Differentiated Egalitarianism: The Impact of Paid Family Leave Policy on Women's and Men's Paid and Unpaid Work

Pilar Gonalons-Pons

University of Pennsylvania, pgonalon@sas.upenn.edu

Follow this and additional works at: https://repository.upenn.edu/psc_publications

Part of the Family, Life Course, and Society Commons, Gender and Sexuality Commons, and the Work, Economy and Organizations Commons

Recommended Citation

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/psc_publications/73
For more information, please contact repository@pobox.upenn.edu.
Differentiated Egalitarianism: The Impact of Paid Family Leave Policy on Women's and Men's Paid and Unpaid Work

Abstract
The birth of a new child continues to exacerbate gender specialization among different-sex couples. This study considers the potential of paid leave policies to intervene in this key life-course juncture and promote greater gender equality in paid and unpaid work. While previous research has examined the impact of paid leave policies on paid or unpaid work among mothers or fathers separately, this study provides an integrated framework and examines comprehensively how these benefits shape both mothers and fathers and both paid and unpaid work outcomes. I use data from the Current Population Survey 1990–2020 and the American Time Use Survey 2003–2019 and quasi-experimental differences-in-differences models to examine the impact of the introduction of paid leave policies in California and New Jersey. The results show that the policy increased mothers’ and fathers’ short-term time off from paid work after new births, increased mothers’ care work but not fathers’, and increased fathers’ housework but not mothers’. I call this pattern differentiated egalitarianism, denoting changes increasing men’s involvement in housework while simultaneously reproducing mothers’ primary caregiver role.

Keywords
paid leave policy, gender inequality, division of paid and unpaid work

Disciplines
Family, Life Course, and Society | Gender and Sexuality | Social and Behavioral Sciences | Sociology | Work, Economy and Organizations
DIFFERENTIATED EGOALITARIANISM:
THE IMPACT OF PAID FAMILY LEAVE POLICY ON
WOMEN’S AND MEN’S PAID AND UNPAID WORK

Pilar Gonalons-Pons
University of Pennsylvania

ABSTRACT. The birth of a new child continues to exacerbate gender specialization among different-sex couples. This study considers the potential of paid leave policies to intervene in this key life-course juncture and promote greater gender equality in paid and unpaid work. While previous research has examined the impact of paid leave policies on paid or unpaid work among mothers or fathers separately, this study provides an integrated framework and examines comprehensively how these benefits shape both mothers and fathers and both paid and unpaid work outcomes. I use data from the Current Population Survey 1990–2020 and the American Time Use Survey 2003–2019 and quasi-experimental differences-in-differences models to examine the impact of the introduction of paid leave policies in California and New Jersey. The results show that the policy increased mothers’ and fathers’ short-term time off from paid work after new births, increased mothers’ care work but not fathers’, and increased fathers’ housework but not mothers’. I call this pattern differentiated egalitarianism, denoting changes increasing men’s involvement in housework while simultaneously reproducing mothers’ primary caregiver role.

KEYWORDS. Paid leave policy • Gender inequality • Division of paid and unpaid work
Introduction

Despite declines in various markers of gender inequality, parenthood continues to exacerbate economic gender gaps among different-sex couples. Parenthood leaves dramatic imprints on women’s economic lives: women see long-term declines in employment, work hours, earnings, and wages (Baxter, Hewitt, and Haynes 2008; Budig and England 2001; Budig and Hodges 2010; England et al. 2016; Florian 2018; Glauber 2007, 2018; Gonalons-Pons, Schwartz, and Musick 2021; Killewald and García-Manglano 2016; Musick, Bea, and Gonalons-Pons 2020; Musick, Gonalons-Pons, and Schwartz 2021; Pal and Waldfogel 2016), and large increases in housework and care work (Sanchez and Thomson 1997; Sayer 2005; Yavorsky, Kamp Dush, and Schoppe-Sullivan 2015). This effect is much less noticeable in men’s economic lives; men see no changes in employment, small or no increases in work hours, earnings, and wages (Killewald and García-Manglano 2016; Musick et al. 2020; Musick et al. 2021), and comparatively small increases in housework and care work (Hook and Wolfe 2012; Sanchez and Thomson 1997; Yavorsky et al. 2015). In other words, parenthood accentuates gender specialization, prompting a dramatic shift in women’s work effort towards unpaid work, whereas men’s work effort continues to prioritize paid work.

Feminist scholars have long posited that social policy, such as paid parental leave or universal childcare, could help change gendered dynamics that unfold within different-sex couples after parenthood (e.g., Boeckmann, Misra, and Budig 2015; Budig, Misra, and Boeckman 2012; Gornick and Meyers 2003; Jacobs and Gerson 2016; Pedulla and Thébaud 2015). Scholars hypothesize that policies might help change norms about the desirable gender division of labor (Bunning 2015; Gangl and Ziefle 2016; Gornick and Meyers 2003) and/or provide economic incentives for egalitarian division of labor (Cooke 2006; England 2010). The potential impact of these social policies might be particularly ripe in countries like the United
States where preferences for gender egalitarianism have increased (Gerson 2010; Jacobs and Gerson 2016; Knight and Brinton 2017; but see Pepin and Cotter 2018 and Dernberger and Pepin 2020). Indeed, scholars argue that one reason why these preferences do not materialize is the lack of social policies that facilitate work-family balance (Gerson 2010; Jacobs and Gerson 2016; Pedulla and Thébaud 2015).

Existing research on paid parental leave remains inconclusive because it has not yet holistically examined both mothers’ and fathers’ paid and unpaid work. Most research has focused on the impact on mothers’ paid work, but relatively less is known about the impact on their unpaid work and on fathers’ work. Studies examining mothers’ paid work find that paid leave policies can encourage mothers’ labor market attachment (Baum and Ruhm 2016; Byker 2016; Dunatchik and Özcan 2021; Rossin-Slater, Ruhm, and Waldfogel 2013), although long paid leaves tend to reinforce prolonged detachment from the labor force (Budig et al. 2012; Gangl and Ziefle 2016). Studies examining fathers’ outcomes find increases in fathers’ leave uptake, especially when leaves are reserved exclusively for fathers (i.e., so-called “daddy quota” policies) (Bunning 2015; Duvander and Johnasson 2015), and some find that fathers become more involved in childcare and/or housework (Bunning 2015; Haas and Hwang 2008; Kotsadam and Finseraas 2011; Nepomnyaschy and Waldfogel 2007; Petts and Knoester 2018; Tanaka and Waldfogel 2007; Wray 2020), but others do not (Schober 2014). It remains unclear whether paid leaves transform overall gender inequality in paid and unpaid work, as it is possible for the policy to increase mothers’ attachment to the workplace or even somewhat increase men’s unpaid work, while simultaneously also increasing women’s unpaid work.

