
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Operations, Information and Decisions Papers Wharton Faculty Research

2-1981

Fast Sorting of Weyl Sequences Using Comparisons Fast Sorting of Weyl Sequences Using Comparisons

Martin. H. Ellis

John M. Steele
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/oid_papers

 Part of the Other Mathematics Commons

Recommended Citation Recommended Citation
Ellis, M. H., & Steele, J. M. (1981). Fast Sorting of Weyl Sequences Using Comparisons. SIAM Journal on
Computing, 10 (1), 88-95. http://dx.doi.org/10.1137/0210007

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/oid_papers/262
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/oid_papers
https://repository.upenn.edu/wharton_faculty
https://repository.upenn.edu/oid_papers?utm_source=repository.upenn.edu%2Foid_papers%2F262&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/185?utm_source=repository.upenn.edu%2Foid_papers%2F262&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1137/0210007
https://repository.upenn.edu/oid_papers/262
mailto:repository@pobox.upenn.edu

Fast Sorting of Weyl Sequences Using Comparisons Fast Sorting of Weyl Sequences Using Comparisons

Abstract Abstract
An algorithm is given which makes only $O(\log n)$ comparisons, and which will determine the ordering
of the uniformly distributed (pseudo random) Weyl sequences given by $\{ (k\alpha)\bmod 1:1 \leqq k
\leqq n\} $, where $\alpha $ is an unspecified irrational number. This result is shown to be best possible
in the sense that no algorithm can perform the same task with fewer than $ \Omega (\log n)$
comparisons.

Disciplines Disciplines
Other Mathematics

This journal article is available at ScholarlyCommons: https://repository.upenn.edu/oid_papers/262

https://repository.upenn.edu/oid_papers/262

SIAM J. COMPUT.
Vol. 10, No. 1, February 1981

1981 Society for Industrial and Applied Mathematics
0097-5397/81 1001-0007 $01.00/0

FAST SORTING OF WEYL SEQUENCES USING COMPARISONS*
MARTIN H. ELLIS ND J. MICHAEL STEELE

Abstract. An algorithm is given which makes only O(log n) comparisons, and which will determine the
ordering of the uniformly distributed (pseudo random) Weyl sequences given by {(kc)rood 1:1 _-< k =< n},
where a is an unspecified irrational number. This result is shown to be best possible in the sense that no
algorithm can perform the same task with fewer than (log n) comparisons.

Key words, sorting, Weyl sequences, information theory lower bound, alpha-sort

1. Introduction1. Any algorithm which sorts sets of n real numbers only on the
basis of comparisons will always require, in the worst case, at least log2 (n!)=
O(n log2 n) comparisons. Similarly, if n reals are chosen at random from any continuous
distribution, the expected number of comparisons required for sorting them is also
O(n log2 n). These familiar facts may make it surprising that there are sequences which
share many properties with random sequences, but whose order can always be
determined with fewer than 4 log2 n comparisons.

The sequences considered here are the so called Weyl sequences given by
Xk ka mod 1, where a is an irrational number. These sequences share with the
independent uniformly distributed random variables the basic property that the number
of elements from X1, X2, Xn in (a, b) is asymptotic to n (b a), for 0 _-< a < b _-< 1.
(For a purely probabilistic proof of this property, see Feller [2, p. 268].) Since the Weyl
sequences are "uniformly distributed" in the sense described, Franklin [3] has further
examined the pseudo-random virtues of {Xk} by a variety of statistical tests. This
inherent randomness, together with their rich and well studied mathematical structure,
makes it intriguing to see just how efficiently the Weyl sequences can be ordered.

The principal objective of this paper is to provide an algorithm which determines
the order of XI, X2,’’ ", Xn on the basis of fewer than 4 log2 n comparisons. We
further show that any algorithm for sorting {(ka)mod 1:1-<_k <_-n} by comparisons
must make at least lq(log2 n) comparisons, so the algorithm given here is the best
possible.

