








5.4 Force Calculation and Scattering Mechanism

In Chapter 3 we developed a framework for studying Casimir forces between potentials relevant for

the one-valley scattering in metallic carbon nanotubes [79]. In this chapter we discuss potentials

where both intra- and inter- valley scattering are present. In this section we review the single-valley

force calculation, and then generalize the method to the two-valley scattering problem.

5.4.1 One-Valley Problem

In Chapter 3 we employed the force operator approach to calculate Casimir forces between single-

valley scattering potentials mediated by one-dimensional massless Dirac fermions. In order to be

consistent with the notation of this chapter, we briefly review the work presented in Chapter 3 and

apply it the the one-valley scattering problem in carbon nanotubes. The total Hamiltonian Ĥ for

the one-valley problem is given by

Ĥ = −i~vFP
+
τ ⊗ σ′

x(ẑσ,−θp)∂x + V (x). (5.22)

The first term in Eq. (5.22) is the 2 × 2 low-energy Hamiltonian expanded around the Kp point,

obtained by decoupling the two valleys in Eq. (4.11). The internal structure of the scattering

potential is dictated by its spinor polarization. We study potentials with sharp walls and calculate

a force as the walls becomes impenetrable. We model a delta-function potential by a square barrier

and study limits of zero width and infinite potential strength. The potential V (x) given in Eq. (3.2)

is

V (x) = V eiσxφ/2σze
−iσxφ/2θ(x− x1)θ(x2 − x), (5.23)

where φ is the spinor polarization of the potential, and θ(x) is a step function.

We used the Hellmann-Feynman theorem to calculate the total force imposed on a boundary.

The force is the ground state expectation value of the force operator summed over all occupied

states. The wavefunctions are linear combinations of right- and left- moving eigenstates of the single-

valley unperturbed Hamiltonian. The relative amplitudes of the propagating states are defined by
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transmission and reflection coefficients. The scattering coefficients are obtained from the transfer

matrix relating the wavefunctions at the two boundaries of a barrier. For the one scatterer system

the pressures on both sides of the barrier are equal, and the net force exerted on the scatterer is

zero.

A non-zero force arises from multiple reflections of states between two or more scatterers. A

scattering process between two barriers due to a right-moving state is illustrated in Fig. 5.4. The

scattering potentials are labeled by their spinor polarization φ. The reflection and transmission

coefficients resulting from scattering processes within the same valley are shown in Fig. 5.4. For

example, RKK the amplitude of a right-moving K state backscattered into a left-moving K state.
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Figure 5.4: A single-valley scattering illustration due to a K-point state incoming from the left. The

two barriers of width W and height V are separated by distance z. Each barrier is characterized by

its spinor polarization φ. The scattering coefficients are labeled in each region of free propagation.

To calculate the force between two barriers, we fix the position of the left barrier and differentiate

the Hamiltonian with respect to their separation z. The total force, resulting from K valley incoming

states, can be written as

F =

∫ ∞

0

dk

2π
k

[

2−
∑

|Ri,KK |2 −
∑

|Ti,KK |2
]

, (5.24)

where the sum is over coefficients due to right and left incoming states. The above expression is
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equivalent to Eq. (3.19) found in Chapter 3. The first term in Eq. (5.24) is an outer pressure pushing

the barriers together, and the remaining terms represent an inner pressure pushing the barriers apart.

In the two barrier system, the outer and inner pressures are not equal resulting in a non-zero force.

We obtained a force whose sign and magnitude depends on the relative spinor polarization

δφ = φ2 − φ1 of the two scatterers. The force between two barriers separated by distance z in the

strong and weak strength Γ = VW/~vF limits is given by

F =
~vF

2πz2















Re[Li2(−eiδφ)], Γ≫ 1

−Γ2 cos(δφ), Γ≪ 1

(5.25)

Writing Eq. (3.24) is terms of a dilogarithm function Li2(x) is useful for comparison with results

presented in this chapter. When two potentials are aligned at δφ = 2πn, we obtain a universal

attractive force for the fermionic Casimir effect in one-dimension. When δφ = (2n+1)π the relative

spinor polarization of the two scatterers is antiparallel resulting in a repulsive force. The oscillatory

dependence on δφ persists in the weak strength limit.

5.4.2 Two-Valley Problem
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Figure 5.5: An illustration of a scattering mechanism by a square barrier potential described by a

matrix V̂ and width W . A 4× 4 scattering matrix is obtained by relating right and left moving K

and K ′ states to their corresponding outgoing states.

In this section we generalize the method described in Chapter 3 and summarized in the previous
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section to the two-valley scattering problem, where scattering of states between different valleys as

well as within the same valley is present. Therefore, the potential is described by a 4 × 4 matrix

characterized by sublattice and valley degrees of freedom. The intra- and inter- valley matrix

elements are obtained using the Bloch basis states described in Sec. 5.2. The freely propagating

states are eigenstates of the effective Hamiltonian for the lowest band in metallic tubes given in

Eq. (4.11). The wavefunctions used to calculate the force expectation values obtained from the

Hellmann-Feynman theorem are linear combination of right and left moving states from the two

K and K ′ points. The relative amplitudes of the propagating states are defined by scattering

coefficients. A general expression for the wavefunction in a region of free propagation is given by

Φ(x) = eikx‖

(

αKφ
K
k + αK′φK′

k

)

+ e−ikx‖

(

βKφ
K
−k + βK′φK′

−k

)

, (5.26)

where φ’s are four component spinors given in Eq. (4.12), and α’s and β’s are scattering coefficients.

For simplicity of notation we have dropped the p and p′ superscripts referring to one of the three

equivalent corner points. The three K points are related by reciprocal lattice vectors, and physical

quantities will not depend on the particular choice of the corner point. The dependence on p and p′

enters only as a phase of the scattering coefficients α’s and β’s.

The full Hamiltonian for one-square barrier system is given by

ĤT = Ĥo + V̂ θ(x‖ − x1)θ(x2 − x‖), (5.27)

where Ĥo is the low-energy Hamiltonian given in Eq. (4.11), V̂ is a perturbation potential, such as

H1 or H2 described in Sec. 5.3, and the step functions define a square barrier. Integrating Eq. (5.27)

across the barrier, the 4× 4 transfer matrix becomes

T = exp
{

− iW [P+
τ ⊗ σ′

x(ẑσ,−θp)− P−
τ ⊗ σ′

x(ẑσ, θ
′
p)][k + V̂ ]

}

, (5.28)

where W = x2 − x1 is the barrier width.

From the transfer matrix, we calculate the scattering matrix. The 4 × 4 scattering matrix,
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obtained from incoming and outgoing states illustrated in Fig. 5.5, is defined as









αo

βo









=









t r′

r t′

















αi

βi









, (5.29)

where αo(i) = (α
i(o)
K , α

i(o)
K′ )T are right-moving incoming (i) and outgoing (o) amplitude column

vectors, and β’s define left-moving states as shown in Fig. 5.5. The “primes” in Eq. (5.29) indicate

the coefficients due to the states incoming from the right. Each coefficient in the scattering matrix

in Eq. (5.29) is a 2 × 2 matrix defining both intravalley and intervalley scattering amplitudes. For

example,

t =









tKK tK′K

tKK′ tK′K′









, (5.30)

where the diagonal(off-diagonal) terms are the intravalley(intervalley) transmission coefficients. For

instance, tKK′ is the forwardscattering amplitude of a right-moving K state being transmitted into

a left-moving K ′ state.

As in the one-valley problem, non-zero forces arise from interactions between two scatterers. An

scattering process illustration of a left-incoming K state between two potentials V̂1 and V̂2 separated

by distance z along the tube axis is shown in Fig. 5.6. As before, we fix the left barrier and calculate

the force exerted on the right barrier using the Hellmann-Feynman theorem. The force is given by

F =

∫ ∞

0

dk

2π
k
[

4−
∑

|Ti|2 −
∑

|Ri|2
]

, (5.31)

where the summations represent a sum over all reflection and transmission coefficients in-between the

two barriers (region II in Fig. 5.6) due to right and left incoming states, φK
±k and φK′

±k. Throughout

this chapter lower-case coefficients will refer to scattering by one barrier, and upper-case ones due

to scattering by a two barrier system.

As for the single-valley force expression given in Eq. (5.24), the first term in Eq. (5.31) represents

an outer pressure in Regions III of Fig. 5.6 due to a continuous spectrum of states pushing the barriers

together. The second and third terms in Eq. (5.31) result in the inner pressure pushing the barriers
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Figure 5.6: A right-moving state φK
k is scattered by a two barrier system separated by distance z

along the tube axis. Each barrier has a width W , height V , and is labeled by an 4×4 matrix-valued

potential V̂ . Generally, each potential can produce both intravalley and intervalley scattering as

labeled by the appropriate coefficients in each region of free propagation.

apart, which is obtained from the coefficients in Region II of Fig. 5.6. These coefficients are given

by

Ti = t1 + t′1(1− r2r′1)−1r2t1

T ′
i = t′2 + r2(1− r′1r2)−1r′1t

′
2

Ri = r2(1− r′1r2)−1t1

R′
i = r′1(1− r2r′1)−1t′2.

(5.32)

When the intervalley matrix elements are zero in one of the scattering potentials V̂ , there is no

forward- and back- scattering between inequivalent Fermi points for the two-barrier system. In this
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case Eq. (5.31) reduces to the one-valley force given in Eq. (5.24).

The expressions for the force in Eq. (5.24) and Eq. (5.31) can also be obtained using the stress

tensor method. In (1+1)-dimensions pressure is given by then energy density obtained by calculating

the expectation values of the T00 component of energy-stress tensor. For the two square barrier

system the force exerted on the second barrier is difference between the energy densities at the right

and left of the barrier:

F =

∫ ∞

0

kdk
{

|ΨIII
k |2 − |ΨII

k |2
}

, (5.33)

where the superscripts indicate the scattering regions shown in Fig. 5.6. It is not necessary to

calculate the reflection and transmission coefficients in region III explicitly, since the scattering

matrix is unitary. The unitarity of the S-matrix guarantees that the outer pressure due to right

and left moving K and K ′ incoming states in Region III will always result in |ΨIII
k | = 4 for the

two-valley problem. Therefore, the first term given in Eq. (5.33) is equivalent to the first term found

in Eq. (5.31) using the Hellmann-Feynman theorem. The second expectation value in Eq. (5.33)

results in a sum over inner scattering coefficients defined in Eq. (5.32), equivalent to the second and

third terms in Eq. (5.31). Naturally, the two formalisms yield equivalent results. The stress tensor

method was used to calculated electromagnetic Casimir forces between mirrors in (1+1)-dimensions

[38].

5.5 Results

Using the method described in Sec. 5.4, we explore the dependence of the force between two scatterers

on the matrix structure, range, and strength of the defect potentials. We distinguish interactions

between local and non-local potentials discussed in Sec. 5.3. We show that the Casimir force decays

as 1/z2 which is a universal result in one-dimension in the far field limit. However, we also find that

in the presence of intervalley scattering there is a spatially periodic modulation of this force. Our

results pertain to the limit z ≫W where shape corrections are negligible [79]. A general solution of
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the integrals appearing in the force calculations in derived in the Appendix, and a summary of our

results is presented in Table 5.1.

5.5.1 Forces between Local Potentials

In this section we first consider interactions between local potentials. As discussed in Sec. 5.3.2,

backscattering from a local potential is significant for potential that vary on the scale of the lattice

d/a . 1. Let us specialize Eq. (5.10) to describe impurities that are centered at either of the

two sublattice sites. We first study the strong potential limit by fixing the area of the potential

Γ = VW/~vF . The force is independent of the magnitude of the potential in the Γ≫ 1 limit and is

relevant for the discussion of universal Casimir interactions. For a sublattice centered potential in

the atomically sharp limit d/a→ 0 intra- and inter- valley amplitudes are equal Vi ∼ V ′
i , as shown

in Fig. 5.3. All reflection and transmission coefficients for such scatterers approach the same value

in the strong potential limit, |rij | = |tij | = 1/2 ∀ {i, j} = {K,K ′} and are independent of the sign

of the potential.