This study uses quasi-experimental differences-in-differences (DiD) models to estimate the impact of paid parental leave policy on mothers’ and fathers’ paid and unpaid work over the
first year after birth. I study the introduction of paid leave policy in California and New Jersey using panel data from the Current Population Survey (CPS) and cross-sectional data from the American Time Use Survey (ATUS). Unlike prior scholarship that primarily examines one outcome at a time (i.e., only mothers’ paid work or only fathers’ unpaid work), a core contribution of the present study is to offer an integrated conceptual framework and a comprehensive analysis about how the policy shapes paid and unpaid mothers’ and fathers’ work. Although data limitations do not allow for couple-level analyses on both paid and unpaid work outcomes, examining all outcomes simultaneously offers a novel understanding about the potential of paid leave policies to transform gender inequalities in paid and unpaid work. I find that California and New Jersey policies contributed to bolstering what I call differentiated egalitarianism: the policy increased mothers’ and fathers’ time off paid work after new births but reinforced gender segregation in the unpaid arena, increasing mothers’ care work but not fathers’ and increasing fathers’ housework but not mothers’.

Background and Previous Research

The United States is an outlier among high-income countries for the near absence of social policy aimed at facilitating work-family balance (Collins 2019; Engeman 2021; Gornick and Meyers 2003, 2009; Kaufman 2020). Paid parental leave policy similar to that of other high-income countries only became a reality in 2004, when California became the first state to provide six weeks of paid leave (Engeman 2021; Milkman and Applebaum 2013). After California, several states have followed suit, first New Jersey in 2009, then Rhode Island in 2014, and more recently New York, Washington, DC, Oregon, Massachusetts, Colorado, and Connecticut. The state paid leave policies that have passed since 2004 differ in various ways, including in benefit
generosity, leave length, and eligibility, but they all also share important features. Appendix Table S1 summarizes key features of the policies. The policies also expand benefit eligibility relative to the 1993 Family and Medical Leave Act unpaid leave benefit, which is only available to a particular subgroup of the workforce, that is, workers employed by companies with 50 or more employees. Notably, the benefits are gender neutral and individual, meaning that all eligible claimants have access to the same benefit irrespective of the gender of the parent and of the amount of leave taken by the other partner if there is one (Gornick and Meyers 2003, 2009; Milkman and Applebaum 2013).

Existing evidence about the impact of paid family leave policies on economic outcomes comes from cross-national comparative studies and country-specific studies, including in the US. Most research has focused on women’s paid work,¹ with evidence indicating that long paid leaves can discourage mothers’ employment (Gangl and Ziefle 2016; Gornick and Meyers 2003, 2009), while shorter paid leave policies tend to encourage mothers’ labor market attachment (Gornick and Meyers 2003, 2009), particularly in contexts supportive of maternal employment (Budig et al. 2012). One study in Germany found that paid leave policies may reduce the motherhood wage penalty (Mari and Cutuli 2020). In the United States, several studies find that paid leave policies increased mothers’ labor force attachment (Byker 2016; Goldsmith 2019), but more recent studies, some using administrative data, appear to observe no significant impact on this outcome (Bailey et al. 2019; Bana, Bedard, and Rossin; Slater 2020; Stock and Inglis 2021). The results concerning earnings and wages in the US are similarly mixed (Bailey et al. 2019; Stock and Inglis 2021), with some studies showing that paid leaves help mothers maintain employment and avoid economic hardships (Stanczyk 2019; Winston et al. 2019).
Research considering the impact of paid leave policies on fathers’ economic outcomes have largely focused on take-up rates and paid work. Studies show that rates at which fathers take leave are lower and the leave duration shorter than mothers’ (Bunning 2015; Petts, Knoester, and Li 2020; Pragg and Knoester 2017). Research finds that taking leave does not substantively impact fathers’ employment (Cools, Fiva, and Kirkebøen 2015; Haas and Rostgaard 2011), although some observed declines in work hours (Duvander and Jans 2009). In the United States, California’s paid leave policy was shown to increase fathers’ take-up (Bartel et al. 2018).

Research on unpaid work outcomes is comparatively scarce, and it has focused relatively more on fathers than mothers. Findings from Germany, the United Kingdom, and Sweden suggest that paid leave policies explicitly designed to incentivize fathers’ leave take-up, such as “daddy months,” can increase fathers’ involvement in childcare (Bunning 2015; Haas and Hwang 2008; Schober 2014; Tanaka and Waldfogel 2007), but the impact on housework is less clear. Kotsadam and Finseraas (2011) find increases in Norwegian men’s involvement in laundry; Schober (2014) sees no changes in German men’s housework resulting from the policy, but Bunning (2015) observes that German men who take longer leaves do increase housework. In the United States, some studies find that fathers who take leaves are more likely to be involved in childcare (Nepomnyaschy and Waldfogel 2007; Petts and Knoester 2018), but a working paper examining the impact of California’s policy finds no changes in fathers’ overall child investments (Trajkovski 2019).

Existing scholarship has made important contributions, but the dominant focus on a single dimension of mothers/fathers paid/unpaid work is insufficient to evaluate the overall impact of the policy on gender inequalities in work. Time spent in paid and unpaid work is not a
closed system in which a decline in a person’s paid work automatically decreases their unpaid work and increases their partner’s unpaid work. As illustrated by the concept of the second shift, increases in women’s paid work might go along with increases in women’s unpaid work and no changes in men’s paid or unpaid work (Hochschild and Machung 2003). Disaggregated analyses across types of unpaid work tasks are also important because quantitative changes can mask patterns of task segregation that maintain forms of gender differentiation (Twiggs, McQuillan, and Ferree 1999). This complexity and multidimensionality of gender inequalities in paid and unpaid work call for an integrated and comprehensive framework.