One key motivation for studying the sorting of Weyl sequences is the general
question: "How does one use the fact that a sequence is of a certain structure to provide
a sorting algorithm which is information theoretically optimal?" This problem was
explicitly posed in M. L. Friedman [4] and is implicit in Berlecamp’s problem on sum set
sorting (see, e.g., Harper, et al. [51]).

A second motivation for studying the sorting of Weyl sequences by comparisons is
provided by recent work of Papadimitriou on efficient search for rationals. Papadimi-
triou [6] gives an elegant algorithm which establishes that O(log M) queries of the form
"is x<-p/q ’’, where p, q<-_M, are sufficient to determine any rational x-a/b with
a, b <_-M. The present algorithm is quite distinct from Papadimitriou’s in method
(relative comparisons vs. absolute comparisons) and in purpose (sort vs. search). Still,
there is a close connection since (as the following sections implicitly show) the ordering

* Received by the editors December 18, 1978 and in final revised form May 16, 1980. This research was
supported in part by the National Science Foundation under grants MCS 77-03659 and MCS 77-16974.

t Professor Martin H. Ellis of the Department of Mathematics, Northeastern University, Boston,
Massachusetts, died on February 15, 1980, after a brief illness.

Department of Statistics, Stanford University, Stanford, California 94305.
0, fl, O, o denote "order of exactly", "order of at least", "order of at most", and "order of less than",

respectively.

88

D
ow

nl
oa

de
d

06
/2

4/
16

 to
 1

30
.9

1.
11

6.
52

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

FAST SORTING OF WEYL SEQUENCES USING COMPARISONS 89

of {(ka) 1 -< k <= n} is closely connected to the location of the irrational a in the Farey
dissection of the unit interval.

In the next section, we give an algorithm called Alpha-Sort, which is a very simple
procedure which sorts any collection of the form {(ka)mod 1:1 <=k-<_n} with fewer
than o(n) comparisons. The third section then uses the structures uncovered by
Alpha-Sort to provide the required information theoretic lower bound fl(log2 n). The
fourth section applies a binary search speedup of Alpha-Sort which gives an explicit
algorithm which performs as well as the theoretical lower bound can permit. The final
section makes a brief speculation about the use of sorting as an appropriate measure of
complexity of a pseudo random sequence.

2. Alpha-Sort: An o(n) algorithm for sorting (ka) mod 1, l<=k<=n. For brevity,
we will subsequently write (kc) for the representative of (ka) mod 1 in [0, 1). The key
idea for efficient sorting of {(ka) 1 <- k <-_ n} is that the order structure can be completely
determined from the largest and smallest elements of the set. We define L* and R* to be
the integers in {1,2,...,n} satisfying (L*a)=minl<=k<__n(ka) and (R*c)=
maxl__<k__<n (ka). The Alpha-Sort algorithm shows how one can compute L* and R*, and
how these integers can be used to determine the ordering of (ka), 1 <= k <-n.

Alpha-Sort algorithm. Given Xk (ka)mod 1, 1-<_ k-<_ n, this algorithm returns
i1, i2, in such that Xil < Xg2 <" "<

A1. [Initialize] Set L 1, R - 1, M- 1.
A2. [Compute L* and R*] While L +R -<_ n, set R L +R if XL+R-1 < XL+R

otherwise, set L L + R.
A3. Print ML mod (L + R) if ML mod (L + R) <_- n.
A4. Set M-M/ 1. If M <L +R go to A3; otherwise end program.
The fact that Alpha-Sort correctly performs the task of sorting {(ka) 1 -< k _-< n}

with O(n) comparisons, will follow from the next two lemmas. These elementary results
will form the theoretical core for the rest of the analysis.