Calculating the two-barriers scattering coefficients described in Eq. (5.32) and inserting into

Eq. (5.31), the force between two impurities centered on equivalent sublattice sites is given by

FAA,BB =
~vF

π

∫ ∞

0

kdk

[

1− 1− cos4(K ·Ro)

1 + cos4(K ·Ro)− 2 cos2(K ·Ro) cos(2kz)

]

, (5.34)

where Ro is a primitive translation vector in the tangent plane separating the two impurities, and

z the component of their separation along the axial direction. The subscripts AA and BB imply a

force between impurities which are located on equivalent sites.

The solution to the integral in Eq. (5.42) is shown in the Appendix J. Applying Eq. (J.13), the

force integral in Eq. (5.34) becomes

FAA,BB =
~vF

2πz2
Li2

[

cos2(K ·Ro)
]

. (5.35)

Unlike in the one-valley problem where the force decays monotonically as 1/z2, in addition the

two-valley problem results in a spatial modulation of the force, as observed in the argument of the
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Figure 5.7: Forces between sublattice centered impurities as a function of position. The force FAA,BB

between equivalent impurities given in Eq. (5.35) and FAB between defects residing on different sites

given in Eq. (5.37) is plotted as a function of z/a for an armchair tube in the strong potential limit.

The continuous limits of the force functions are shown by dashed curves in order to stress the

periodicity of the spatial modulation of the forces. The points indicate the discrete values of the

force. The inset shows equivalent results in the weak potential strength limit given in Eq. (5.38).

dilogarithm function in Eq. (5.35). The force oscillates with the period of the
√

3×
√

3 superlattice

indicating coupling between the two valley points. The force given by Eq. (5.35) is plotted in Fig. 5.7

as a function of z/a for an armchair tube. The points on the curve indicate the discrete values of

the force in each period. The force between two equivalent impurities is purely repulsive, as seen in

Fig. 5.7, since Li2

[

cos2(K ·Ro)
]

> 0, where cos2(K ·Ro) = {1, 1/4}.

Next, we consider interactions between impurities residing on different sublattice sites. A force

63



between an A-centered (ν = 0) and a B-centered (ν = 1) scatterer is given by

FAB =
~vF

π

∫ ∞

0

kdk

[

1− 1− sin4(K ·Ro + θ)

1 + sin4(K ·Ro + θ) + 2 sin2(K ·Ro + θ) cos(2kz)

]

, (5.36)

where θ is the chiral angle of a nanotube. Applying Eq. (J.13) the force in Eq. (5.36) becomes

FAB =
~vF

2πz2
Li2

[

− sin2(K ·Ro + θ)
]

. (5.37)

For unlike impurities the force is purely attractive for all values of the chiral angle. The argument

of the dilogarithm takes three values sin2(K · Ro + θ) = {sin2(θ), sin2(2π/3 + θ), sin2(4π/3 + θ)},

which also contains
√

3 periodicity. The force given in Eq. (5.37) is plotted in Fig. 5.7 on a curve

labeled FAB for an armchair tube as a function of position.

θ
0 ππ/2π/4 3π/4

-0.2

-0.4

-0.6

-0.8

-1.0

F/(    )
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Figure 5.8: The three branches in one period of FAB , a force between an A and a B sublattice

centered impurities, given in Eq. (5.37) as a function of chiral angle θ. The force is scaled by a factor

of π~vF /24z2 and is found to be attractive for all values of θ.

Eq. (5.37) indicates that the system is invariant under the rotation of the chiral angle by π,

rather than by 2π/3 as for a defect-free lattice. This occurs because the impurity is fixed on the

lattice rather than on the tube’s coordinates, and the position of the scatterer co-rotates with the

lattice for various values of the chiral angle. Therefore, the three-fold symmetry in the presence of an
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Figure 5.9: Forces between local impurities where only intervalley scattering is present. The force

F e given in Eq. (5.39) between two potentials of equal (s = 1) and unequal (s = −1) signs is plotted

as a function of z/a for an armchair tube. The continuous limits of the force functions are shown

by dashed curves. The points indicate the discrete values of the force. The inset shows equivalent

results in the weak potential strength limit given in Eq. (5.41).

atomically sharp impurity is broken. The chiral angle dependence appears only in the force between

unlike impurities, since the separation between the two defects is not a primitive lattice vector. The

three branches in one period of FAB are plotted as a function of θ in Fig. 5.8. The figure indicates

that force oscillates between 0 and −π~vF /24z2 for all values of K ·Ro. An attractive and repulsive

interaction between defects on different and same sublattice sites, respectively, was recently shown

in two-dimensional graphene [72].

Next, we study the small potential Γ ≪ 1 limit and compare results to the ones obtained in

strong Γ ≫ 1 limit given by Eq. (5.35) and Eq. (5.37). We keep the first non-zero term in the
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expansion of small Γ and take the zero width limit W → 0. The next order term in the small

width expansion accounting for shape corrections is O(W/r) [79]. For simplicity, we study the case

of armchair nanotubes θ = 0 and find a general expression for a force between sublattice centered

defects. The off-diagonal matrix elements VAB and V ′
AB are zero for sublattice centered potentials

ν = {0, 1}. The force between two local potentials in the Γ≪ 1 limit is given by

F = −s~vF

4πz2

[

(

Γ1
A − Γ1

B

)

·
(

Γ2
A − Γ2

B

)

+
(

Γ′1
A + Γ′1

B

)

·
(

Γ′2
A + Γ′2

B

)

cos(2K ·Ro)

]

, (5.38)

where s = 1(−1) refers to a force between potentials of the same(different) sign of Γ, and the

superscripts indicate the potential describing scatterer one and two. Unlike in the large strength

limit shown in Eqns. (5.34)-(5.37), the sign of the force is a function of the relative sign s of the two

potentials in the weak limit. The sign of the force also depends on the relative sublattice centers of

the two scatterers, as in the strong potential limit. Therefore, in the Γ≪ 1 limit the sign of the force

is controlled both by the sublattice position of the two defects and the relative sign s of their potential

strength. The
√

3 ×
√

3 periodic oscillation persists in the small strength limit. These results for

specific sublattice positions of the two potentials and general chiral angle are shown in Table 5.1

and are plotted as an inset in Fig. 5.7 for an armchair tube. For long-range d/a & 1 potentials the

force approaches zero for all values of ν since the sublattice intravalley matrix elements ΓA’s and

ΓB ’s become equal, and intervalley terms Γ′
A’s and Γ′

B ’s decay to zero as shown in Fig. 5.3. This

result confirms the absence of backscattering from an scalar potential by massless Dirac fermions.

Although a scatterer where the two valleys are decoupled cannot be realized for a local potential,

a case of pure intervalley scattering is possible. For a local potential, when an impurity is centered

in the middle of a bond that points along the circumference, the potential scatters states only

between inequivalent valleys as discussed in Sec. 5.3.2. This holds because the intravalley part of

the Hamiltonian Ha
1 is a scalar potential for all values of d/a, since VA = VB for a bond-centered

potential, and VAB = 0 when the perturbed bond points along the circumference. The intervalley

amplitudes are equal V ′
A = V ′

B = V ′
AB for ν = 1/2, when θ = 0 and ℓ = 0.
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In this case, the intervalley transmission coefficients |tKK′ | = |tK′K | = 0 and the intravalley

reflection coefficients |rKK | = |rK′K′ | = 0 vanish. The absence of back- and forward- scattering

within the same valley and between different valleys, respectively, by potentials that preserve mirror

reflection symmetry about the tube axis has been also shown by Ando et al . [7]. In the Γ ≫ 1

limit, the non-zero coefficients have limits |rKK′ |(|rK′K |) → 1 and |tKK |(|tK′K′ |) → 0. The phase

of the reflection coefficients depends of the sign of Γ. The force between two potentials with only

intervalley scattering contribution in the large potential strength limit is given by

F e =
2~vF

π

∫ ∞

0

kdk

[

1− 2 lim
τ→0

τ2

|1 + s(1− τ2)e2i(kz−K·Ro)|2

]

, (5.39)

where τ is the magnitude of the transmission coefficient, and s is the relative sign of Γ’s. The second

term in the integrand representing the inner pressure is fundamentally different from the ones seen in

Eq. (5.34) and Eq. (5.36). The phase that appears in Eq. (5.39) is associated with large momentum

backscattering. The forces shown in Eq. (5.34) and Eq. (5.36) involve two types of momentum

transfer which appear as various terms in the equations. When both intra- and inter- valley play a

role, there is finite transmission even in the strong potential limit. When only intervalley scattering is

present, the strong potential limit results in an impenetrable wall limit since transmission coefficient

approaches zero. Therefore, the inner pressure in Eq. (5.39) results from resonant states between

the boundaries. The overall prefactor in Eq. (5.39) is twice the magnitude than in Eq. (5.34) and

Eq. (5.36).

Applying Eq. (J.14) and evaluating the periodic part of the force, the solution of the integral in

Eq. (5.39) is given by

F e =
~vF

πz2
Re
[

Li2(−se2iK·Ro)
]

=
π~vF

72z2















{−3, 1}, s = 1

{−2, 6}, s = −1

(5.40)

When only intervalley scattering amplitude is present the force oscillates between attractive and

repulsive with
√

3 period as observed in Eq. (5.40). The magnitude of the force is determined by

the relative sign s of the two potentials. A plot of F e as a function of z/a for s = ±1 is shown in
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Fig. 5.9. The points in the plot indicate the discrete values in each period of oscillation given in

Eq. (5.40). In the small strength limit Γ≪ 1 the force becomes

F e = −s~vF Γ2

πz2
cos(2K ·Ro). (5.41)

The results of Eq. (5.41) are shown as an inset in Fig. 5.9. Although the prefactors of the force

are different in the two limits, the oscillation between attractive and repulsive persists in both weak

and strong potential limits. Similar behavior has been observed previously in one-dimensional Fermi

liquids where only large momentum backscattering is considered [63, 77]. Refer to Table 5.1 for a

compact summary of the main results presented here.

Form Range Site 1 Site 2 Force (Γ ≫ 1) (Eq.) Force (Γ ≪ 1) (Eq.)

Local (Eq. 5.10)

d/a ∼ 0

ν = 0 ν = 0
~vF

2πz2
Li2[cos2(K · Ro)] (5.35) − s~vF Γ

2

2πz2
cos2(K · Ro) (5.38)

ν = 1 ν = 1

ν = 0 ν = 1
~vF

2πz2
Li2[− sin2(K · Ro + θ)] (5.37) s~vF Γ

2

2πz2
sin2(K · Ro + θ) (5.38)

ν = 1 ν = 0

ν = 1

2
ν = 1

2
~vF

πz2
Re
[

Li2(−se2iK·Ro )
]

(5.40) − s~vF Γ
2

πz2
cos(2K · Ro) (5.41)

(θ = 0, ℓ = 0)

d/a & 1 Any Any 0 0

Non-local (Eq. 5.21) d/a 6= 0

|V | > 1 |V | > 1
−π~vF

12z2
(5.43) − ~vF Γ

2

πz2
(5.25)

|V | < 1 |V | < 1

|V | > 1 |V | < 1
π~vF

6z2
(5.43) ~vF Γ

2

πz2
(5.25)

|V | < 1 |V | > 1

Table 5.1: A summary of results described in Sec. 5.5.1 and Sec. 5.5.2. The first group present

results of forces between local potentials. The remaining rows show results for forces between non-

local potentials, where the dependence of the force of the relative sign s of the potential strength

|V | is stressed [80].
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5.5.2 Forces between Non-Local Potentials

In this section we calculate Casimir forces between impurities described by non-local potentials

given in Eq. (5.21). When the range of a non-local potential is d/a & 0, off-diagonal intravalley

matrix elements VAB are dominant since all other amplitudes are parametrically smaller as noted in

Sec. 5.3.3. Therefore, a non-local potential can result in a one-valley scattering problem discussed in

Sec. 5.4.1. These potentials can describe modulations to the hopping amplitudes between neighboring

sites. In the absence intervalley scattering, states are scattered only within the same K point.