An Integrated Framework

Existing scholarship points to several key determinants of the division of labor in the household, including gender processes, individual preferences, bargaining power, utility maximizing strategies, and structural constraints set by policies and workplaces limiting the feasibility of different arrangements (see Perry-Jenkins and Gerstel 2020 for a recent review). Gender processes stem from social norms shaping individuals’ preferences and expectations about the division of labor and maintaining the salience of “doing gender” through paid and unpaid work (Risman 2020; West and Zimmerman 1987). Bargaining and utility maximizing processes typically incite strategies that prioritize the paid work of the higher earner in the couple. From a bargaining perspective, this outcome results from the higher earner commanding greater bargaining power (e.g., England and Farkas 1986), whereas from a utility maximizing perspective, it stems from maximizing each member of the couple’s comparative advantage and joint utility in the long run (e.g., Becker 1985).
I propose a framework that draws on existing theories about the division of paid and unpaid work in different-sex couples and conceptualizes three major pathways through which the introduction of paid leave policy can lead to changes in gender inequalities in paid and unpaid work. I propose that paid leave policies can (a) enable unrealized preferences about the division of paid and unpaid work, (b) change preferences, and (c) incentivize more people to take time off regardless of preferences. I articulate how theoretical processes shape the outcome in each of these pathways and highlight how gender processes may reinforce gender typing of unpaid work in either of these pathways.

First, paid leave policy may enable realizing preferences about the division of paid and unpaid work that would otherwise be difficult to realize. This pathway is invoked in statements suggesting that stalled gender egalitarianism is in part due to lack of supportive policies (e.g., Jacobs and Gerson 2016; Pedulla and Thébaud 2015). Since both gender egalitarian and gender specialization preferences might be in principle facilitated by the benefit, the direction of this outcome will be shaped by gender culture and bargaining processes. Gender culture shapes the distribution of preferences about the division of labor, and bargaining processes moderate whose preference is most likely to be realized within each couple. In the United States, research finds widespread preferences for egalitarianism and involved fatherhood (e.g., Jacobs and Gerson 2016; Petts et al. 2020), but also support for neo-traditionalism (Pepin and Cotter 2018). Women, on average, prefer gender egalitarianism more than men, but the fact that they often have lower bargaining power than their partners might mitigate the realization of egalitarian preferences (Bittman et al. 2003).

Second, paid leave policies might change preferences and social expectations about paid and unpaid work. Scholars argue that policies send signals about what is appropriate and
desirable, thus spurring change in culture, preferences, and behaviors (e.g., Boeckman et al. 2015; Gangl and Zeifle 2016; Gornick and Meyers 2003, 2009). This pathway includes change among those who take the benefit and those who do not. The outcome of this pathway will depend on policy messaging, since policies can be explicitly motivated to promote gender specialization or to encourage gender equality and men’s involvement in unpaid work.

California’s and New Jersey’s paid leave policy campaigns emphasized the importance of bonding with newborns but did not incorporate strong or clear messages about desirable gender divisions of labor (Engeman 2021; Milkman and Applebaum 2013). The signals about the importance of bonding might have strengthened pressures of intensive mothering (Hays 1996; Macdonald 2011) and/or boosted expectations about involved fatherhood (Petts et al. 2020).

Additionally, gender culture and bargaining processes described above may also contribute to shaping this outcome by moderating how policy signals are translated into behaviors.

Third, paid leave policies might incentivize more people to take time off regardless of preferences. In this case, utility maximizing processes help evaluate for whom this incentive might make most of a difference. Paid leave benefits change the relative utility of taking vs. not taking time off by lowering earnings losses and offering job protections. For whom the change in relative utility will be largest depends on the generosity of the benefit and one’s economic position in the couple, among other factors. Overall, the change should be more decisive for the lower earner in the couple, especially if the benefit is not very generous. In the US, benefit generosity is moderate and covers a greater proportion of earnings for lower earners (see Table S1). On average, this might result in a greater change in relative utility for women than men. However, because US benefits do not force a choice between one or the other partner taking the
benefit, they also change the relative utility of both persons taking the leave, and this might encourage take-up among men.

These three pathways describe how paid leave policy might prompt quantitative changes in paid and unpaid work but do not describe how the policy might impact gender typing of unpaid work tasks, which is also an important indicator of gender inequality. Existing scholarship points in two directions. Some suggest that the persisting gendering of the unpaid realm might result in changes in unpaid work that reproduce gender differentiation (Schneider 2012; Tai and Treas 2013). Others indicate that increasing flexibility in the gendering of unpaid work tasks might result in changes that reduce gender differentiation (e.g., Altintas and Sullivan 2017)

In conjunction, the possibilities laid out in each pathway and the gender typing of unpaid work tasks suggest three stylized hypothetical scenarios:

HS1: *Paid leave promotes gender egalitarianism*: Paid leave increases take-up similarly for mothers and fathers and increases fathers’ involvement across unpaid work tasks. Favorable conditions for this outcome include widespread unrealized preferences for egalitarianism, policy signals emphasizing mothers’ and fathers’ bonding with newborns promoting gender egalitarian behavior, and economic incentives inciting substantial changes in the relative utility of both parents taking leave.

HS2: *Paid leave reinforces gender specialization*: Paid leave increases only mothers’ take-up and unpaid work, and it does not substantively change men’s leave take-up or unpaid work. Favorable conditions for this outcome include predominant preferences for gender specialization, and women’s lower earning position in couples limiting their bargaining power to
enact egalitarian changes and reinforcing utility maximizing benefits of their specialization in unpaid work.

HS3: Paid leave bolsters differentiated egalitarianism: Paid leave increases take-up more for women than for men and/or reinforces gender typing of unpaid work. This outcome could come about from the fact that the distribution of preferences in the population includes substantial groups supporting both gender egalitarianism and gender specialization, women’s lower earner position limiting their bargaining power to enact egalitarianism and reinforcing the utility maximizing benefits of their specialization in unpaid work, the persisting gender typing of unpaid work, and policy signals resulting in a stronger reinforcement of intensive motherhood expectations than of involved fatherhood.