LEMMA 1. Suppose min {(a), (2a),. ., (ja)} (La) and max {(a), (2a),. .,
(ja)} (R.a), L, R {1, 2, ,/’}. Then

(i) min {(a), (2a), , ((L + R 1)a (La),
(ii) max {(a), (2a), , ((L + R 1)a)} (Ra),

(iii) either ((R +L)a)<(La) or ((R +L)a)>(Ra).
Proof. (i). If I<-H<R and ((L+H)a)<(La), then ((L+H)a)(La)+(Ha);

hence,

(1) (Lc + (Ha > 1.

The definitions of L and R and (1) imply

(2) (Ra (Ra (Ha) + (Ha)

((R H)a) + (Ha)
>-_ (La + (Ha)

>1.
This contradiction establishes (i).

(ii). If 1 _-< H <R and ((L / H)a > (Ra), then the definitions of L and R imply

((L +H R)a ((L + H)o) (Ra)

(La) + (Ha) (Ra)

D
ow

nl
oa

de
d

06
/2

4/
16

 to
 1

30
.9

1.
11

6.
52

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

90 MARTIN H. ELLIS AND J. MICHAEL STEELE

This is a contradiction to the fact that ((L +H R)a) > (La).
(iii). Either

((R + L)a) (Ra) + (La)

> (Ra),

or

((R + L)a) (Ra) + (La) 1

<

so (iii) is also established. 71
LEMMA 2. For (La)=min((ka): 1 <=k <-n} and (Ra)=max{(ka): 1 <=k <=n} we

have (La)= (rnla) < (rn2a) <. < (rosa) (Ra) where mk kL mod (L + R) and S
L +R 1. Furthermore, L andR are relatively prime, and {mi: 1 <= <= S} is a permutation
of the numbers 1, 2,. , S.

Proof. First we will show by induction on n that L and R are relatively prime. If
n 1 then L R 1, so L and R are relatively prime. Suppose the assertion is true for
n I. If the maximum and minimum remain unchanged when n is raised to + 1, they
remain relatively prime. If not, then Lemma 1 implies that + 1 L +R and either L or
R (but not both) must be replaced with L + R. Since

gcd {L, L +R} gcd {L + R, R} gcd {L, R} 1,

the assertion is established.
Since L and R +L are relatively prime,

{(mia): 1 < <= S} {(ia): 1 <= <= S}.

Suppose for some 1 -< -< S

(1)

If

(2)

then (1) implies

(mia)>(mi+la).

(mi+la) ((mi + L)a),

(mi+la) (mia)+(La)- 1

this is impossible since by Lemma l(i), (La) must be minimal. Since (2) fails to hold,

(3) (mi+la)=((mi-R)a).

Since R ms and < S, Lemma 1 (ii) implies (mia)< (Ra). But then,

(mi+la)=(mia)-(Ra)+ 1

> (m/a),

contradicting (1). Thus, (mia)< (mi+la) for 1 -<_ < S, and the lemma is proved. 71
The first lemma proves that step (A2) of Alpha-Sort correctly determines L* and

R*. The second lemma shows how these two quantities completely determine the
ordering of {(ka):l<=k<-_n}. We actually showed that L* and R* determine the
ordering of the larger set {(ka) 1 _-< k _-<L* + R*- 1}; step (A3) of Alpha-Sort deletes
the irrelevant members from the ordering of the larger set.

D
ow

nl
oa

de
d

06
/2

4/
16

 to
 1

30
.9

1.
11

6.
52

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

FAST SORTING OF WEYL SEQUENCES USING COMPARISONS 91

Since each comparison performed by Alpha-Sort increases either L or R, and since
these quantities never exceed n, the total number of comparisons performed is at most
O(n). One can actually show that for any fixed a, as n increases only o(n) comparisons
are required. In fact, one can show that for almost every a (in the sense of Lebesque
measure), for every e>0 Alpha-Sort will find L* and R* with o((logn)+)
comparisons. Still, by taking Liouville irrationals like= 10- where a < a2 <"
is a rapidly increasing sequence, one can also show that o(n) is the most precise
statement which one can make about the number of comparisons required by Alpha-
Sort. We do not need to elaborate on these points since the next section will show that
o(n) is far from theoretically optimal, and the final section will sharpen Alpha-Sort to
attain that optimal rate.