Therefore, the scattering coefficients |rKK′ | = |rK′K | = |tKK′ | = |tK′K | = 0 are zero. Likewise, the

intervalley coefficients due to states incoming from the right vanish. Since the two Fermi points are

decoupled the perturbation matrix is described by two independent 2× 2 matrices in the sublattice

σ-space.

The control parameter we vary to study interactions between two non-local defects is the sign

of the potential V . We assume that the dimensionless quantities Im(g̃)’s defined in Eq. (5.20) are

equal for the two barriers. In the strong potential Γ ≫ 1 limit the magnitude of the non-zero

scattering coefficients approach |rKK |(|rK′K′ |) → 1 and |tKK |(|tK′K′ |) → 0. We calculate the

interaction between two barriers with the same and different signs of Γ = VW Im(g̃)/~vF . Applying

the one-valley force result given in Eq. (5.24), the force between two non-local potentials becomes

F2 =
2~vF

π

∫ ∞

0

kdk

[

1− 2 lim
τ→0

τ2

|1 + s(1− τ2)e2ikz|2

]

, (5.42)

where s is the relative sign of the two potentials. The integrands in Eq. (5.39) and Eq. (5.42) are

equivalent except for the phase exp(2iK ·Ro) appearing in Eq. (5.39). This phase associated with

large momentum backscattering is absent in Eq. (5.42) since there is no intervalley scattering present

by potentials given in Eq. (5.21).

Applying Eq. (J.14) the force is given by

F2 =
~vF

πz2
Li2(−s) =

π~vF

12z2















−1, s = 1

2, s = −1

(5.43)
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The result in Eq. (5.43) shows that there is an attractive force between two scatterers with equal sign

of Γ (s = 1) and a repulsive force between defects of unequal sign of Γ (s = −1). The relative sign of

V is analogous to the difference between the spinor polarizations δφ of the two scatterers discussed

in Sec. 5.4.1. Potentials of equal sign (s = 1) refer to the case of parallel scatterers δφ = 0. Two

potentials of opposite sign (s = −1), on the other hand, refer to the case of anti-parallel scatterers

δφ = π. The results in Eq. (5.43) are consistent with the force in the Γ≫ 1 limit of Eq. (5.25) [79].

Likewise, F2 in the Γ≪ 1 limit agrees with Eq. (5.25). The magnitude of the force is larger than the

result in Eq. (5.25) by a factor of two since we are including fermions from the two K(K ′) branches

of carbon nanotubes. These results are shown in Table 5.1.

Intervalley scattering becomes important for non-local potentials when Im(g̃) = 0 for d/a . 1.

A few example of such defects are a vector potential with a zero component along the tube axis

(g‖ = 0), a tensor potential for armchair tubes and zero twist (θ = 0 and G‖⊥ = G⊥‖ = 0), or

a tensor potential for zigzag tube with zero uniaxial strain (θ = π/6 and G‖‖ = G⊥⊥ = 0). The

effect of intervalley scattering on the Casimir force is discussed in Sec. 5.5.1 in the context of local

potentials, and the same physics apply for the case of non-local potentials.

5.6 Discussion

Defects or impurities on a carbon nanotube can backscatter electrons either through intravalley or

intervalley scattering processes. In general both channels are present with their relative strengths

determined by the range and symmetry of the scattering potentials. The models we present here

provide a framework for understanding the backscattering-induced forces on these species. The sig-

nature of intervalley scattering is a spatial modulation of the scattering-induced forces. By contrast

intravalley scattering mediates a force that can be either attractive or repulsive, but has a strength

that decays monotonically as a function of increasing separation. Interestingly, in all cases where

the interaction is described by a local potential, the scattering problem is inevitably multivalley in
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character, and the energy and force of the species oscillate as a function of separation.

The long-range interaction between multiple scatterers might lead to complex phase structures.

It was suggested by Shytov et al . [72] that interaction between adatoms absorbed on the graphene

lattice can result in defect aggregation and inhomogeneities on the lattice.

The scatterers we describe in this paper can be physically realized by various atomic and molec-

ular species adsorbed on the tube wall. These range from covalently bound atoms and molecules

[28, 24], to more weakly bound metallic species [64]. The range of the scattering potential is de-

termined by the size of the absorbed species relative to the lattice constant. The symmetry of the

potential is determined by the spatial variation of on-site energies and by the modulation in the

intersite hopping amplitudes produced by these species.

Covalently bound species provide the most natural candidates for the strongly coupled local

potential models described in section 5.3.2. Here, the on-site potential barrier at an adsorbed site

can be as large as 5 eV enforcing an effectively hard wall boundary condition on the electronic

wave functions. In this regime the results of section 5.5.1 can be used to provide a bound on the

electron-induced force. For example, the maximum attractive force between two scatterers in the

impenetrable wall limit leads to an interaction energy of Ec = −π~vF /12z. With ~vF ∼ 5.4 eV · Å

for nanotubes this gives an energy of 2.8meV at a range z = 50nm.

The weak coupling limit is relevant to the interactions of less strongly bound species, such as

metal atoms or molecules bound by π stacking interactions, e.g. benzene. Here the energy scale for

the local potential is more modest, of order 1 eV which, assuming a range of order a graphite lattice

constant, corresponds to a dimensionless coupling parameter Γ ∼ 0.5. In this weak coupling limit

El = −~vF Γ2/2πz a local potential of V ∼ 1 eV results in 0.4 meV at a distance of z = 50 nm.

Though weaker, this interaction still decays slowly as a function of distance (∝ 1/z) and will also

dominate the electrostatic interaction between charge neutral dipoles in the far field.

In this weak coupling regime, strain induced couplings, represented by non-local scatterers can

be comparable in size. Assuming a linear scaling of intersite hopping amplitudes with bond lengths
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following dt/dℓ ∼ 4 eV/Å a bond length change of 0.2 Å and a potential range on the order of

the lattice constant, this gives a dimensionless potential strength of Γ ∼ 0.37 and a weak coupling

interaction Enl = −~vF Γ2/πz, we find 0.2 meV. These are of the same order as the forces produced

by local potentials in the weak coupling limit.

For adsorbate-induced potentials, it is difficult to realize a regime where the scattering is dom-

inated by potentials with solely a nonlocal form. Thus, one concludes that intervalley scattering

and a residual spatial oscillation of the force is a generic property of inter adsorbate interactions

mediated by the propagating electrons. It may be possible to quench the intervalley channel by

application of a magnetic field along the tube axis which would have the effect of introducing a gap

at either the K or K’ point and isolating the effects of intravalley scattering. We also note that

strains can be engineered into these structures by application of mechanical stresses, and this might

provide an avenue for realizing the predictions of the nonlocal model.

5.7 Conclusion

In this chapter we show that interactions between scatterers in metallic carbon nanotubes results in

a one-dimensional Casimir problem. We generalized the work presented in Chapter 3 which includes

the one-valley problem of nanotubes, to incorporate the effects of intervalley scattering. We show

that local potentials in nanotubes produce a two-valley scattering problem. The decoupling of the

two valleys is not possible for a local potential since the range must be atomically sharp in order to

produce finite backscattering. Local potentials whose spatial extent is beyond the lattice constant

result in scalar potentials which do not backscatter massless Dirac fermions. Non-local potentials, on

the other hand, can result in a decoupled valley scattering problem. Intervalley scattering amplitudes

are parametrically smaller for finite range non-local potentials. Therefore, we formulate a physically

realizable potential which reduces to the single-valley scattering problem.

We study forces between two scatterers mediated by the propagating electrons of metallic carbon
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nanotubes. For interactions between both local and non-local potentials we find a universal 1/z2

power law decay for a one-dimensional Casimir force. However, for local potentials, where intervalley

scattering plays a role, we also observe a position dependent periodic modulation of the force. The

signs and magnitudes of the forces are not universal and are controlled by the internal symmetry of

the scattering potentials.
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Chapter 6

Conclusion and Future Work

In this thesis we calculated interactions between localized scatterers in metallic carbon nanotubes.

We showed that these interactions can be mapped to Casimir-type forces mediated by massless

one-dimensional Dirac fermions. We recover a universal power law decay in one-dimension, and find

that the sign and magnitude of the force are controlled by the internal symmetry of the scattering

potentials. We stress the distinction between potentials which result in single-valley or two-valley

scattering problems in carbon nanotubes.

We begin our work with a general calculation of Casimir forces between spinor polarized sharp

potentials, appropriate for the single-valley scattering in nanotubes. Our results show that the force

is tuned by the relative spinor polarization of the two boundaries. For example, we find an attractive

force between two parallel potentials and a repulsive one between antiparallel boundaries. In order

to study realistic scatterers in nanotubes we model local and non-local potentials and incorporate

intravalley and intervalley backscattering into the theory. We find that local potentials lead to a

coupled valley problem resulting in new Casimir physics. Interactions between local potentials that

vary on the scale of interatomic spacing lead to a periodic spatial oscillation of the force, as well as

the relative pseudospin control parameter seen in the single-valley problem. Non-local potentials,

on the other hand, result in a single-valley regime for finite range potentials.
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There are still many unanswered questions and open doors to further the understanding of topics

presented in this thesis. The obvious extension is the many-body problem. In most realistic systems

there are more than two defects present, thus, one needs to consider interactions between multiple

scatterers. It is well known that Casimir forces are not pairwise-additive due to properties of multiple

barrier scattering matrices [42]. Therefore, this problem is not trivial and presents many challenges.

Some work has been done by Shytov et al . studying many-body interactions between adatoms in

graphene [72]. They showed that attractive forces dominate in a random distribution of scatters,

even if repulsive forces are present between individual two-body interactions.

Since two-thirds of nanotubes are semiconducting in nature, it is also important to consider inter-

actions between defects in gapped systems. In Appendix H we show that Casimir forces mediated by

massive fields in the single-valley problem are exponentially suppressed at distances longer than the

tube radius. This suppression of the force at long distances is a universal result. These forces might

be significant, however, for small radius tubes and in metallic tubes in which curvature effects open

a small gap. Since there is no backscattering from scalar potentials in metallic tubes, interactions

between them might be dominant in semiconducting tubes. The effects of intervalley scattering in

semiconducting tubes also need to be considered.

Another interesting problem is the effect of a magnetic field. A magnetic field along the tube axis

lifts the degeneracy between the K and K ′ points, as discussed in Appendix B. This perturbation

allows for a possibility for a closed gap at one valley and an open gap at the other. Therefore,

a magnetic field parallel to the tube axis might decouple the two valleys and suppress intervalley

scattering even for local potentials. When two valleys are decoupled, the pseudospin polarization of

the scattering potentials solely determine the nature of Casimir forces. Therefore, a single channel

scattering mechanism would allow for a better control of Casimir interactions in carbon nanotubes.
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Appendix A

Essential Nanotube Physics

In this appendix we present detailed calculations of the physical properties of graphene and carbon

nanotubes briefly summarized in Chapter 4. We describe the honeycomb lattice, derive the graphene

Hamiltonian obtained from the tight-binding and effective-mass models, and calculate the band

structure of single-walled carbon nanotubes.