Data and Method

Data Sources and Samples

This study uses the 1990–2020 Current Population Survey (CPS) (Flood et al. 2021) and the 2003–2019 American Time Use Survey (ATUS) (Hofferth et al. 2020) to study how California’s and New Jersey’s paid leave policies impact mothers’ and fathers’ paid and unpaid work. I focus on the California and New Jersey paid leaves because these policies have been implemented for several years and have produced sufficient post-reform data to perform the analysis. The CPS is used to study paid work (employment, time off paid work, work hours, and wages) and the ATUS to study unpaid work (childcare and housework).

The CPS is a nationally representative household survey that began in 1968 and collects information on employment status monthly for all adult members in the household. The CPS is structured as a set of short rotating panels; respondents are included in the CPS for four
consecutive months, they temporarily leave the sample for eight months, and reenter the sample for four more consecutive months. The second dataset, the ATUS, is a nationally representative time-use survey that began in 2003 and is conducted annually since then. The ATUS collects detailed time diary data that provides information about respondents’ activities and their duration over one day. The ATUS sample is drawn from a subset of CPS households that have completed the eight-wave interview. One randomly selected individual per household is chosen to be part of the ATUS, and this person is interviewed only once about two months after the CPS interview.

The analytical approach aims to implement robust causal identification methods adequate to the limitations of each dataset. Analyses using the CPS leverage the short rotating panel structure to estimate individual fixed effects regression models that examine how births change paid work and use differences-in-differences (DiD) models to assess how paid leave policies affect the change in paid work outcomes before vs. after birth. The ATUS does not include multiple observations per individual and thus does not allow for individual-fixed effects models. Thus, analyses using the ATUS only leverage differences-in-differences (DiD) between individuals but include a comparison group of parents of older children to control for potential sources of unobserved endogeneity. Both CPS and ATUS analyses are conducted separately for women and men. Because the CPS includes all members of the household, its estimates for women and men draw on the same sample of couples. This is not the case in the ATUS data, because only one randomly selected member per household is interviewed; thus ATUS estimates for women and men draw on different sets of couples. This limitation is further addressed in the discussion section.

The CPS analytical sample comprises respondents residing with different-sex partners and experiencing a new birth after Wave 4. I chose Wave 4 because this guarantees I obtain
measures on pre-birth earnings and wages that are not available in Waves 1–3. New births are identified using information about the age of the youngest own child in the household. Respondents are included in the sample if they report having a zero-year-old own child in the household after Wave 4 but they did not have own children or only had older children prior to Wave 4. The final sample is restricted to Waves 4 and 8, which contain complete earnings information, and to ages 16–45 for women (N = 24,049) and 16–55 for men (N = 24,049). The ATUS focal analytical sample comprises respondents residing with different-sex partners and a zero- or one-year-old own child in the household. This analytical sample also includes a comparison group of parents in different-sex partnerships and with older own children (ages 10–14). The inclusion of parents with zero- and one-year-olds allows me to examine both short- and medium-term impacts of paid leave policy on unpaid work. The sample is restricted to ages 16–55 for women (N = 18,497) and 16–65 for men (N = 14,033). Both CPS and ATUS analytical samples include married and cohabiting couples.

Measures

Paid work outcomes (CPS). I examine six paid work outcomes: employment, time off paid work, usual weekly paid work hours, paid work hours last week, weekly earnings, and hourly wages. Employment measures whether respondents have jobs at the time of the interview and is operationalized as a dummy variable that equals 1 if respondents have jobs and 0 otherwise. Time off paid work captures whether respondents who have jobs are at work the week prior to the interview. The reasons for not being at work can be several, including vacation or being on leave due to the birth of a child, thus providing an indirect measure of paid leave take-up. This measure is operationalized as a dummy variable that equals 1 if respondents have jobs but are not
at work and 0 otherwise. The two paid work hours measures capture paid work’s intensive margin, one focusing on a typical week and the other on the most recent week prior to the interview. Weekly earnings measure income earned from paid work over a typical week, and hourly wages measure the hourly pay rate at the primary job. Both measures are converted to 2019 US dollars.

Unpaid work outcomes (ATUS). The analyses examine two main dimensions of unpaid work: childcare and housework. Childcare is divided into two: childcare work and time spent with children. Childcare work measures time spent providing childcare as a primary activity, whereas time spent with children includes childcare work plus time spent with children while engaged in other activities (e.g., having a meal with children). In detailed analyses I disaggregate various types of activities: physical childcare, play, educational activities, and other childcare. Housework measures time spent doing household maintenance activities, including shopping, cleaning, or laundry. In detailed analyses I divide housework into four parts: routine housework, household maintenance, household management, and other housework. Analyses are also performed using a general unpaid work measure that captures the total time spent on housework and with children. Appendix Table S2 describes the detailed activity codes used to construct each of these measures.

CPS analyses include individual fixed effects and also control for age, month, year, and state fixed effects. ATUS analyses include fixed effects for age, month, year, day of the week, and state. These models also include controls for the following sociodemographic characteristics: race/ethnicity, education, partner’s education, employment, partners’ employment, and number of own children in the household. Age is measured in years. Race/ethnicity is measured in four categories (0 = white non-Hispanic, 1 = Black non-Hispanic; 2 = Hispanic; 3 = Other). Education
is measured in three categories (0 = high school or less; 1 = some college; 2 = college degree and above). Number of children is measured in three categories (1 = one child, 2 = two children, and 3 = three children or more). Employment status is measured in two categories (1 = employed, 0 = not employed).

Method

I use differences-in-differences (DiD) models to study the effect of paid leave policies on mothers’ and fathers’ paid and unpaid work. DiD models are commonly used in policy evaluation research; the design implemented here is adapted from existing research on paid leave policy with similar datasets (Byker 2016; Stanczyk 2019; Trajkovski 2019). The goal of DiD models is to compare outcomes before and after the policy intervention and compare this difference to analogous differences among groups not affected by the policy. I adapt the DiD design to the strengths and limitations of the two datasets. In analyses with the CPS, I use a DiD model with individual-level fixed effects. In analyses with the ATUS, I use a triple differences model (or DDD), where the third difference aims to compensate for the fact that the ATUS does not allow controlling for individual-level fixed effects.