3. InIormation theoretic bounds. In the second lemma of the preceding section,
we saw that the two quantities L* and R* completely determine the ordering of
{(kc 1 <- k -< n }. We will now show that this suggests that it may be possible to sort
{(ka 1 =< k <_- n } with only O(log2 n) comparisons, but no fewer.

Classically, the fact that a binary tree with m leaves must have height at least
log2 (m), and the fact that there are n! orderings of n real numbers, collectively imply
that at least O(n log2 n) comparisons are required to determine their order. This
information theoretic perspective makes it interesting to determine E,, the total
number of orderings of {(ka) 1 <- k -< n} as a varies through all real values.

Explicitly, we let IAI denote the cardinality of a finite set A and let r denote any
permutation of {1, 2,. , n}. For

E, [{cr for some

we have the following fact.
PROPOSITION. n <= En <- n 2.
Proof. For any a, we have (by Lemma 2 above) that there are integers 1 <-L* <= n,

1 =<R* <-n which completely determine the ordering of {(ka): 1 <-k <-n}. Since there
are only n 2 such pairs L* and R*, the upper bound is established.

To see that E,->n, we consider the n irrationals defined by ak 1/k-e for
k 1, 2,..., n and some very small positive irrational e. For ak one can see that
(ak)<(2ak)<"’ "<(kotk) but ((k+l)a)<(ak). The (ak) thus each yield a different
ordering, so E, => n as claimed.

Since the conclusions to be drawn from this proposition depend only on O(log2 E),
we have obtained only the simplest bounds. One can actually show that if is the Euler
phi-function, we have E, =k_-<, &(k)= 3/rr2n2+O(n log n) (for facts on &(k) see
[1]). The proposition immediately establishes the following result.

COROLLARY. At least f(log2 n) comparisons are required in order to sort {(ka) 1 <=
k<-n}.

The upper bound in the preceding proposition also suggests that it might be
possible to sort {(ka)" 1 -<_ k -< n} with only O(log n) comparisons. The main objective
of the next section will be to show that this is in fact the case.

4. Fast Alpha-Sort: An O(log n) algorithm. In Lemma 2, we proved that the
ordering of S ={(a), (2a),..., (ha)} is completely determined by L* and R* where
(L*a)=min__<_,(ka) and (R*a)=max_<__<_,(ka). Now we will show how Alpha-
Sort can be improved to compute these values with only O(log2 n) comparisons.

The improvement over Alpha-Sort is made by replacing the linear process for
computing L and R by a geometric process. The details are somewhat complicated due
to the presence of several cases, but the conceptual essence of the matter is brought out

D
ow

nl
oa

de
d

06
/2

4/
16

 to
 1

30
.9

1.
11

6.
52

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

92 MARTIN H. ELLIS AND J. MICHAEL STEELE

in the following Lemma 3, which shows essentially that if certain conditions are valid at
times k and 2k they are valid at all intermediate times.

DEFINITION. A value (]a
is the minimum (respectively maximum) of {(ia)" 1 <- <-}.

LEMMA 3. Let k be a positive integer, and suppose (Ra) is a right extreme and each
((L + iR)a), 0 <-_ <- k, is a left extreme. If ((L + 2kR)a < ((L + kR)a), then each ((L +
iR)a), k + 1 <-i <-2k, is a left extreme.

Proof. Let k be a positive integer for which each ((L +]R)a), 0_-<i-<_ k, is a left
extreme. Let /" be the smallest positive integer for which ((L+jR)a) is not a left
extreme, and suppose /’<_-2k. Lemma 1 implies that max{(a), (2a),..., ((L+
(/" 1)R)a)} (Ra), and since ((L + (/" 1)R)a is a left extreme, Lemma 1 (iii) implies
((L +jR)a) is an extreme; by choice of] it is not a left extreme, so it is a right extreme,
hence,

(1)

Since each ((L + iR)a), 0 <= <= k, is a left extreme,

(2) ((L+iR)a)-((L+(i+l)R)a)=l-(Ra),forallO<=i<k.