A.1 Honeycomb Lattice

The honeycomb lattice has a two point basis, labeled by A and B sites, since the primitive unit cell

contains two carbon atoms. We choose the following primitive lattice vectors, shown in Fig. A.1, to

describe the lattice:

a1 =
a

2

(

x̂ +
√

3ŷ
)

a2 =
a

2

(

− x̂ +
√

3ŷ
)

, (A.1)

where a =
√

3ac−c ∼ 2.46 Å is the magnitude of the primitive lattice vectors, also known as the

lattice constant. The two primitive vectors a1 and a2, and the vector d shown in Fig. A.1, locate

every site on the lattice. A set of lattice vectors RA = n1a1 + n2a2, where (n1, n2) ∈ Z, give the
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positions of the A sublattice sites, and RB = RA + d locate the B sites.

a

d

1a2

A

B

y

x

Figure A.1: An illustration of a two-dimensional graphene honeycomb lattice. The shaded area

defines a unit cell containing two carbon atoms, conventionally labeled by sublattice sites A and B.

The two primate lattice vectors a1 and a2, and the vector d locate all the A and B sites. The y-axis

is defined to point parallel to the bond vectors.

The reciprocal lattice is obtained by satisfying the ai ·bj = 2πδij condition. The primitive lattice

vectors of a two-dimensional reciprocal space are given by

b1 = 2π
ẑ× a1

a2 · (ẑ× a1)

b2 = 2π
ẑ× a2

a1 · (ẑ× a2)
, (A.2)

where ẑ points perpendicular to the plane of the lattice. Inserting Eq. (A.1) into Eq. (A.2), the

primitive reciprocal vectors of the honeycomb lattice are given by

b1 =
2π√
3a

(

−
√

3x̂ + ŷ
)

b2 =
2π√
3a

(√
3x̂ + ŷ

)

. (A.3)
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The vectors G = m1b1 +m2b2, where (m1,m2) ∈ Z, locate all the points on the reciprocal lattice,

which for a honeycomb lattice results in a triangular lattice rotated by 30◦. The first Brillouin zone

that defines the primitive unit cell of the reciprocal lattice is shown in Fig. A.2.

bb 12

K

K

K

K'

K'

K'

Γ οο

1

1

1

1

Figure A.2: Reciprocal lattice of a two-dimensional honeycomb lattice, defined by reciprocal vectors

G = m1b1 +m2b2. The shaded region is the primitive cell of the reciprocal lattice, known as the

first Brillouin zone. The center point Γ and the six corners αKp’s of the Brillouin zone are shown.

The corners of the Brillouin zone, labeled by αKp’s in Fig. A.2, lie at the Fermi surface. As a

result the electronic properties of graphene are determines by states in the vicinity of the K and K ′

points. The six corners of the Brillouin zone are given by

αKp =
4π

3a
α

{

cos
(2πp

3

)

x̂ + sin
(2πp

3

)

ŷ

}

, (A.4)

where α = 1(−1) indicate a K(K ′) point, and p = {0,±1} are defined in Fig. A.2. The three K, as

well as K ′, points are equivalent since they can be connected by a reciprocal lattice vectors G’s. A

K and a K ′ point, on the other hand, cannot be connected through G. In terms of the primitive
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reciprocal lattice vectors, the Fermi points K0 and K′
0 are given by

αK0 =
α

3

(

b2 − b1

)

. (A.5)

The remaining two K(K ′) points are connected through G in the following manner

αK1 = α
(

K0 + b1

)

αK2 = α
(

K0 − b2

)

. (A.6)

It is clear from the above equations that any K vector cannot be related to a K′ vector by a vector

G. For example,

K0 −K′
0 =

2

3
(b2 − b1) 6= G. (A.7)

Since the three K(K ′) points are related by a reciprocal lattice vector, any physical quantity

cannot depend of the particular choice of the corner point and only enters as a gauge in the Hamilto-

nian. This issue was addressed in Chapter 5. Therefore, there are only two, rather than six, unique

Fermi points, labeled K and K ′. In the remainder of this appendix, without loss of generality, we

set K ≡ K0 and K′ ≡ K′
0 = −K0, as the two inequivalent Fermi points. The K and K ′ points are

often referred to as the two valleys of graphene and carbon nanotubes.

A.2 Tight-Binding Model

In the tight-binding approximation electrons are tightly bound to atoms residing on lattice sites,

and their wavefunctions overlap weakly with neighboring sites. For a good introduction on the

tight-binding model see Chapter 8 in Ref. [51]. This simple model is a very good starting point for

describing the band structure of solids.

In the tight-binding model for two-dimensional graphene, interactions between π orbitals of

the nearest neighbor sites are included. The vectors connecting the three nearest neighbor bonds

depicted in Fig. A.3 are given by

τj =
a√
3

(

− sin
2πj

3
x̂ + cos

2πj

3
ŷ
)

, (A.8)
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where j = {0,±1}. The nearest neighbor tight-binding model is given by

H = −t
∑

RA,j

[

a†(RA)b(RA + τj) + b†(RA + τj)a(RA)
]

, (A.9)

where t ∼ 2.8 eV is the nearest neighbor hopping energy in graphene, and the operator a†(b†) creates

an electron on the A(B) sublattice.

τ

τ τ1

0

1

Figure A.3: The three nearest neighbor bond vectors τj ’s of the honeycomb lattice.

The on-site reference energy at each sublattice site is set to zero, such that the Fermi energy is

zero. There are cases where the site binding energy is different for the A and B sites. For example,

in boron nitride the A sublattice is replaced by a boron atom, and the B sublattice is replaced

by a nitrogen atom. The energy cost of adding an electron to each type atom is different, leading

to a sublattice asymmetric potential. This potential breaks inversion symmetry of the lattice and

results in a opening of a gap at the Fermi energy. This potential is relevant to the band structure of

boron nitride nanotubes [23]. In this thesis we only consider a graphene lattice with lattice inversion

symmetry.

The Hamiltonian in Eq. (A.9) is solved by Fourier transforming the creation and annihilation

operators. The Fourier transform of a creation operator is given by

c†(r) =
1√
N

B.Z.
∑

q

eiq·rc†(q), (A.10)
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where the summation is over all momenta q in the first Brillouin zone, and N is the number of unit

cells. Inserting Eq. (A.10) into Eq. (A.9), the tight-binding Hamiltonian becomes

H = − t

N

∑

RA,τj

B.Z.
∑

q,q′

ei(q−q′)·RA

[

e−iq′·τja†(q)b(q′) + eiq·τj b†(q)a(q′)
]

. (A.11)

The sum over RA’s results in a Kronecker delta function,
∑

RA
ei(q−q′)·RA = Nδq,q′ , eliminating

one of the sums over q and a factor of N yielding

H = −t
B.Z.
∑

q

[

γ(q)b†(q)a(q) + γ∗(q)a†(q)b(q)
]

=

B.Z.
∑

q

H(q), (A.12)

where

γ(q) =
∑

j

eiq·τj . (A.13)

The π orbital energy bands in graphene are obtained by diagonalizing the effective Hamiltonian

H(q) given in Eq. (A.12). The eigenvalue solution of Eq. (A.12) is given in Eq. (4.3), and the energy

bands are plotted in Fig. 4.2. Graphene is a zero gap semiconductor or a semimetal since the two

π bands cross at the six corners of the Brillouin zone, where the Fermi surface lies for undoped

graphene. Thus, it is the electronic properties around the K and K ′ Fermi points that govern the

low-energy properties of graphene. In fact, the gap (Eg = 6t) between the π bands is largest at the

center of the Brillouin zone Γ, making in irrelevant for the low-energy properties of graphene.

The long-wavelength Hamiltonian for graphene is obtained by expanding around the corners of

the Brillouin zone. Letting q = K+k and expanding for small k, such that |k| ≪ |K|, γ(q) becomes

γ(K + k) ≈ γ(K) + (k · ∇)γ|K +O(k2). (A.14)

Solving the Hamiltonian around the two inequivalent Fermi points αK, where α = ±1, and keeping

the first two terms in the expansion shown in Eq. (A.14), γ(q) given in Eq. (A.13) becomes

γ(αK + k) ≈
∑

j

eiαK·τj
(

1 + ik · τj

)

=

√
3a

2
(−αkx + iky). (A.15)

Inserting Eq. (A.15) into Eq. (A.12), the low-energy effective tight-binding Hamiltonian at the
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K and K ′ point written in matrix form becomes

HK(k) = ~vF









0 kx − iky

kx + iky 0









, HK′(k) = −~vF









0 kx + iky

kx − iky 0









, (A.16)

where ~vF =
√

3at/2 ∼ 5.4 eV·Å in graphene. The degenerate energy eigenvalues at the two K and

K ′ valleys are given by

E(k) = ±~vF |k|, (A.17)

resulting in dispersion relations for the π∗ conduction and the π valence bands.

In the low-energy theory the expansion up to linear order in momentum results in an isotropic

band structure shown in Eq. (A.17), since the lattice structure is smeared out at long wavelengths.

However, when the wavelengths of excitations are on the order of atomic spacing, higher order terms

become appreciable. The next order term leads to trigonal warping, resulting in a non-linear energy

dispersion [68]. The band structure to quadratic order is anisotropic, and the three-fold symmetry

of the graphene lattice becomes apparent. In this regime, excitations vary on the scale of the lattice

constant, so the atomic structure of the lattice emerges in the band structure calculation.

The linear dispersion of graphene found in Eq. (A.17) is unusual, since the low-energy theory for

most semiconductors is described by a parabolic dispersion. In fact when Eq. (A.17) is written in

term of Pauli matrices,

HK(k) = ~vF k · σ

HK′(k) = −~vF k · σ∗, (A.18)

it becomes apparent that Eq. (A.18) is a massless Dirac equation in (2+1) dimensions. Therefore, it

is appropriate to describe the low-energy quasiparticles in graphene by massless Dirac fermions. The

Fermi velocity vF ∼ 106 m/s plays the role of the speed of light in the conventional Dirac equation.

The eigenstates of Eq. (A.17) at each Fermi point are described by two component spinors

φ±K =
1√
2









1

±eiθk









, φ±K′ =
1√
2









1

∓e−iθk









, (A.19)
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where θk = tan−1(kx/ky), and the ± denotes the conduction and valence bands, respectively. The

components of the spinor give the relative amplitudes at the A and B sublattices. The spinor degree

of freedom in graphene is referred to as pseudospin, in order to differentiate it from the real electron

spin characterized by 2×2 Pauli matrices in QED. This distinction is important since pseudospin in

graphene does not transform the same way as real spin. For example, in the presence of an magnetic

field, unlike real electron spin, the pseudospin is not flipped. The degree of freedom associated with

the two valleys is known as isospin. A magnetic field does flip isospin, since the two valley are related

by time-reversal symmetry. More details about time-reversal symmetry can be found in Appendix

B.

A.3 Effective-Mass Description

In this section we describe the effective-mass or k · p approximation. A good introduction to this

approximation can be found in Chapter 16 of Ref. [51]. The k ·p model is a low-energy theory, and

it produces equivalent results to ones obtained from the linearized tight-binding model for graphene.

The effective-mass method, however, is more general than the tight-binding model, since it is more

straightforward to include perturbations in the k · p model such as external potentials that break

the lattice translation symmetry or electron-electron interactions.

The effective-mass theory in graphene in the presence of an external potential is described by

DiVincenzo and Mele [26]. In this appendix we provide details of the derivation of the unperturbed

effective-mass Hamiltonian obtained in Ref. [26]. In graphene, the k · p expansion describes the

low-energy theory around the K and K ′ Fermi points of the Brillouin zone. In the effective-mass

theory the Bloch states at momentum q = K + k are expanded around the Brillouin zone corners,

such that |k| ≪ |K|.

