achieve this grasp� Collisions between any

�nger and the object �or other �ngers� was the responsibility of the PaT�Net controlling that �nger�

Five PaT�Nets executing simultaneously and independently produced the grasp shown in Figure ��
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Figure �� Power Grasping A Hammer

����� Implemented Grasps

The �fteen grasps shown in Figure � are based on Cutkosky and Howe
s sixteen grasps in �CH����

�The sixteenth� the hook or platform push� is left out because it is not prehensile��

All �fteen grasps are accomplished by three simple PaT�Nets �two of which may be multiply

instantiated during a particular grasp� in order to control the four �ngers� The �rst of these controls

the closing of the �nger� Each of Jack
s �ngers is similar in structure� consisting of two degrees

of freedom at the base� and one each at the medial and distal joints� although the geometry and

scaling may be somewhat di�erent� This PaT�Net will be instantiated with the input parameter of

the goal opposition type� The second controls the adduction �or abduction� of the �ngers for grasps

in which the �ngers must be spread or pressed close together� Finally� there is a single PaT�Net

which controls all of the thumb
s movement for a particular grasp based on the opposition type�

��� Invoking the Grasp Behavior

While the Grasp behavior handles the execution of hand closure into particular grasps� other

parameters required for realistic animation are missing� It is not responsible for transport of the

hand to the object� and while palm orientation a�ects a grasp� selecting the orientation is the
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Figure �� Jack
s Taxonomy of Manufacturing Grasps

responsibility of a higher�level process� Determining these parameters must be handled by an

additional system� if not by the animator�

� Object Speci�c Reasoning

General�purpose AI planners� in decomposing task plans into the steps which comprise the plan�

produce a set of steps which might achieve the desired manipulation� These task�actions are

unparameterized commands such as �pickup jack hammer� � or �open jack door�� While a

human agent can interpret and perform such task�actions� they are underspeci�ed for an animated

agent�

�The �rst term indicates the action to take� the second term names the agent� the third term refers to
the object of the action� Assume that agent and object names are uniquely identi�ed with an entity in the

animation scene� symbol grounding is beyond the scope of the present paper �cf� however� �GLM�	
��

��



Robotic applications� meanwhile� use domain�speci�c manipulation procedures in which each

motion is speci�ed completely� These procedures are too speci�c to be generally useful� a system

designed to remove four identical bolts securing a lid might require four separate bolt removal

routines� due to the di�erent locations of the bolts� Alternatively� systems may require human

operators in the control loop� operators oversee operation and add situation�speci�c details to the

motion directives�

The problem is further complicated by the fact that the high�level planner often ignores the

environment in which the action is to occur� the high�level planner does not know enough about the

physical description of an object and the relative positions of agent and object to accurately describe

neither how to close the hand around the object nor where on the object to grasp� Likewise the

simulator does not know enough about the purpose of the action to select the optimal parameters�

grasping a hammer to use it� versus moving it� can result in di�erent actions�

This suggests the need for an intermediate reasoning system which determines the unspeci�ed

parameters� The Object Speci�c Reasoner �OSR� �Lev�
� breaks task�actions from the high�level

planner into sets of motion directives� adding su�cient details such that the actions can be per�

formed by existing behaviors controlled from the simulation system� The major contributions of

the OSR are the recognition of the need for an intermediate reasoning model to map task�actions

to motion directives� and the acknowledgement of the importance of the object and the purpose in

interpreting a task�action�

Numerous high�level systems ignore the need for details to perform task�driven behaviors� and

low�level systems have designed domain speci�c solutions which do not generalize� We have found

few other systems developing general methods to build plans to manipulate objects� and none which

formulate the problem solution as an intermediate reasoner� The issue is avoided by� 	� ignoring

the fact that task�actions must be decomposed and parameterized� �� selecting domains and tasks

where manipulation is not crucial �VB��� LR��� McD��� Fir��� Str��� ZJ�	�� or �� concentrating

on general manipulation strategies �e�g�� the �peg in hole� problem� when the task is generically

speci�ed ��IJLZ��� LPMT�����
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��� OSR Motivation

The OSR maps task�actions to sets of motion directives� Its architecture is motivated by the

following observations� that task�actions which specify the same task result in a wide variation of

physical actions when applied to di�erent objects in di�erent environments� Consider the following

task�actions�

�	� a� �TApickup jack hammer �TAmove��

b� �TApickup jack glass �TAmove��

c� �TApickup jack papercup �TAmove��

While the �rst two task�actions result in di�erent behaviors� it is not clear that the last two will�

Further� consider�

��� a� �TApickup jack crescent�wrench �TAmove��

b� �TApickup jack socket�wrench �TAmove��

Finally� the purpose of a task�action a�ects the interpretation much as the object does� consider

examples such as�

��� a� �TApickup jack hammer �TAmove��

b� �TApickup jack hammer �TAuse��

In these examples the purpose of the task�action in�uences where an object is grasped and how it

is moved�

The multiplicity of task�action�object pairs motivates the architecture for the OSR� The system

must explain why the same task�action can appear with di�erent objects� There are two possibil�

ities� either a separate action plan de�nition is needed for each task�action�object pairing� or else

task�action de�nitions are underspeci�ed across some categorization of objects� and are comple�

mented �completed� with additional object knowledge� The �rst alternative� of course� requires a
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Figure �� The Object Speci�c Reasoner

separate action de�nition for any task�action�object pairing that can occur� this is not a general�

purpose solution� We adopt the second option here� as it addresses the variability of objects that

can appear with a single task�action�

��� OSR Architecture

The Object Speci�c Reasoner expands existing task�action goals generated by a high�level planner

and passes these plans to Jack for animation� The object manipulation task�actions are the primary

input to the OSR� Given this input� the OSR performs two functions� 	� it can determine if a

task�action is feasible� i�e�� can be performed by the agent in the given context� and �� it constructs

the set of motion directives required to achieve the task�action�
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Figure 
 illustrates the �ve phases of the OSR system� 	� selecting an action outline� �� ex�

panding all steps of the outline� �� using details of the object of the current task�action to generate

possible parameters for the motions in the outline� �� selecting parameter values� and 
� verifying

that the agent can perform this speci�c action on this speci�c object� If a set of motions can be so

parameterized� the task�action is judged to be feasible�

In the �rst phase� the task�action and the type of the object are used to select an action outline

from a library of outlines� This library is indexed by both the task�action and a taxonomy of object

types� Objects are coarsely divided into geometric and functional categories� we di�erentiate� e�g��

tools� closed containers� open containers� For each task�action� there may be separate

action outlines for each type of object that can appear in conjunction�

An action outline consists of a set of steps� each step is either a task�action or a motion

directive � a direct call into the Jack behavioral system� As part of the �rst phase� action outlines

are automatically expanded� sub�task�actions are replaced with their action outlines which are

inserted into the master outline� This process continues until all task�actions are expressed by

motion directives� Individual task�actions establish a partial ordering among their de�ning motions�

whether two motions happen simultaneously� sequentially� or are dependent on each other� The

�nal set of motions are partially ordered�

The second phase generates possible parameter values for all slots of the motion directives�

Speci�c attributes of the agent and object� in conjunction with heuristic rules� are used to generate

this set of values� This step moves the action outline from being a general plan to manipulate a

generic object �of the speci�ed category� to being a plan for a speci�c agent to manipulate a speci�c

object�

The third phase sorts the possible parameter values and selects single parameters values to

test� The purpose � the subsequent actions to be performed � are used to do this sorting� A set

of heuristic rules are de�ned for each low�level motion� they are sensitive to object category and

purpose� The sets of possible parameter values are sorted� for example� when grasping a tool to

use it� the handle is the preferred grasp site� while when grasping a tool to move it� there is no
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preferred site �the system selects the closest accessible site�� These rules are encoded as a set of

object�oriented procedures�

The fourth phase involves checking dependencies between agent resources and object attributes�

Each motion directive includes a predicate which speci�es those pairs of resources and attributes

to be checked� For example� the OSR might check whether the agent
s hand is large enough to

grip the handle of the hammer� If all the dependencies for all the motions in this outline are within

tolerance� the OSR reports that the task�action is feasible�

If the agent and object attributes fail the tolerance test� then control is returned to the high�

level planner along with a record� called a discrepancy list� of those resource�attribute pairs that

are out of tolerance� The high�level planner can use this list to try to repair its plan�

If the set of motions passes the feasibility check� task�action re�nement is complete� and agent�

speci�c behaviors are substituted for the general motion language used by the OSR� These behaviors

are sent to Jack for simulation� Any errors which occur during animation are relayed back to the

high�level planner by the OSR for replanning or plan correction�

� Examples

As an example� consider the task�action �TAget jack hammer �TAuse���� �We take the meaning

of TAget here to be �get control of� the object� i�e�� reach to the object and grasp it�� Recall the

syntax of a task�action� here� the agent jack is to get�control�of the object hammer for the purpose

of moving it�

��� Example �� �TAget jack hammer �TAuse��

The OSR begins by selecting an action outline for this task�action�object category� TAGet�tool�

� Phase 	� Select action outline�

�TA is an abbreviation for task�action� OSR indicates a primitive motion in the reasoning system�
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SEQ

�TAReach agt Tool��

�OSRGrasp agt OpenCont�

� Phase �� Expand outline� add agent� object and purpose speci�cs�

SEQ

WHILE ��OSRReach Jack hammer �OSRGrasp TAUse��

�OSRLook Jack hammer �OSRGrasp���

�OSRGrasp Jack hammer �TAMove��

� Phase �� Generate possible parameter values�

SEQ

WHILE ��OSRReach Jack fleft right bothg hammer

f�head �base �handleg �OSRGrasp TAUse��

�OSRLook Jack hammer �OSRGrasp����

�OSRGrasp Jack fleft right bothg hammer

f�head �base �handleg fpower precision clampg �TAUse��

� Phase �� Sort possible values� select one�

SEQ

WHILE ��OSRReach Jack right hammer�handle�

�OSRLook Jack hammer��

�OSRGrasp Jack right hammer�handle power�adducted�thumb�

�	



Figure 	� Grasping the hammer to move or to hammer�

� Phase 
� Check agent resources against object attributes for each OSRmotion� If they are

within tolerance� the task�action is feasible�

When the OSR �nishes successfully constructing the manipulation plan� the simulation system

is invoked� In this example� a PaT�Net would be constructed which builds the dependency between

the OSRReach and the OSRLook� and sequences that with the OSRGrasp�

When the OSRGrasp is invoked� an instance of the Grasp PaT�Net is created and begins to exe�

cute� The Grasp PaT�Net creates �ve sub�nets� one for each �nger� These nets run simultaneously�

moving the �ngers individually around the object�

��� Example �� �get jack hammer �move��

Processing in the �rst two phases is the same as the previous example� The major di�erences

occur in Phase �� when the purpose is used to sort possible parameters� Note in Phase � below the

di�erences in the purpose sets between this and the �get Jack hammer �use�� example�

� Phase �� Generate possible parameter values�

�




SEQ

WHILE ��OSRReach Jack fleft right bothg hammer

f�head �base �handleg �OSRGrasp TAMove���

�OSRLook Jack hammer �OSRGrasp��

�OSRGrasp Jack fleft right bothg hammer

f�head �base �handleg fpower precision clampg �TAMove��

� Phase �� Sort possible values� select one�

SEQ

WHILE ��OSRReach Jack left hammer�head��

�OSRLook Jack hammer�

�OSRGrasp Jack left hammer�head clamp�

These di�erences are presented in Figure ��

� Conclusion

We have presented a general�purpose system to construct animations of a simulated human char�

acter manipulating objects� Our two�level architecture consists of an intermediate level reasoner

which parameterizes motor behaviors programs� and a low�level system which actually executes the

�ne motor control�

Figure � illustrates the hierarchical structure of PaT�Nets in the system� An action node in

one component expands to a full PaT�Net at the next level of detail� In the �rst expansion� the

Object Speci�c Reasoner generates parameters for underspeci�ed task�level instructions� examines

task feasibility� and tests possible parameterizations of motion directives� A second expansion

instantiates the Grasp behavior� which manages simultaneous motions of the joints in the hand�

��
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Figure 
� Hierarchical PaT�Net decomposition of a pickup task�

wrist and arm� When composed hierarchically� the OSR and the Grasp behavior allow the animator

task�level control over the simulated humans in the virtual environment�

The OSR
s ability to interpret task�actions with respect to the object and context allows an

animator to use a single task�action to describe the action� without concern for situation speci�c

details� Similarly� the behavioral simulator allows the OSR to discuss motions� e�g�� grasp without

concern for �ne motor control� The Grasp behavior provides the OSR with a succinct interface

to Grasp behaviors� the OSR provides an animator a succinct interface to Grasping task�actions�

Operating together� these two separate systems combine to provide a powerful tool for a high�level

planner or animator to use when generating realistic animations� This system is implemented as

part of the Jack project at the University of Pennsylvania�

The ease with which we linked the OSR and the Grasp behavior leads us to believe that our

future work to include other agent behaviors looks promising� The two levels of expansion between

the planner and the virtual environment allows each component to attack smaller� less cumbersome

problems� while remaining independent� the Grasp behavior can be improved without a�ecting the

functionality of the OSR� and vice versa� This �exible architecture will support the incorporation

��



of additional object manipulation behaviors� allowing us to extend this task�level interface to a

virtual environment�
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