Since ((L +jR)a > (La), (2) implies

(3) ((L+(i+i)R)a)-((L+(i+i+l)R)a)=l-(Ra),forallO<-_i<k.

Expressing ((L + 2kR)a) and ((L + kR)a) as telescoping sums and applying (1),
(2), (3) and the fact that j _>-k + 1, we have

(4) ((L + 2kR)a
2k-j-1

+ , (((L + (j + + 1)R)a ((L + (j + i)R)a))
i=0

>

1-(2k + 1-/’)(1 (Ra))

>=l-k(1-(Ra))

>(La)-k(1-(Ra))
k-1

=(La)+ E (((L+(i+l)R)a)-((L+iR)a))
i=0

((L + kR)a).

Inequality (4) shows that if there is a f{i’k +1_-<i_-<2k} for which ((L+jR)a) is
not a left extreme, then ((L + 2kR)a)> ((L + kR)a). The lemma follows by contra-
position.

A similar argument establishes the following result.
LEMMA 4. Let be a positive integer, and suppose that each ((R + iL)a), 0 <-_ <- l, is

a right extreme. If ((R + 21L)a) > ((R + IL)a), then each ((L + iR)a), + 1 <-_ <- 2l, is a
right extreme.

Besides serving to prove the validity of the following Fast Alpha-Sort algorithms,
the preceding lemmas should also serve to motivate the algorithm. As a tool for use
within Fast Alpha-Sort, we will require a binary search procedure which we call
SEARCH(L, R, v, z). The parameters L, R, v are integers provided in the course of the
Fast Alpha-Sort Algorithm, and z is either 0 or 1, depending on whether the algorithm

D
ow

nl
oa

de
d

06
/2

4/
16

 to
 1

30
.9

1.
11

6.
52

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

FAST SORTING OF WEYL SEQUENCES USING COMPARISONS 93

is looking for a new candidate for a left extreme or a right extreme. (The duality
between the left and right procedures can be immediately seen, but for clarity we will
not strain to unify the two.)

SEARCH(L, R, v, z).
S1. If v 1 set SEARCH(L, R, v, z) 1 and stop.
$2. If v=2 set SEARCH(L,R,v,z)3 and stop if z=0 and L+3R<=n and

((L+2R)s)>((L+3R)a), or if z=l and 3L+R<-n and ((2L+R)s)<
((3L +R)s); otherwise if v 2 set SEARCH(L, R, v, z) 2 and stop.

$3. If v >_- 3 set S - 3 2-2 and set T - 2-3.
$4. If z=0 and L+SR<=n and ((L+1/2SR)s)>((L+SR)s), or if z=l and

SL+R<=n and ((1/2SL+R)s)<((SL+R)s), set SS+T; otherwise set
S-S-T.

$5. Set T 1/2T. If T _-> 1 go back to $4.

$6. If z 0 and L + SR <= n and ((L + (S 1)R)s > ((L + SR)s), or if z 1 and
SL+R <=n and (((S-1)L+R)s)<((SL+R)s), set SEARCH(L,R, v,z)- S and stop; otherwise set SEARCH(L, R, v, z)- S- 1 and stop.

The SEARCH subroutine is used in the Fast Alpha-Sort algorithm, and the role it
plays there is described in the proof of Lemmas 6 and 7.

Fast Alpha-Sort. Given Xk (ks), 1 _-<k <-n, this algorithm returns L* and R*
such that (sL*) minl_<k<= (ks), (sR*) maxl_<_k=< (ks).