Starting from the definition of a Bloch wavefunction, the periodic part of the Bloch function
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uq(r) is expanded around K. The expansion is given by

ψ(K + k, r) = ei(K+k)·ruK+k(r) ≈ eik·r
[

eiK·ruK(r) + eiK·rk · ∇Ku|K(r) +O(k2)
]

(A.20)

≈ eik·rψ(K, r) +O(k).

Therefore, the Bloch wavefunction to first non-vanishing order in k is approximated by

ψ(K + k, r) ≈ eik·rψ(K, r). (A.21)

Since the honeycomb lattice has two atomic A and B sites per unit cell, there are two degenerate

Bloch eigenstates. Therefore, the graphene wavefunction in the k · p approximation is given by

Ψ(q, r) =
∑

i=A,B

eik·rfi(k)ψi(K, r), (A.22)

where fi(k)’s are slowly varying envelope functions that describe the long distance properties of the

system. The rapidly oscillating exact Bloch functions ψi(K, r)’s resolve the lattice structure on the

scale of atomic spacing. The Schrödinger equation for the Bloch Hamiltonian is given by

[

− ~
2∇2

2m
+ U(r)

]

Ψ(q, r) = E(q)Ψ(q, r), (A.23)

where U(r) is a lattice periodic potential. Inserting the effective-mass Bloch functions given in

Eq. (A.22) into the the Schrödinger and acting with ∇2 operator, Eq. (A.23) becomes

∑

i=A,B

eik·rfi(k)
{

− ~
2

2m

[

∇2 + 2ik · ∇ − k2
]

+ U(r)
}

ψi(K, r)

= E(k)
∑

i=A,B

eik·rfi(k)ψi(K, r). (A.24)

Since the Fermi energy EF = 0 lies at the K point, we set E(K) = 0. Keeping terms to linear order

in k and inserting p = −i~∇, the effective-mass equation becomes

~

m
k ·

∑

i=A,B

fi(k)pψi(K, r) = E(k)
∑

i=A,B

fi(k)ψi(K, r). (A.25)

The equations of motion for the envelope functions at each sublattice site are obtained by mul-

tiplying both sides of Eq. (A.25) by ψj(K, r), integrating over r, and using the orthonormality
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conditions of the Bloch wavefunctions. The effective-mass equations for fi(k)’s are given by

~

m
k ·

∑

i=A,B

fi(k)

∫

drψ∗
j (K, r)pψi(K, r) = E(k)fj(k). (A.26)

Defining pij ≡
∫

drψ∗
i (K, r)pψj(K, r) and writing Eq. (A.26) in matrix form we obtain

~

m
k ·









pAA pAB

pBA pBB

















fA(k)

fB(k)









= E(k)









fA(k)

fB(k)









. (A.27)

Using the effective-mass Hamiltonian of Eq. (A.27) as the starting point, we set out to reproduce

the low-energy results derived from the linearized tight-binding model described in Appendix A.2.

The matrix elements pij are evaluated by introducing Wannier functions ϕ(r − Ri) localized on

atomic sites Ri’s in the tight-binding scheme of the graphene lattice [51]. A Bloch function in terms

of a Wannier function is given by

ψi(k, r) =
1√
N

∑

Rα

eik·Rαϕi(r−Rα). (A.28)

Rewriting pij ’s in terms of the localized Wannier functions and expressing the momentum operation

as a commutator of the Bloch Hamiltonian with the position operator, pij becomes

pij =
1

N

∑

Rα,Rβ

eiK·(Rβ−Rα)

∫

drϕ∗
i (r−Rα)

( im

~
[H, r]

)

ϕj(r−Rβ)

=
1

N

im

~

∑

Rα,Rβ

tije
iK·(Rβ−Rα)(Rβ −Rα), (A.29)

where tij =
∫

drϕ∗
i (r−Rα)Hϕj(r−Rβ) is the transfer integral. Including only the nearest neighbor

hopping, tij is given by

tij =















−t, β=α±1

0, otherwise

(A.30)

Therefore, only the differences between lattice vectors RB −RA = τj , where τj ’s are the nearest

neighbor bond vectors, are included in Eq. (A.29). Since the nearest neighbor bonds connect A and

B sites, the diagonal matrix elements are pAA = pBB = 0. The sum on R’s cancels the factor of N ,

and we are left with a sum over the triad of nearest neighbors

pAB = −t im
~

∑

j=0,±1

eiK·τj
τj =

m

~

√
3ta

2
(x̂− iŷ), (A.31)
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and pBA = p∗
AB . Combining the above results, the effective-mass Hamiltonian given in Eq. (A.27)

near a K point becomes

~vF









0 kx − iky

kx + iky 0

















fA(k)

fB(k)









= E(k)









fA(k)

fB(k)









. (A.32)

Exactly the same procedure is followed to obtain the effective-mass Hamiltonian around the K ′

point. The resulting the effective-mass Hamiltonian near the two Fermi points is given by

Hα(k) = ~vF

[

αkxσx + kyσy

]

, (A.33)

where α = +1(−1) for the K(K ′) valleys. The effective-mass Hamiltonian obtained in Eq. (A.33)

is equivalent to the one given in Eq. (A.16) from the linearized tight-binding model. Note, Ref. [26]

states that one can also derive Eq. (A.33) from Eq. (A.27) using group theoretical arguments.

A.4 From Graphene to Nanotubes

A carbon nanotube is formed when a two-dimensional graphene sheet is rolled into a hollow cylinder,

as shown in Fig. A.4, such that two equivalent sublattice sites overlap. The circumferential vector

is given by

C = na1 +ma2, (A.34)

where n,m ∈ Z. A tube is often labeled by indices (n,m), since these two integers fully define the

tube’s geometry and electronic properties, as will be shown in this section.

Two parameters that specify a tube are the radius R and the chiral angle θ, which can be obtained

from n and m. The radius of a tube is given by

R =
|C|
2π

=
a

2π

√

n2 + nm+m2. (A.35)

We define the chiral angle θ as the angle between the lattice coordinate x and the tube coordinate

x‖ which points along the tube axis as shown in Fig. A.4. The lattice and nanotube coordinate
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Figure A.4: A two-dimensional honeycomb lattice rolled into a carbon nanotube. A nanotube

is characterized by a vector C = na1 + ma2 that wraps around the tube circumference. The

circumferential vectors for high-symmetry achiral armchair (n, n) and zigzag (n, 0) tubes are shown.

The chiral angle θ is defined as the angle between the lattice coordinate x and the tube axis x‖.

systems are related by the following Euler rotation








x̂‖

x̂⊥









=









cos θ sin θ

− sin θ cos θ

















x̂

ŷ









, (A.36)

where x̂‖ is along the tube axis, and x̂⊥ is along the tube circumference.

The chiral angle is expressed in terms of the tube indices (n,m) by applying the coordinate

transformation given in Eq. (A.36) to the wrapping vector C. The components of circumferential

vector in the tube coordinate system are given by

C‖ =
a

2

[

cos θ(n−m) +
√

3 sin θ(n+m)
]

C⊥ =
a

2

[

− sin θ(n−m) +
√

3 cos θ(n+m)
]

. (A.37)

Setting C‖ = 0 and C⊥ = |C|, the chiral angle is obtained as a function of tube’s indices n and m:

θ = tan−1

(

m− n√
3(n+m)

)

. (A.38)
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There are infinite number of ways to connect two equivalent sublattice sites and form a nanotube.

However, not all tubes labeled by (n,m) or the chiral angle θ are distinct. Due to the three-fold

rotational symmetry of the honeycomb lattice, all tubes under the transformation θ → θ+ 2π/3 are

equivalent. This holds for a general honeycomb lattice, where the A and B sites are distinct, such

as in boron nitride. For unperturbed graphene, the A and B sites are the same since all atoms are

carbon, and the lattice is invariant under rotations by π/3. Therefore, for carbon nanotubes one

only needs to consider chiral angles −π/6 ≤ θ ≤ π/6.

Tubes with indices (n, n), or θ = 0, are known as armchair tubes. Bonds run parallel to the tube

circumference in armchair tubes. Tubes labeled (n, 0), or θ = π/6, have bonds pointing perpendicular

to the tube circumference and are known as zigzag tubes. An example of such tubes is depicted

in Fig. A.5. Armchair and zigzag nanotubes are achiral high-symmetry tubes, since they have a

plane of symmetry through which the mirror image of the tube can be mapped to itself. All other

nanotubes are chiral tubes, since their mirror image cannot be superimposed to the original tube.

An example of a chiral nanotube is shown in Fig. A.5.

The band structure of single-walled carbon nanotubes can be readily obtained from graphene,

when the curvature of the nanotube is neglected. There are two simple steps imposed to the graphene

Hamiltonian: rotate the coordinate system to point along the tube’s axial and circumferential di-

rections, and apply periodic boundary conditions around the tube’s circumference. The azimuthal

crystal momentum is quantized in carbon nanotubes, resulting in quasi one-dimensional structures.

The reduction in dimensionality leads to novel physical properties particular to nanotubes, as often

observed in condensed matter systems.

To insure that the Bloch function ψ(k, r) = eik·ru(k, r) is single-valued around the tube cir-

cumference, a periodic boundary condition ψ(k, r + C) = ψ(k, r) is imposed. Since C is a lattice

vector, the Bloch theorem is applied to the periodic part of the Bloch function u(k, r+C) = u(k, r),

resulting in ψ(k, r+C) = eik·Cψ(k, r). Therefore, in order for the Bloch function to be single-valued
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(a) (b) (c)

Figure A.5: Three types of carbon nanotubes: (a) achiral zigzag tube, (b) achiral armchair tube,

(c) chiral tube.

exp(ik ·C) = 1 must be satisfied. The quantization condition on the crystal momentum is given by

k ·C = 2πN, N ∈ Z. (A.39)

Since C point along the tube circumference, Eq. (A.39) imposes a condition of the azimuthal crystal

momentum. Therefore, the continuous spectrum of the two-dimensional graphene shown in Fig. 4.2

is transformed into lines of allowed momenta along the azimuthal direction. Recall, graphene is a

semimetal since the conduction and valence bands touch at the six Brillouin zone corner points.

For nanotubes, on the other hand, in order for a K point to be an allowed crystal momentum

mod(n − m, 3) = 0 must satisfied, as a result of the quantization condition in Eq. (A.39), since

K ·C = 2π/3(n −m). When mod(n −m, 3) = 0 the bands meet at the Fermi point, and the tube
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is metallic, as for the case of two-dimensional graphene. When mod(n −m, 3) = ±1, on the other

hand, the Fermi point is not an allowed momentum, and the tube is semiconducting. Therefore, the

geometry of a tube determines its conducting properties.

Defining ν = mod(n − m, 3), where ν = {0,±1}, we note that 1/3 of nanotubes are metallic,

and the other 2/3 are semiconducting. All armchair nanotubes are metallic, since ν = 0 for (n, n)

tubes. One third of zigzag (n, 0) tubes are metallic, since ν = 0 when n is divisible by 3. An

example of azimuthal momenta lines for a armchair (5, 5) tube are shown in Fig. A.6(a) and for a

semiconducting zigzag (8, 0) tube in Fig. A.6(b).

KοK'ο

(5,5)

(a)

KοK'ο

(8,0)

(b)

Figure A.6: Slices of allowed azimuthal crystal momenta through the first Brillouin zone are shown

for two achiral tubes. The left figure (a) shows momenta lines for a (5, 5) armchair tube. This tube

is metallic since the lines cross the Fermi points. In fact, all armchair tubes (n, n) are metallic,

since they satisfy the condition mod(n −m, 3) = 0. The right figure (b) depicts allowed azimuthal

momenta lines for a (8, 0) zigzag tube. The lines miss the Fermi points since mod(n −m, 3) 6= 0,

resulting in a semiconducting tube.
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The eigenstates of the effective Hamiltonian for graphene are envelope functions, given in Eq. (A.32).