The estimate of interest is the same in both analyses—the average treatment effect among the intended to treat (ITT)—but DiD and DDD models estimate this quantity slightly differently. The first two differences are conceptually the same in both models. The first difference captures differences in the outcome before vs. after the policy is implemented (i.e., outcome pre-2004 vs. post-2004 for parents in California). The second difference compares the first difference to the analogous difference in states where the policy was not implemented (i.e., outcome pre-2004 vs. post-2004 for parents in all states except California). The DiD model on CPS data adds
individual-level fixed effects (which could be conceptualized as a third difference) comparing
within-person outcomes before and after a birth. The DDD model on ATUS data cannot add
individual-fixed effects and instead includes a third difference that compares differences among
parents impacted by the policy to differences among parents who are not impacted by the policy
(i.e., outcome pre-2004 vs. post-2004 for parents with children ages 10–14 in California). This
third difference controls for the possibility that parents in states with paid leave policies share
unobserved characteristics that shape work outcomes but are unrelated to paid leave policy.

The model for paid work outcomes using CPS data can be formalized as follows:

\[
\Delta Y_{ismy} = \beta_0 + \beta_1 POLICY_{smy} + \beta_j X_{jismy} + \alpha_i + \mu_s + \mu_y + \mu_m + \epsilon_{ismy}
\]

where \(\Delta Y_{ismy}\) is the within-person change in a paid work outcome before vs. after a birth for
individual \(i\) in state \(s\) in month \(m\) and year \(y\). \(\beta_1\) is a coefficient for POLICY that equals 1 for
years after the policy is introduced for respondents in California and New Jersey and 0
otherwise. \(\beta_j\) is a vector of individual-level control variables, \(\alpha_i\) denotes individual-level fixed
effects, \(\mu_s\) denotes state fixed effects, and \(\mu_m\) and \(\mu_y\) are coefficients for month and year fixed
effects, respectively. The key coefficient of interest is \(\beta_1\), which, in conjunction with state and
year fixed effects, tests whether difference in outcomes before vs. after the policy is introduced
in the two states is different from analogous differences in other states.

The model for unpaid work using ATUS data can be written as follows:

\[
Y_{isy} = \beta_0 + \beta_1 POLICY_{sy} + \beta_2 INFANT_i + \beta_3 POLICY_{sy} \times INFANT_i + \beta_j X_{jisy} + \\
\mu_s + \mu_y + \mu_s \times INFANT_i + \mu_y \times INFANT_i + \epsilon_{isy}
\]

where \(Y_{isy}\) is a measure of unpaid work for individual \(i\) in state \(s\) and year \(y\). \(\beta_1\) is a coefficient for
POLICY that equals 1 for years after the policy is introduced for respondents in California and
New Jersey and 0 otherwise. \(\beta_2\) is a coefficient for a variable that classifies parents of zero-year-
olds as 1s and parents of older children as 0s. \(\beta_3 \) is the interaction between POLICY and INFANT that captures differences in outcomes before vs. after the policy between parents of infants and parents of older children. \(\beta_j \) is a vector of individual-level control variables (age, race, education, partners’ education, partner status, employment status, weekend diary, and number of children). \(\mu_s \) and \(\mu_y \) denote state and year fixed effects, respectively, and \(\mu_s \times INFANT_i \) and \(\mu_y \times INFANT_i \) denote interactions between state and year fixed effects and the dummy variable for INFANT. The key coefficient of interest is \(\beta_3 \), which, in conjunction with state and year fixed effects interacted with INFANT, tests whether differences in the outcome between parents of infants and parents of older children in California and New Jersey before vs. after the policy is introduced are statistically different from the analogous differences in other states. I also run this model for the sample of parents of one-year-olds, substituting the variable INFANT for the variable ONE, that classifies parents of one-year-olds as 1s and parents of older children as 0s. Note that because both models estimate the average impact of two policy interventions (CA and NJ) instead of a single policy intervention, the model specification slightly departs from, but it is equivalent to, models written for single policy interventions.\(^2\) All models compute robust standard errors clustered at the state level.

Both models provide unbiased estimates of the effect of the policies if specific assumptions hold. The CPS DiD estimate controls for time-invariant unobserved characteristics correlated with paid outcomes, but it can be confounded by time-varying unobserved processes operating differently in control vs. treatment states. For instance, a greater change in discriminatory practices against mothers in control vs. treatment states could confound the estimate. The ATUS DDD estimate is more vulnerable to time-invariant unobserved characteristics correlated with unpaid work outcomes, because this model does not control for
individual fixed effects. The control group of older parents helps control for time-fixed unobserved heterogeneity shared among parents, but it might be insufficient to capture relevant confounders. Supplementary analyses presented in Appendix Figure S5 show that results are robust to using parents of younger children as a control group. Still, ATUS estimates could be biased if unobserved individual factors or time-varying, state-specific factors influenced time-use patterns among parents of young children but not parents of older children in ways that differed in control and treatment states. For instance, economic forces changing employee’s work time or schedule predictability in ways that are systematically different for the two groups of parents and across control and treatment states could confound the estimate of interest. It is important to keep these assumptions in mind when interpreting the results.

Results

Descriptive Statistics

Table 1 presents descriptive statistics for the CPS and ATUS samples. I show key measures for the samples in California and New Jersey before and after the policies come into effect (July 2004 and July 2009, respectively), and in control states. The characteristics of the samples are generally similar across treatment and control states, but some differences are notable. California women have lower employment rates and work hours than women in control states, and a similar but attenuated pattern applies to New Jersey women. California men have slightly lower employment and work hours than men in control states, whereas New Jersey men have slightly higher work hours. California women’s time for housework and time with children are somewhat higher than in control states, whereas differences between New Jersey women and control counterparts are smaller. New Jersey men do more childcare and housework and spend more
time with children than men in control states, whereas the differences between California and control states are smaller. As expected, women’s employment rates and work hours are lower than men’s, while women’s time spent with children, doing housework, or providing care for children is higher than men’s.

Comparing before vs. after the policies are implemented reveals small differences. Women’s employment and work hours are slightly higher after paid leave policy, but control states also see increases in these outcomes. Among men, work hours decline and time off paid work increases, whereas in control states these changes are smaller. Women’s childcare increases more after paid leave policies than in control states, but women’s housework declines in both treatment and control states. Men’s childcare and housework increases in California after the reform but declines in New Jersey. The DiD models will be able to control for compositional differences across treatment and control states and formally test the impact of paid leave policies on paid and unpaid work.