FA1. Set L -0, R 1.
FA2. Starting with k= 1, increment k until either L+2kR>n or ((L+

2k-lR)s) < ((L + 2kR)s).
FA3. Set L - L +R. SEARCH(L, R, k, 0). If L +R > n go to FA6.
FA4. Starting with 1, increment until either R + 21L > n or ((R + 21-XL)s) >

((R + 2IL)s).
FAS. Set R - R +L SEARCH(L, R, l, 1). If L +R =< n, go to FA2.
FA6. Let L* -L and R* --R, then stop.

The main result of this section is the following"
THEOREM. The Fast Alpha-Sort Algorithm returns L* and R* after at most

O(log n) comparisons between pairs in {(is); 1-<i-< n}.
Before proving the theorem we will establish three lemmas.
LEMMA 5. Computing SEARCH(L, R, p, z) requires at most p- 1 comparisons

between pairs in {(is): 1 _-< -<_ n }.
Proof. We simply dissect the possibilities. If p 1, no comparisons are made. If

p 2, the only comparison that may be required is between ((L + 2R)s) and ((L +
3R)s) if z 0, between ((2L + R)s) and ((3L + R)s) if z 1. If p >- 3, then T is set to
2p-3 and single comparisons or no comparisons alternate with dividing T by 2, until
T < 1. Thus, at most p 2 comparisons are made before T becomes less than one. A
single additional comparison may be made in ($6), for a total of at most p-1
comparisons. 71

LEMMA 6. Suppose Fast Alpha-Sort has]ust entered step (FA2), L p, R q and
(qs) is a rightextreme. Ifeach ((p+ iq)s), 1 <-i <-f, is a leftextreme but ((p + (+ 1)q)s)
is not a left extreme, Fast Alpha-Sort will set L equal to p + q min (j, ,(n -p)/q,) after
making at most 1 + 2 min log2/,.,log2 ((n -p)/q)), additional comparisons between pairs
in {(is):l<-i<-n}.

Proof. Let b =,log2 11 and let c =L!0g2 ((n -p)/q!),.
If p+2b+lq<=n, Fast Alpha-Sort will sequentially compare ((p+2i-lq)s) with

D
ow

nl
oa

de
d

06
/2

4/
16

 to
 1

30
.9

1.
11

6.
52

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

94 MARTIN H. ELLIS AND J. MICHAEL STEELE

((p + 2iq)ce), 1 --<_ <= b + 1. It will then compute SEARCH(p, q, b + 1, 0), which by
Lemma 5 requires at most b additional comparisons, after which it will set L ,- p + q/’.
The total number of comparisons made is thus at most 1 + 2b.

If p +/" 1 _-< n < p + 2b/ lq, Fast Alpha-Sort will follow the same procedure as above,
except the comparison of ((p +2bq)a) with ((p +2b/lq)c) will be omitted; hence at
most 2b comparisons will be made.

If n <p +]q, Fast Alpha Sort will sequentially compare ((p+ 2i-lq)a) with ((p+
2iq)), 1-<i-<c. Upon learning that p+2C+lq>n, it will then compute
SEARCH(p, q, c + 1, 0), which by Lemma 5 requires at most c additional comparisons,
after which it will set L -p +,[(n-p)/q],q. The total number of comparisons made is
thus at most 2c.

In any case, the total number of comparisons is at most 1 + 2 min (b, c). El
The following lemmas can be proved analogously to Lemma 6.
LEMMA 7. Suppose Fast Alpha-Sort has lust entered step (FA4), L p, R q, and

(pa) is a leftextreme. Ifeach ((ip + q)a), 1 <- <-] is a rightexteme but (((] + 1)p + q)cr) is
not a right extreme, Fast Alpha-Sort will set L equal to q + p min (/’,(n- q)/p), after
making at most 1 + 2 min,(log2/’,, ,log2 ((n 1)/p)) additional comparisons between pairs
in {(ia) l -< -< n}.