Therefore, we need to impose the periodic boundary condition on the envelope function, rather than

the Bloch state, in order to obtain the tube Hamiltonian. The wave function in the k ·p approxima-

tion is defined by Ψ(k, r) ≈∑i fi(r)ψi(K, r), where fi(r)’s are slowly varying envelope functions, and

ψi(K, r)’s are exact Bloch states at the K point. The physical wavefunction Ψ(k, r) = Ψ(k, r + C)

must be single-valued around the azimuthal direction. Applying the results obtained in Eq. (A.39)

for the periodic boundary condition imposed on the Bloch function, the envelope functions at the

K and K ′ points must satisfy

fi(r + C)eiαK·C = fi(r). (A.40)

For an unperturbed Hamiltonian the envelope functions f(r) ∝ eik·r are plane waves, resulting in

a periodic boundary condition ei(αK+k)·C = 1 for momentum k near the two valleys. Inserting the

definition of ν and using |C| = 2πR, the condition on the azimuthal momentum in carbon nanotubes

near the Fermi points is given by

k⊥ =
1

R

(

N − αν

3

)

, N ∈ Z. (A.41)

To obtain the nanotube Hamiltonian, we apply the coordinate transformation given in Eq. (A.36)

to kx and ky in the graphene Hamiltonian given in Eq. (A.16), and insert the quantized azimuthal

momentum k⊥ derived in Eq. (A.41). Setting k = k‖, the nanotube Hamiltonian near the K point

is given by

HK(k) =
~vF

R









0
[

kR− i∆
]

e−iθ

[

kR+ i∆
]

eiθ 0









. (A.42)

Similarly, the nanotube Hamiltonian near the K ′ point is given by

HK′(k) = −~vF

R









0
[

kR− i∆
]

eiθ

[

kR+ i∆
]

e−iθ 0









, (A.43)

where ∆ ≡ (N − ν/3). Note, since N ∈ Z, one can take N → −N and define the same gap

parameter ∆ for the two valleys. The nanotube Hamiltonian at the two Fermi points can be written
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in a compact form:

Hα(k) = α~vF e
−iασzθ/2

[

kσx + ∆σy

]

eiασzθ/2. (A.44)

The energy eigenstates for the conduction and valence bands are degenerate at the K and K ′

points. Diagonalizing Eq. (A.44) the energy dispersion relations for the conduction and valence

bands are given by

Ec,v
α (k) = ±~vF

√

k2 + ∆2. (A.45)

A plot of the energy bands for a metallic tube is shown in Fig. A.7(a) and for a semiconducting tube

in Fig. A.7(b). The conduction and valence bands touch at the Fermi point for a metallic tube and

exhibit a gap for a semiconducting tube.
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Figure A.7: Energy dispersions given in Eq. (A.45) as a function of axial momentum in dimensionless

units: (a) a plot of the energy bands for a metallic nanotube (ν = 0), where the N = ±1 bands are

degenerate, (b) a plot of the energy bands for a semiconducting tube (ν = 1). A semiconducting

tube exhibits a gap between the lowest energy bands at k = 0.

For semiconducting tubes ν = ±1, the smallest energy gap between the N = 0 bands at the

Fermi point (k = 0) is given by

Eg =
2~vF

3R
. (A.46)
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The energy gaps for typical nanotubes of radii range of R ∼ 0.4−2 nm are Eg ∼ 0.1−1 eV. Therefore,

the band gap of semiconducting tubes can be detected room temperature since kT∼ 25meV. For

small radius nanotubes, the tube’s curvature cannot be neglected. The curvature effects modify

the energy scaling as 1/R2 and open a gap in metallic tubes, except for armchair tubes where the

curvature gap is zero by symmetry [40].
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Appendix B

Time-Reversal Symmetry

In this appendix we describe the role of time-reversal symmetry in graphene and carbon nanotubes.

We also draw a distinction between two classes of perturbations: ones that preserve time-reversal

symmetry and ones that break it.

The degeneracy of the energy spectrum in graphene and nanotubes near the two inequivalent

Fermi points is protected by time-reversal symmetry. Time-reversal exchanges the K and K ′ points

flipping the valley polarization, but not the A and B sites, thus, leaving pseudospin polarization

unchanged in graphene and nanotubes. Apply the time-reversal operator on the low-energy Hamil-

tonian given in Eq. (A.18), we find that the Hamiltonian is preserved under the transformations of

reversing electron motion q→ −q, complex conjugation, and exchanging the K and K ′ valleys:

Hα(q) = H∗
−α(−q), (B.1)

where α = ±1 refers to the K(K ′) Fermi points. This holds for both graphene Eq. (A.33) and

nanotube Eq. (A.44) Hamiltonians.

The time-reversal operator acting on the total 4× 4 Hamiltonian is given by

T = (τx ⊗ Iσ)C, (B.2)

where C is the complex conjugation operator. The unperturbed nanotube Hamiltonian in Eq. (A.44)
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in 4× 4 matrix form is given by

Ho =
~vF

R

(

τz ⊗
[

− iR∂‖σx + ∆σy

]

cos θ + Iτ ⊗
[

− iR∂‖σy −∆σx

]

sin θ

)

, (B.3)

where θ is the tube’s chiral angle. Applying the unitary transformation of Eq. (B.2) and using

C2 = 1, one can show that the unperturbed Hamiltonian is invariant under time-reversal:

T −1HoT = Ho. (B.4)

A scalar potential cannot break time-reversal, since it can only describe static perturbations.

The most general form of a vector potential encountered in this thesis can be written as

H1 = V
(

τz ⊗ σy cos θ − Iτ ⊗ σz sin θ
)

+ V ′eiµτz/2τxe
−iµτz/2 ⊗ σx. (B.5)

It is straightforward to show that the Hamiltonian given in Eq. (B.5) preserves time-reversal sym-

metry:

T −1H1T = H1. (B.6)

An electromagnetic vector potential is included in the theory by setting −i∇ → −i∇− eA/~c. We

obtain

H(A) = −
(

A‖ cos θ +A⊥ sin θ
)

τz ⊗ σx −
(

A‖ sin θ +A⊥ cos θ
)

Iτ ⊗ σy. (B.7)

Under time-reversal, the electromagnetic vector potential given in Eq. (B.7) transforms as

T −1H(A)T = H(−A), (B.8)

which clearly breaks time-reversal symmetry.

Consider the Aharonov-Bohm effect due to a magnetic field applied parallel to the tube axis

[70]. In the presence of an electromagnetic field, the momentum operators transform as −i∇ →

−i∇−eA/~c. Therefore, the wavefunction acquires an extra phase due to the gauge field. A magnetic

field along the tube axis results in a vector potential along the tube circumference A = φ/|C|x̂⊥,

where φ = πR2B is the magnetic flux. The resulting periodic boundary condition around the tube
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circumference near the K and K ′ points becomes

exp
(

iαK ·C + i(q⊥ − 2πϕ)|C|
)

= 1, (B.9)

where ϕ = φ/φo, and φo = ch/e is the flux quantum.

The tube Hamiltonian given in Eq. (A.44) is modified in a presence of a magnetic field along the

tube axis and becomes

Hα(k) = ~vF e
−iασzθ/2

[

αkσx + (∆ + αϕ)σy

]

eiασzθ/2. (B.10)

The energy eigenvalues of Eq. (B.10) are given by

Ec,v
α (k) = ±~vF

√

k2 + (∆ + αϕ)2 (B.11)

Since a magnetic field breaks time-reversal symmetry, the degeneracy between the two valleys is

lifted.

The energy gap Eg, energy difference between the lowest conduction and valence bands at k = 0,

is plotted in Fig. B.1 as a function of ϕ for various values of ν. Since ∆ = 0 for metallic tubes

(ν = 0), the energy gap is the same at the two valleys, but a gap, which is maximum at ϕ = 1/2,

is opened. In semiconducting tubes (ν = ±1) the energy degeneracy at the two Fermi points is

lifted for finite magnetic flux. As seen in the middle panel of Fig. B.1, for example, the energy gap

is different at the K and K ′ point for a finite ϕ. In fact, for some values of ϕ, there is no gap at

the K point, but a finite gap at the K ′ point. The vise versa is also observed for other values of

the magnetic flux. This effect is interesting when considering intervalley scattering, since the band

structure is different at the two valleys near the Fermi energy for a finite magnetic field.
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Figure B.1: The energy gap Eg scaled by a factor of ~vF /R as a function of magnetic flux ϕ. The

three panel show plots for metallic tubes (ν = 0) and semiconducting tubes (ν = ±1). The energy

gap at the two K and K ′ valleys is indicated. The plots repeat periodically with period of ϕ = 1.
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Appendix C

Gauge Transformation

In Chapters 3 and 5 we claimed that a vector potential that points along the electron’s propagation

direction can be gauged away. In this appendix, we provide a proof for that statement. This concept

was previously discussed in the context of a fermionic one-dimensional Casimir problem by Sundberg

and Jaffe [75].

Generally, a system is gauge invariant when a gauge transformation imposed a wavefunction

or an operator leaves the physical measurable quantities unchanged. For example, multiplying a

wavefunction by an overall phase does not change the physics. Under such a transformation, a state

ket transforms as

|α̃〉 = eiβ |α〉. (C.1)

This is a unitary transformation since U−1 = U†, where U = eiβ . A state expectation value

transforms under a unitary transformation in the following manner

Õ = UOU†, (C.2)

such that the state expectation values are left unchanged

〈α|O|α〉 = 〈α̃|Õ|α̃〉. (C.3)
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For a one-dimensional Dirac Hamiltonian consider a potential that points along the electron’s

propagation direction:

H =
[

− i∂x + V (x)
]

σx, (C.4)

where ~ = c = 1. Inserting the Hamiltonian into the Schrödinger equation and solving for ψ(x) we

find

[

− i∂x + V (x)
]

σxψ(x) = Eψ(x)

ψ(x) = e−i
∫

x

o
V (x′)dx′

eiEσxxψ(0)

ψ(x) = e−i
∫

x

o
V (x′)dx′

φ(x), (C.5)

where φ(x) is the solution of the Schrödinger equation for V (x) = 0. The analysis in Eq. (C.5) shows

that the dependence of the wavefunction on V (x) enters the solution as an overall phase. Therefore,

measurable quantities cannot depend the potential V (x), since expectations values are unchanged

as shown in Eq. (C.3).

The potential dependent phase can be removed by the following gauge transformation:

ψ̃(x) = Uψ(x) = ei
∫

x

o
V (x′)dx′

ψ(x). (C.6)

Therefore, the Hamiltonian transforms as

H̃ = UHU† = ei
∫

x

o
V (x′)dx′

[

− i∂x + V (x)
]

σxe
−i
∫

x

o
V (x′)dx′

= −i∂xσx = Ho, (C.7)

where Ho is the unperturbed Hamiltonian when V (x) = 0. Therefore, the potential is gauged away

for any form of V (x). This transformation is only valid for a vector potential that point along the

propagation direction, because σx does not commute with matrices which lie in the yz plane. In

other words, if the potential is multiplied by the same matrix as the operator ∂x, it does not change

the physics of the system and can be removed by a gauge transformation [75].
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Appendix D

Scattering Matrices

In this appendix we provide details of the scattering matrices and derive the expressions for combined

scattering coefficients seen throughout this thesis. The scattering matrices for multiple scatterers are

not additive, due to multiple reflections of states between the scatterers. Since a non-zero Casimir

interaction is obtained in the presence of two or more scatterers, the non additivity of scattering

matrices explains why Casimir forces are not pairwise-additive.