Paid Work Outcomes

Figure 1 presents CPS DiD estimates for the impact of paid leave policies on women’s and men’s paid work outcomes during the first year after birth. The coefficient indicates the impact of the policy on paid work outcomes before vs. after birth; for example, the .04 estimate for women’s time off indicates that the policy is associated with a 4-percentage point increase in the probability of taking time off after the birth of a child. The results display a remarkable gender symmetry. For women and men, paid leave policies reduced the prevalence of paid work in the week prior to the interview but had null effects on actual employment levels, usual work hours, earnings, or wages. These estimates are consistent with studies finding that US paid leave
policies increased time off paid work for women and men (e.g., Bartel et al. 2018; Byker 2016). Despite this gender symmetry, the changes in short-term paid work are substantially greater for women than men. Among women, paid leave policy is associated with an increase of 4-percentage points in taking time off paid work and a reduction of 2 hours of paid work the week prior to the interview; among men the magnitudes are 2-percentage points and 1 hour, respectively. The pattern of these results tentatively points to the third hypothetical scenario, which expects paid leave policy to bolster differentiated egalitarianism.

Unpaid work Outcomes

Figures 2–4 present results for ATUS DDD estimates for the impact of paid leave policies on women’s and men’s unpaid work in the short and medium term. Separate analyses are run for parents of zero-year-olds and one-year-olds. The coefficients indicate the impact of the policy on unpaid work patterns among parents with a zero- or one-year-olds; for example, the 44 coefficient for women’s unpaid work indicates that the policy led to a 44-minute increase in unpaid work (meaning that the average change before vs. after the policy in California and New Jersey was 44 minutes greater than that of parents of older children in these states and that of parents in treatment states). Figure 2 displays results for four broad categories: total unpaid work, time with children, childcare work, and housework. The results show increases in total unpaid work for mothers of infants but not for mothers of zero-year-olds, and the reverse pattern for fathers, who see increases in unpaid work only in the year after birth. Among mothers of zero-year-olds, the increase in unpaid work during a child’s first year of life is largely driven by increases in direct childcare work and amounts to about 40 minutes per day. On average, mothers’ time spent with children and on housework appears to increase as well, but these
differences are not statistically significant at $p < .05$. Among mothers of one-year-olds, the coefficient for unpaid work is not statistically significant, but the results show that these mothers appear to do more childcare work after the reform.

Among fathers of zero-year-olds, the policy does not appear to affect unpaid work, but disaggregating these patterns shows that the null coefficient results from two effects cancelling each other out: the policy decreases fathers’ childcare work by 35 minutes but increases fathers’ housework by 30 minutes. Among fathers of one-year-olds, paid leave policies appear to increase men’s unpaid work. These changes stem from small increases in childcare and a substantial 40-minute increase in housework. General changes in unpaid work point to quantitatively comparable changes in men’s and women’s unpaid work but also to gender differentiation in which tasks are most impacted, a pattern consistent with the third hypothetical scenario.

Figure 3 disaggregates the analyses on childcare into five activities: physical care, play, educational activities, other childcare activities, and supervisory care (time spent with children without providing direct care). Among mothers of zero-year-olds, the results show that increases in childcare work identified in Figure 2 stem from increases on educational activities, which includes activities like reading or attending activities related to children’s education. Estimates for all other childcare activities are not statistically significant. The increase in educational activities with zero-year-olds is consistent with growing concerns about early development, a landmark of the intensive motherhood ideology (Hays 1996; Macdonald 2011). Among mothers of one-year-olds there is one borderline statistically significant coefficient suggesting that paid leave policies increased physical care, but all other estimates are not statistically significant.
The disaggregated results for fathers show that declines in childcare among fathers of infants stem from declines in physical care, whereas increases in childcare among fathers of one-year-olds stem from increases in play time. This result is also consistent with intensive mothering, accentuating the gendering of caregiving for the newborn, and points to the policy reproducing gender typing of unpaid work tasks. With mothers’ primary caregiver role reinforced, fathers’ childcare focuses on “fun” parts, consistent with previous research (e.g., Craig 2006).

Figure 4 disaggregates the analyses on housework into six categories: routine housework, cleaning and laundry, food preparation, shopping, household maintenance, and household management. Among mothers of zero-year-olds, the borderline statistically significant increase in overall housework identified in Figure 2 appears to stem from increases in cleaning and household management, by about 37 and 11 minutes per day, respectively. Among mothers of one-year-olds, paid leave policy does not substantially change housework, except for a statistically significant 12-minute increase in household maintenance. All other coefficients are small and not statistically significant.

Among fathers, paid leave policy appears to induce increases in various dimensions of housework. For fathers of zero-year-olds, paid leave policy is associated with a 26-minute increase in housework time, which largely stems from increases in shopping time. For fathers of one-year-olds, paid leave policy is associated with substantial increases in all categories of routine housework, cleaning, food preparation, except shopping. Household maintenance and management also do not appear to be affected by paid leave policies.

Overall, the impact of paid leave policy on mothers’ and fathers’ paid and unpaid work appears to follow the third hypothetical scenario. Estimates indicate that the policy reduced
short-term paid work more for women than for men and spurred quantitatively similar, but
gender-differentiated, changes in unpaid work, increasing men’s involvement in housework
while simultaneously entrenching mothers’ primary caregiver role. Supplementary analyses
available in the Online Appendix show that these findings are robust to several modifications to
the presented models, such as: changing and expanding the list of control variables, excluding
New Jersey counties with high percentage of residents working out of state, using a different
control group of older children in ATUS analyses, and using the American Heritage Time Use
Survey (AHTUS) data that includes a longer period prior to the California paid leave policy.

Discussion

This study evaluates the potential of paid leave policies to challenge how parenthood exacerbates
gender inequality in paid and unpaid work among different-sex couples examining the impact of
policies introduced in California and New Jersey. Leveraging existing theories about the gender
division of labor, I proposed a framework to conceptualize three pathways through which
changes might occur and articulated three synthetic hypothetical scenarios: promoting gender
egalitarianism, reinforcing gender specialization, or bolstering differentiated egalitarianism. The
results are consistent with the third hypothetical scenario: California and New Jersey policies
reduced mothers’ and fathers’ paid work, increased mothers’ childcare work but not fathers’, and
increased fathers’ housework but not mothers’. Overall, paid leave policies appear to have helped support mothers’ primary caregiver role while simultaneously encouraging a more gender
egalitarian division of housework.