Proofof Theorem. Lemmas 6 and 7 imply that Fast Alpha-Sort correctly computes
L* and R*. It remains to show that the number of comparisons between pairs in
{(ia) 1 _-<i _-<n} made by Fast Alpha-Sort in computing L* and R* is O(log n).

Assume Fast Alpha-Sort has just computed L* and R*. Let

1 q0<q2 <’ "<q2v =R*

denote the values taken by R during the course of Fast Alpha-Sort, let

0 p_ < Pl < P3" PEW-I L*

denote the values taken by L during the course of Fast Alpha-Sort, and let m
max (2 V, 2W- 1). (Note that m 2 V 2W if step (FA6) was entered from (FA5) and
m 2W- 1 2 V + 1 if step (FA6) was entered from (FA3).) For 1 _-< _<- m, let]i

if is odd and let f =,qi/Pi-1, if is even. Note

(1) I-I/’i -<max (L*, R*) <= n.
i=1

Lemmas 6 and 7 imply that the number of comparisons between pairs in {(ic) 1 <=
-< n} made by Fast Alpha-Sort in computing L* and R* is bounded above by

E (1 +,2 log2 ji,),
i=1

which by (1) is bounded by

(2) m+2 log2(ji)<-_m+21og2n.
i=1

The largest value m can have would occur if the p and q grew as slowly as possible (i.e.,
j 1 for 1 -<_ -<_ m), in which case each p or q would be the (i + 1)st number in the
Fibonacci sequence. In this case,

1og2 n
(3) m<-l+

log2 b’
where & (x/+ 1)/2. Inequalities (2) and (3) show that the number of comparisons

D
ow

nl
oa

de
d

06
/2

4/
16

 to
 1

30
.9

1.
11

6.
52

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

FAST SORTING OF WEYL SEQUENCES USING COMPARISONS 95

between pairs in {(ia)" 1 <_- <_- n } made by Fast Alpha-Sort in computing L* and R* is
bounded above by

1 + (2 + (log2 b)-l) logz n,

which establishes the theorem. [3

$. A br|e| sleeulation. The introduction isolated two motivations for studying the
sorting of Weyl sequences, and a third motivation was deferred until now. This comes
from the problem of measuring the complexity of a class of sequences and using this
measurement to aid one’s choice of pseudo-random number generators. The Weyl
sequences are not genuine candidates for pseudo-random numbers, and this is rein-
forced by the speed with which they are sorted. One would especially like to determine
the number of comparisons needed to sort sequences generated by the widely used
classes of PRN generators. This analysis has many practical and conceptual compli-
cations, but the Weyl sequences can be considered a preliminary case in this wider
program.

REFERENCES

[1] T. M. APOSTOL, Introduction to Analytic Number Theory, Springer-Verlag, New York, 1976".
[2] W. FELLER, An Introduction to Probability Theory and Its Applications, Vol. 2, Second Ed., John Wiley,

New York, 1971.
[3] J. N. FRANKLIN, Deterministic simulation of random processes, Math. Comp., 17 (1963), pp. 28-59.
[4] M. L. FRIEDMAN, How good is the information theory bound in sorting, Theoret. Corriput. $ci., (1976),

pp. 355-361.
[5] L. H. HARPER, T. H. PAYNE, J. E. SAVAGE AND E. STRAUSS, Sorting X + Y, Comm. ACM., 18

(1975), pp. 347-349.
[6] C. H. PAPADIMITRIOU, Ecient Search for Rationals, Technical Report 01-78, Center for Research in

Computing Technology, Harvard University, 1978.

D
ow

nl
oa

de
d

06
/2

4/
16

 to
 1

30
.9

1.
11

6.
52

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

	Fast Sorting of Weyl Sequences Using Comparisons
	Recommended Citation

	Fast Sorting of Weyl Sequences Using Comparisons
	Abstract
	Disciplines

	Fast Sorting of Weyl Sequences Using Comparisons