Fig. D.1 illustrates two scatterers and right-moving and left-moving state amplitudes, α’s and

β’s, respectively. Although, the scatterers in Fig. D.1 are depicted as square barriers, the following

analysis is shape-independent. The scattering matrices of barriers one and two are S1 and S2,

respectively. The combined scattering matrix of the two-barrier system is represented as

ST = S1 ⊗ S2. (D.1)

For each individual scatterer, the scattering matrix is defined in terms of reflection and transmis-

sion coefficients connecting incoming and outgoing amplitudes. For the first barrier the scattering

matrix is given by








α2

β1









= S1









α1

β2









=









t1 r′1

r1 t′1

















α1

β2









, (D.2)
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Figure D.1: Two scatterers described by scattering matrices S1 and S2. The right-moving amplitudes

are labeled by α’s, and the left-moving amplitudes are labeled by β’s.

where r1 and r′1 are reflection coefficients due to states incoming from the left and the right, respec-

tively. The same holds for t1 and t′1, which are the one-barrier transmission coefficients. Generally,

the amplitudes α’s and β’s are n × 1 column vectors, and each scattering coefficient forms a n × n

block in the 2 × 2 scattering matrix S1 given in Eq. (D.2). In Chapter 3, we show that the single-

valley scattering problem results in 1 × 1 amplitudes and scattering coefficients since there is one

scattering channel, referring to one corner point of the tube’s Brillouin zone.

In Chapter 5, in addition to intravalley scattering, we study potentials which also scatter states

between inequivalent Fermi points. The two-valley problem results in 2 × 1 amplitudes and 2 × 2

scattering coefficients due to propagating states from twoK andK ′ valleys. Therefore, the scattering

matrix in the two-valley problem is given by

























αo
K

αo
K′

βo
K

βo
K′

























=

























tKK tK′K r′KK r′K′K

tKK′ tK′K′ r′KK′ r′K′K′

rKK rK′K t′KK t′K′K

rKK′ rK′K′ t′KK′ t′K′K′

















































αi
K

αi
K′

βi
K

βi
K′

























, (D.3)
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where αi and βi are incoming states from the left and the right, respectively, and αo and βo are

the corresponding outgoing states (see Eq. (5.29)). The subscripts on the amplitudes correspond to

the branch from which the electron is propagating. The scattering coefficients label reflection and

transmission amplitudes within the same valley and between unique valleys. For example, rKK′ is

a backscattering amplitude of a right-moving state at the K branch scattered into a left-moving K ′

branch.

Similarly to S1 given in Eq. (D.2), the scattering matrix S2 for the second scatterer in Fig. D.1

is given by








α3

β2









= S2









α2

β3









=









t2 r′2

r2 t′2

















α2

β3









. (D.4)

We proceed to solve the combined two-barrier matrix for a general scattering process. The combined

scattering matrix ST connects incoming and outgoing states outside the two barriers (Regions I and

III in Fig. D.1). The total scattering matrix is given by









α3

β1









= ST









α1

β3









=









T R′

R T ′

















α1

β3









, (D.5)

where R’s and T ’s are the combined reflection and transmission coefficients, respectively.

It is straightforward to calculate the scattering coefficients of ST in terms of the individual

coefficients given in S1 and S2. To illustrate one such calculation, starting from Eq. (D.2) and

Eq. (D.4) we find

α2 = t1α1 + r′1β2, (D.6)

and

β2 = r2α2 + t′2β3. (D.7)

Plugging Eq. (D.6) into Eq. (D.7) we obtain

β2 = r2(t1α1 + r′1β2) + t′2β3. (D.8)
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Solving Eq. (D.8) for β2, the equation becomes

β2 = (I− r2r′1)−1(r2t1α1 + t′2β3). (D.9)

From Eq. (D.2) we also have

β1 = r1α1 + t′1β2. (D.10)

Plugging Eq. (D.9) into Eq. (D.10) we find

β1 = [r1 + t′1(I− r2r′1)−1r2t1]α1 + t′1(I− r2r′1)−1t′2β3. (D.11)

The prefactors in Eq. (D.11) are related to the coefficients of ST since from Eq. (D.5) we obtain

β1 = Rα1 + T ′β3. (D.12)

By matching the prefactors of α1 and β3 in Eq. (D.11) and Eq. (D.12) we directly obtain R and T ′.

The other two scattering coefficients are calculated in a similar manner. This procedure results in

the two-scatterer combined S-matrix:

ST =









t2(I− r′1r2)−1t1 r′2 + t2(I− r′1r2)−1r′1t
′
2

r1 + t′1(I− r2r′1)−1r2t1 t′1(I− r2r′1)−1t′2









. (D.13)

A less detailed derivation can be found in Datta [25].

When calculating Casimir forces, the scattering coefficients between the two boundaries are also

evaluated, since they represent an inner pressure pushing the barriers apart. The “inner” scattering

matrix Si is found by relating the amplitudes α2 and β2 in Region II of Fig. D.1 to the outer incoming

states α1 and β3. Si is given by








α2

β2









= Si









α1

β3









=









Ti R′
i

Ri T ′
i

















α1

β3









. (D.14)

The inner scattering coefficients are calculated in a similar manner as outlined in Eqns. (D.6)-(D.12).

The calculation of Si results in

Si =









t1 + r′1(I− r2r′1)−1r2t1 r′1(I− r2r′1)−1t′2

r2(I− r′1r2)−1t1 t′2 + r2(I− r′1r2)−1r′1t
′
2









. (D.15)
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A similar procedure can be implemented to obtain combined scattering matrices for multiple number

of barriers. Eq. (D.13) and Eq. (D.15) are used throughout this thesis to obtain scattering coefficients

in order to calculate Casimir forces.
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Appendix E

Fabry-Perot Resonances

A recurring concept in this thesis is the quantization of modes between two hard-wall scatterers,

relevant to an inner pressure which pushes the barriers apart. These are resonant states that

are also observed in Fabry-Perot cavities. In this appendix we show how to obtain quantization

conditions on the electron momentum from resonances appearing in the inner transmission and

reflection coefficients. An example of such an equation in seen in Eq. (3.20). A similar derivation to

the one that follows can be found in Ref. [47].

When applying the force operator, or equivalently, the stress tensor approach in one-dimension,

the inner pressure between two barriers is proportional to the sum over the magnitudes of inner

transmission Ti’s and reflection Ri’s coefficients. For example, the inner transmission coefficient

between two barriers in the single-valley scattering problem (Appendix D) is given by

Ti =
t1

1− r′1r2
, (E.1)

where tj and rj are transmission and reflection coefficients, respectively, for barrier j. Generally, the

scattering coefficients are complex and can be parametrized by their magnitude and phase. Using

the conservation of total probability |t|2 + |r2| = 1, the magnitude of Ti can be written as

|Ti|2 =
τ2

|1− (1− τ2)eiµ|2 , (E.2)
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where τ is the magnitude of the transmission coefficient for one barrier, and µ is the difference of the

reflection coefficients’ phases of the two barriers. For example, in the one-valley scattering problem

µ = π + 2kz + δφ obtained from Eq. (3.11).

In the infinite potential strength limit the barrier becomes impenetrable, and τ → 0 implying

full reflection. The transmission coefficient becomes

lim
τ→0
|Ti|2 = lim

τ→0

τ2

1 + (1− τ2)2 − 2(1− τ2) cosµ
. (E.3)

It is clear that Eq. (E.3) is zero unless the denominator is zero. Therefore, there is a resonance in

the τ → 0 limit when cosµ = 1, implying µn = 2πn, n ∈ Z. Expanding around the resonant values

cosµ ≃ 1− (µ− µn)2/2 we obtain

lim
τ→0
|Ti|2 ≃ lim

τ→0

∞
∑

n=0

τ2

τ4 + (1− τ2)(µ− µn)2
= lim

τ→0

∞
∑

n=0

1√
1− τ2

τ2

√
1−τ2

τ4

1−τ2 + (µ− µn)2
. (E.4)

Defining ǫ ≡ τ2/
√

1− τ2 and using the definition of the Dirac delta function, the magnitude of the

transmission coefficient becomes

lim
τ→0
|Ti|2 = lim

ǫ→0

∞
∑

n=0

ǫ

ǫ2 + (µ− µn)2
= π

∞
∑

n=0

δ(µ− µn). (E.5)

In order to recover Eq. (3.20), we express Eq. (E.5) in terms of the quantized modes kn. Using

the expression for µ for the two barrier system in the single-valley problem we find

δ(µ− µn) = δ(2z[k − kn]) =
1

2z
δ(k − kn), (E.6)

where we have used a property of the Dirac delta function given by

δ(ax) =
δ(x)

|a| . (E.7)
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Calculating the quantization condition for k we find

cosµ = 1

cos(π + 2kz + δφ) = 1

cos(2kz + δφ) = −1

2knz + δφ = π(2n+ 1)

kn =
π

z

[

n+
1

2
(1− δφ/π)

]

. (E.8)

Combining the above results, the resonance condition in Eq. (E.3) becomes

lim
τ→0
|Ti|2 =

π

2z

∞
∑

n=0

δ(k − kn), (E.9)

where kn is given on the last line of Eq. (E.8). Note, the same resonance condition applies to the

inner reflection coefficient (limτ→0 |Ri|2). Eq. (E.9) agrees exactly with Eq. (3.20) and Eq. (3.21).
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Appendix F

Dirac Boundary Conditions

In this appendix we prove that the impenetrable wall limit of a square barrier for the Dirac equa-

tion results in a vanishing probability current at the boundary. From this analysis we recover the

quantization condition between two hard-wall boundaries obtained in Eq. (3.21) for the single-valley

scattering problem presented in Chapter 3. For the one-dimensional massless Dirac Hamiltonian

Ho = −iσx∂x, the particle current is given by

j(x) = Ψ†(x)σxΨ(x), (F.1)

where ΨT = (Ψ1,Ψ2) is a two-component spinor.

The vanishing current at a boundary located at x̄ results in the following constraint

j(x̄) = Ψ†
1(x̄)Ψ2(x̄) + Ψ†

2(x̄)Ψ1(x̄) = 0. (F.2)

There are numerous ways to satisfy Eq. (F.2). We show that the sharp limit of a spinor polarized

square barrier potential leads to a boundary condition which assures that the current vanishes at

the boundary. We also discuss a special case of a standard bag boundary condition for the Dirac

equation introduced in the “MIT bag model” [22].

To obtain a sharp limit of a square barrier we start with the transfer matrix Ψ(x2) = TΨ(x1),

which propagates the wavefunction across the barrier. The single-valley transfer matrix derived in
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Eq. (3.10) is given by

T =









cos(qW ) + V sinφ sin(qW )/q −i sin(qW )(k − V cosφ)/q

−i sin(qW )(k + V cosφ)/q cos(qW )− V sinφ sin(qW )/q









, (F.3)

where q =
√
k2 − V 2, and φ is the spinor polarization of the scattering potential. An impenetrable

wall corresponds to zero width and infinite strength limit. We first take W → 0 keeping Γ = VW

constant. In the zero width limit q ∼ iV , and the transfer matrix becomes

T =









cosh Γ + sinφ sinh Γ i cosφ sinh Γ

−i cosφ sinh Γ coshΓ− sinφ sinhΓ









. (F.4)

Eq. (F.4) is interpreted as the transfer matrix connecting wavefunction on the right and left sides of

a boundary, Ψ(x̄+) = TΨ(x̄−), located at x̄. Taking the infinite potential strength limit Γ→∞ of

Eq. (F.4) we obtain

T = eΓ









1 + sinφ i cosφ

−i cosφ 1− sinφ









+O(e−Γ). (F.5)

In order for Ψ(x̄+) to be finite, we set TΨ(x̄−) = 0 to O(e−Γ). Likewise, the inverse is true,

resulting in T−1Ψ(x̄−) = 0. Using these constraints, we obtain the boundary condition for an

impenetrable wall with spinor polarization φ:

M(φ)Ψ(x̄−) = Ψ(x̄−)

−M(φ)Ψ(x̄+) = Ψ(x̄+), (F.6)

where

M(φ) = −σz sinφ+ σy cosφ. (F.7)

Solving Eq. (F.6) for Ψ1 and Ψ2 in terms of the matrix elements of M and plugging the results back

into Eq. (F.2), we find that the sharp barrier limit imposes a vanishing current at the boundary.