A core contribution of this study has been to offer a holistic framework and analysis about the impact of paid leave policies on gender inequalities in paid and unpaid work. This
holistic approach clarifies the limitation of analyses focusing on single isolated outcomes to assess the overall impact of the policy. The framework articulates how the preexisting characteristics of the population, such as gender norms and the distribution of preferences about the division of labor or within-couple gender inequalities in economic power, can shape the impact of the policy. It also describes how existing theories about the division of labor as well as features of the policy design can make a difference in its outcomes. This exercise outlines a midrange change hypothetical scenario that has been overlooked in previous research but which is borne out by the data. Future research might apply this framework to other contexts and extend the analysis to examine specific pathways and mechanisms.

This study adds to the growing body of research examining the impact of paid leave policy on economic outcomes. The results regarding paid work are consistent with previous research finding that US paid leave policies reduce short-term paid work effort among mothers’ (e.g., Byker 2016; Goldsmith 2019) and fathers’ (e.g., Bartel et al. 2018), but have limited or no impact on longer-term paid work for either (Bailey et al. 2019). The results regarding unpaid work are consistent with previous studies of California finding that it increased mothers’ childcare but not fathers’ (Trajkovski 2019) and consistent with research in other countries showing that paid leave policies are associated with increases in fathers’ housework (e.g., Bunning 2015; Kotsadam and Finseraas 2011). However, studies on US fathers taking leave (Petts and Knoester 2018 or Pragg and Knoester 2017) find greater changes in fathers’ childcare behavior than this study that only identifies changes in fathers’ childcare with one-year-olds. Other scholars have noticed that results from studies examining policy changes tend to be more attenuated than those examining benefit usage (e.g., Bailey et al 2019). This discrepancy is partly related to the difference in the conceptual estimate of interest and to endogenous selection
potentially playing a role in estimates about the impact of benefit usage. Examining the overall impact of policy implementation offers a holistic picture of the average effects of a policy, which capture the impact on take-up rates, on behavior among those who use the benefit, and on others who do not use the benefit.

This study is not without limitations. Using two separate datasets to study paid and unpaid work is suboptimal for several reasons. Importantly, it means that the analyses on paid and unpaid work do not identify the key effect of interest in the same way and that they do not reflect the same sample of individuals. Another limitation is that the data does not allow couple-level analysis. Causal identification is more stringent in the CPS analyses than in the ATUS analyses, because the former includes individual-level fixed effects. As noted above, ATUS estimates could be biased if unobserved factors shaped the composition of the sample across states and years and the outcomes of interest. The consistency between the results presented here and prior research using a different dataset provides some reassurance (Trajkovski 2019). CPS estimates could also be biased by time-varying unobserved heterogeneity. Another limitation is the fact that not all residents might be eligible for the policy if they work out of state (this is more relevant for New Jersey than California), and it would downwardly bias the estimates.

The conclusions of this study are broadly consistent with the transformative potential of paid leave policy to change the extent to which having children exacerbates gender inequalities in paid and unpaid work. I would expect leave benefits to have stronger and more egalitarian impacts if the benefit was more generous and incentivized gender egalitarianism more directly and if the underlying cultural and structural conditions were more favorable—stronger preferences for gender egalitarianism, lower within-couple gender inequality, greater availability of workplace flexibility options, and universal public childcare. The study shows that the extent
to which having children exacerbates patterns of gender inequality is the product of economic policies and structures of constraint that shape which paid and unpaid work arrangements are feasible, desirable, and encouraged. Social policies, including paid leave policy, harbor tremendous potential to shift these structures of constrain and encourage more gender egalitarian division of labor.
ENDNOTES

1 There is a separate body of research analyzing the impact of unpaid leave policies, such as FMLA, on women’s and men’s leave take-up rates and economic outcomes (e.g., Han and Waldfogel 2003).

2 Models for a single policy intervention are commonly written as follows: \(Y_{isy} = \beta_0 + \beta_1 \text{CA}_s + \beta_2 \text{POST}_y + \beta_3 \text{CA}_s \times \text{POST}_y + \beta_4 \text{X}_{isy} + \alpha_i + \mu_s + \mu_y + \epsilon_{isy} \), where \(Y_{isy} \) is an outcome for individual \(i \) in state \(s \) and year \(y \), \(\beta_1 \) is a coefficient for California that captures average differences between California and other states before policy implementation, \(\beta_2 \) is a coefficient for the period after the policy was implemented (\(\text{POST} \) equals 1 starting in 2004 for all respondents across all states), \(\beta_3 \) is the key interaction of interest that captures differences in outcomes before vs. after 2004 in California vs. other states. The key difference between this conventional specification and the one implemented for this study lies in how the variables \(\text{POST} \) and \(\text{POLICY} \) are defined. In the conventional specification, \(\text{POST} \) classifies all respondents across all states as 1s in the period after the policy is implemented in California, and it is the interaction between \(\text{POST} \) and \(\text{CA} \) that obtains the estimate of interest. In the specification for this study, \(\text{POLICY} \) classifies only respondents in the states with eligible policy as 1s in the period after the policy is implemented, and this variable obtains the estimate of interest because the model includes state and year fixed effects.
REFERENCES

Table 1. Sample characteristics

<table>
<thead>
<tr>
<th>CPS</th>
<th>California before</th>
<th>California after</th>
<th>All other states before</th>
<th>All other states after</th>
<th>New Jersey before</th>
<th>New Jersey after</th>
<th>All other states before</th>
<th>All other states after</th>
</tr>
</thead>
<tbody>
<tr>
<td>Women</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>938</td>
<td>994</td>
<td>10,617</td>
<td>10,840</td>
<td>522</td>
<td>138</td>
<td>15,057</td>
<td>6,838</td>
</tr>
<tr>
<td>Has a job</td>
<td>0.51</td>
<td>0.52</td>
<td>0.60</td>
<td>0.63</td>
<td>0.56</td>
<td>0.66</td>
<td>0.60</td>
<td>0.63</td>
</tr>
<tr>
<td>At work</td>
<td>0.41</td>
<td>0.40</td>
<td>0.49</td>
<td>0.52</td>
<td>0.41</td>
<td>0.49</td>
<td>0.49</td>
<td>0.52</td>
</tr>
<tr>
<td>Usual hours worked</td>
<td>17.32</td>
<td>18.69</td>
<td>20.48</td>
<td>22.19</td>
<td>21.08</td>
<td>24.54</td>
<td>20.52</td>
<td>22.74</td>
</tr>
<tr>
<td>Hours worked last week</td>
<td>13.49</td>
<td>13.95</td>
<td>15.79</td>
<td>17.42</td>
<td>13.68</td>
<td>17.40</td>
<td>15.95</td>
<td>17.84</td>
</tr>
<tr>
<td>Weekly earnings</td>
<td>409.42</td>
<td>517.70</td>
<td>392.13</td>
<td>503.27</td>
<td>534.52</td>
<td>750.62</td>
<td>408.11</td>
<td>524.58</td>
</tr>
<tr>
<td>Age</td>
<td>31.16</td>
<td>32.59</td>
<td>30.69</td>
<td>31.42</td>
<td>32.40</td>
<td>32.34</td>
<td>30.80</td>
<td>31.55</td>
</tr>
<tr>
<td>Education</td>
<td>0.31</td>
<td>0.47</td>
<td>0.36</td>
<td>0.52</td>
<td>0.50</td>
<td>0.64</td>
<td>0.39</td>
<td>0.54</td>
</tr>
<tr>
<td>Number of children</td>
<td>2.02</td>
<td>2.03</td>
<td>1.95</td>
<td>1.97</td>
<td>1.89</td>
<td>1.85</td>
<td>1.96</td>
<td>1.98</td>
</tr>
<tr>
<td>Men</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>938</td>
<td>994</td>
<td>10,617</td>
<td>10,840</td>
<td>522</td>
<td>138</td>
<td>15,057</td>
<td>6,838</td>
</tr>
<tr>
<td>Has a job</td>
<td>0.91</td>
<td>0.89</td>
<td>0.94</td>
<td>0.92</td>
<td>0.95</td>
<td>0.89</td>
<td>0.93</td>
<td>0.91</td>
</tr>
<tr>
<td>At work</td>
<td>0.89</td>
<td>0.84</td>
<td>0.91</td>
<td>0.89</td>
<td>0.92</td>
<td>0.83</td>
<td>0.91</td>
<td>0.88</td>
</tr>
<tr>
<td>Usual hours worked</td>
<td>40.29</td>
<td>37.59</td>
<td>41.68</td>
<td>39.87</td>
<td>42.57</td>
<td>38.22</td>
<td>41.34</td>
<td>39.20</td>
</tr>
<tr>
<td>Hours worked last week</td>
<td>39.06</td>
<td>35.72</td>
<td>41.02</td>
<td>38.68</td>
<td>40.86</td>
<td>35.62</td>
<td>40.56</td>
<td>38.03</td>
</tr>
<tr>
<td>Weekly earnings</td>
<td>935.60</td>
<td>980.59</td>
<td>916.05</td>
<td>963.49</td>
<td>1,187.64</td>
<td>1,181.37</td>
<td>927.66</td>
<td>946.27</td>
</tr>
<tr>
<td>Age</td>
<td>33.91</td>
<td>35.13</td>
<td>33.09</td>
<td>33.73</td>
<td>34.49</td>
<td>34.48</td>
<td>33.22</td>
<td>33.84</td>
</tr>
<tr>
<td>Education</td>
<td>0.32</td>
<td>0.41</td>
<td>0.35</td>
<td>0.45</td>
<td>0.50</td>
<td>0.53</td>
<td>0.36</td>
<td>0.46</td>
</tr>
<tr>
<td>Number of children</td>
<td>2.02</td>
<td>2.03</td>
<td>1.95</td>
<td>1.97</td>
<td>1.89</td>
<td>1.85</td>
<td>1.96</td>
<td>1.98</td>
</tr>
</tbody>
</table>

ATUS

Women								
N	187	1,629	1,854	14,352	225	250	7,679	8,594
Child care primary	132.6	140.9	131.6	137.2	135.2	144.2	133.6	138.6
Time with children	561.1	552.4	529.4	521.9	527.2	526.5	530.2	516.5
Housework	196.4	188.2	179.6	167.7	179.2	184.9	175.7	163.4
Age	34.1	34.9	34.4	34.4	36.0	36.2	34.2	34.4
College	0.4	0.4	0.3	0.5	0.5	0.6	0.4	0.5
Partner's college	0.3	0.3	0.2	0.3	0.4	0.4	0.3	0.4
Number of children	1.9	1.9	1.9	1.9	1.9	1.8	1.9	1.9
Weekend	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5

Men								
N	165	1,270	1,315	10,867	194	222	5,534	6,689
Child care primary	69.7	79.3	73.0	77.3	95.2	84.5	73.4	79.5
Time with children	353.9	372.3	350.3	360.7	384.2	348.2	357.6	360.5
Housework	74.6	88.8	79.4	83.1	86.1	84.7	79.6	84.8
Age	37.0	37.6	37.0	37.5	38.1	38.9	37.2	37.7
College	0.4	0.4	0.4	0.5	0.6	0.6	0.4	0.5
Partner's college	0.3	0.4	0.3	0.4	0.5	0.6	0.3	0.4
Number of children	1.9	1.9	1.9	1.9	1.9	1.9	1.9	1.9
Weekend	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5

Source: CPS 1990–2020; ATUS 2003–2019
Figure 1. DiD estimates for the impact of paid leave policy on paid work outcomes

Panel A. Women

Panel B. Men

Source: CPS 1990–2020
Figure 2. DDD estimates for the impact of paid leave policy on general unpaid work outcomes

Panel A. Women

Panel B. Men

Source: ATUS 2003–2019
Figure 3. DDD estimates for the impact of paid leave policy on time with children

Panel A. Women

Panel B. Men

Source: ATUS 2003–2019
Figure 4. DDD estimates for the impact of paid leave policy on housework

Panel A. Women

Panel B. Men

Source: ATUS 2003–2019