Next, we obtain a quantization condition on the momentum of propagating states between two

impenetrable boundaries separated by distance z, by imposing boundary conditions given in Eq. (F.6)
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Figure F.1: An illustration of two boundaries in the sharp square barrier limit (W → 0, Γ = VW →

∞) separated by distance z. Each boundary is labeled by its spinor polarization φ. The lines between

the boundaries represent an infinite number of quantized states. The unit vectors ±x̂ are normal to

the surfaces.

on the two surfaces. A propagating state is a linear combination of right and left moving states

Ψ(x) = αeikx









1

−1









+ βe−ikx









1

1









, (F.8)

where α and β are scattering coefficients (see Chapter 3). The boundary conditions at the two

surfaced, shown in Fig. F.1, are given by

M(φ1)Ψ(0+) = Ψ(0+)

−M(φ2)Ψ(z−) = Ψ(z−), (F.9)

where Ψ(0+) is the wavefunction at the right side of the first boundary at x̄ = 0, and Ψ(z−) is the

wavefunction at the left side of the second boundary at x̄ = z. Plugging Eq. (F.8) into Eq. (F.9) we

get

α
(

ieiφ1 + 1
)

= β
(

ie−φ1 − 1
)

αeikz
(

ieiφ2 − 1
)

= βe−ikz
(

ie−φ2 + 1
)

. (F.10)
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Equating the two equations given in Eq. (F.10), the quantization condition on k is given by

cos(kz + δφ/2) = 0, (F.11)

where δφ = φ2 − φ1. Eq. (F.11) results in

kn =
π

z

[

n+
1

2

(

1− δφ

π

)]

, (F.12)

where n ∈ Z. Eq. (F.12) agrees with Eq. (3.21). Therefore, we have reproduced the result obtained in

Chapter 3 from Fabry-Perot like resonances, by imposing a vanishing current at the two boundaries.

The bag boundary condition is a special case of a general spinor dependent boundary condition

derived in Eq. (F.6), which, in the basis of Ho = −iσx∂x, is given by

iσzn̂ · σΨ(x) = Ψ(x), (F.13)

where n̂ is a unit vector normal to the surface of the boundary [55]. As seen in Fig. F.1, n̂ = x̂ at

x = 0 and n̂ = −x̂ at x = z. This results in the bag boundary condition between two surfaces:

σyΨ(0+) = Ψ(0+)

−σyΨ(z−) = Ψ(z−). (F.14)

Comparing Eq. (F.14) with Eq. (F.9) we find that the bag boundary condition is the special case

of φ1 = φ2 = 2nπ, where n ∈ Z. Sundberg and Jaffe [75] also showed that a “masslike” square

barrier (σz potential) in the infinite strength limit gives the bag boundary condition. The “MIT bag

model” results in the quantization condition kn = π(n+ 1/2)/z between two boundaries a distance

z apart. Bag boundaries produce a standard attractive Casimir interaction in one-dimension [75].

In the single-valley fermionic Casimir problem this refers to a force between two identical scatterers

δφ = 2nπ as shown Eq. (3.24) and Fig. 3.3.
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Appendix G

Delta Function Potential

In this appendix we argue that a sharp limit of a square barrier, rather than a Delta function, is a

better choice for describing an impenetrable wall boundary. There is a known ambiguity associated

with solving the Dirac equation with a Delta function potential, which has been discussed in several

papers [17, 33, 53, 54, 75, 76]. In this appendix we show the source of the ambiguity, provide an

example of an inconsistency between a δ-function and a sharp potential, and argue that a sharp

limit of a finite potential is a more accurate way to define a sharp potential in the Dirac equation.

In the presence of a δ-function potential the Dirac equation is given by

[

− iσx∂x + ~V · ~σδ(x)− E
]

Ψ(x) = 0, (G.1)

where ~ = c = 1, and ~V = V (0, sinφ, cosφ) as defined in Chapter 3. Writing Eq. (G.1) in terms of

the individual components of the wavefunction we obtain

− i∂xΨ2 + V δ(x)
[

cosφΨ1 − i sinφΨ2

]

= EΨ1

− i∂xΨ1 + V δ(x)
[

− cosφΨ2 + i sinφΨ1

]

= EΨ2. (G.2)

Unlike in the Schrödinder equation where the first derivative of the wavefunction is discontin-

uous in the presence of a δ-function potential, the Dirac equation results in a discontinuity in the
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wavefunction itself, since it is a first-order differential equation. To see this, first assume that the

wavefunctions are continuous across the boundary for φ = 0. Integrating Eq. (G.2) over a small

region around x = 0, the first line in Eq. (G.2) implies a discontinuity in Ψ1 when Ψ2 is continuous.

The opposite holds for the second line in Eq. (G.2), making the equations inconsistent [75]. There-

fore, both Ψ1 and Ψ2 have to be discontinuous at x = 0, so the two expressions in Eq. (G.2) are

consistent. The same argument holds for any value of φ.

The ambiguity in solving the Dirac equation with a δ-function potential arises from the integral

∫

δ(x)Ψ(x)dx, where Ψ(x) is discontinuous at x = 0. This integral is ill-defined and leads to

inconsistent results. One common procedure is to express this integral as the average of the two

limits of the wavefunction, since δ(x) is an even function:

∫ ǫ

−ǫ

Ψ(x)δ(x)dx =
1

2
[Ψ(0+) + Ψ(0−)], (G.3)

where ǫ → 0. Inserting Eq. (G.3) back into the Dirac equation, the transfer matrix across the

boundary Ψ(0+) = TΨ(0−) becomes

T =
[

− iσx +
~Γ · ~σ

2

]−1[

− iσx −
~Γ · ~σ

2

]

, (G.4)

where Γ = V ǫ is the potential strength. Let us consider a special case of a σz ( φ = 0) potential.

The transfer matrix in Eq. (G.4) reduces to a simple expression

T = e−µσy , (G.5)

where µ = 2 tanh−1(Γ/2).

In Appendix F we discuss a sharp wall as a limiting case of a square barrier potential. The zero

width and constant strength limits of a square barrier potential given in Eq. (F.4) for φ = 0 result

in a transfer matrix

T = e−µ′σy , (G.6)

where µ′ = Γ. Since µ 6= µ′ the two methods of defining a sharp barrier clearly do not agree. The

transfer matrices given in Eq. (G.5) and Eq. (G.6) are equal only in the small potential strength
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limit Γ≪ 1, since tanh−1 x ∼ x for small x. For a σy potential similar results are obtained. When

φ = π/2 the transfer matrix for a δ-function potential is T = exp(µσz), where µ is the same as in

Eq. (G.5). For a square barrier T = exp(µ′σz) for φ = π/2, where µ′ is defined in Eq. (G.6). As

before, the two transfer matrices are equivalent only in the small potential strength limit and differ

otherwise.

In general, a δ-like potential can be defined as a sharp limit of a finite potential known as the

“Dirac spike” [75]. Consider the solution of a Dirac equation in the presence of some potential

V (x). When V (x) is sharply peaked in some region x = {−ǫ, ǫ} the solution to the Dirac equation

is dominated by the potential term and is given by

Ψ(ǫ) = exp
[

− iσx

∫ ǫ

−ǫ

~V (x) · ~σdx
]

Ψ(−ǫ). (G.7)

To obtain a “Dirac spike”, we take limit of zero width ǫ → 0 and infinite potential magnitude

V →∞. The constant potential strength Γ = V ǫ is given by Γ =
∫ ǫ

−ǫ
V (x)dx. Eq. (G.7) becomes

Ψ(0+) = exp
[

Γ(sinφσz − cosφσy)
]

Ψ(0−). (G.8)

Unlike the solution of a δ-function potential, Eq. (G.8) is consistent with Eq. (F.4).

The procedure described above for solving the Dirac equation in the sharp potential limit is

independent of the value of the wavefunction at x = 0 and the shape of V (x). In other words,

this method does not require the evaluation of an ill-defined integral seen in Eq. (G.3). Therefore,

we choose to define a sharp scatterer by taking a limit of a finite potential, rather than solving a

δ-function potential. For simplicity, throughout this thesis we define a square barrier potential and

study the limits of zero width and infinite height to obtain an impenetrable wall boundary or a

“Dirac spike”.
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Appendix H

Casimir Forces for a Massive Field

In this appendix we present the calculation for Casimir forces mediated by massive one-dimensional

Dirac fermions for the single-valley problem. The general form of the calculation is performed in

the similar manner as for the massless Dirac fermions shown in Chapter 3. The purpose of this

appendix is to provide some technical details of this calculation.

A propagating field’s mass is the energy difference between the positive and negative energy

eigenvalues at zero momentum. In carbon nanotubes the mass is the energy gap between the valence

and conduction bands at the Fermi energy. An energy gap is present in semiconducting nanotubes

and is inversely proportional to the tube radius, as described in Appendix A.4. The gap parameter

is proportional to the σy matrix, which we model as the mass term in the Hamiltonian.

The unperturbed Hamiltonian for a massive Dirac field in one-dimension is given by

Ho = −iσx∂x + ∆σy, (H.1)

where ∆ is the gap parameter. The energy eigenvalue of the filled Dirac sea is

E = −
√

k2 + ∆2. (H.2)
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The eigenvectors of the negative energy eigenstate for the right and left moving states are given by

Ψ±k(x) =
1√
2π
e±ikxΦ±k =

e±ikx

√
4π









1

∓e±iθk









, (H.3)

where θk = tan−1(∆/k). The scattering potential described in Eq (3.2) is given by a spinor polarized

matrix in the yz plane multiplied by a square barrier.

The wavefunctions in each scattering region illustrated in Fig. 3.2 are given by a linear combi-

nation of right and left moving states, as described by Eq. (3.7). A general form of the expectation

values as a function of position x for a massive field is given by

〈Ψ(x)|V̂ (φ)|Ψ(x)〉 =
V

π

[

Re
{

αkβ
∗
ke

i(2kx+θk)
(

cos θk cosφ+ i sinφ
)

}

− 1

2
sin θk sinφ

(

|αk|2 + |βk|2
)

]

, (H.4)

where αk(βk) is the scattering amplitude of the right(left) propagating states. Note, Eq. (3.8) is

recovered from Eq. (H.4) when ∆ = 0.

The transfer matrix across a spinor polarized barrier for massive propagating states is given by

T = cos(qW)− iσx

√
k2 + ∆2 − σ · (x̂×V′)

q
sin(qW), (H.5)

where q =
√

k2 − V (V + 2∆sinφ), and V′ = (0, V sinφ + ∆, V cosφ) in the xyz plane. Setting

∆ = 0, Eq. (3.10) is obtained. Using the transfer matrix, we obtain the transmission and reflection

coefficients for one scatterer. The scattering matrix is given by

S =









t r′

r t









. (H.6)

The scattering coefficients for a square barrier with width W = x2 − x1 are given by

t = t′ =
iλke−ikW

D

r =
−V sinh(λW )[k cosφ+ i

√
k2 + ∆2 sinφ]ei(2kx1+θk)

D

r′ =
−V sinh(λW )[k cosφ− i

√
k2 + ∆2 sinφ]e−i(2kx2+θk)

D
, (H.7)
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where λ = −iq, and the denominator D is

D = iλk cosh(λW ) + (k2 − V∆sinφ) sinh(λW ). (H.8)

We proceed to outline a force calculation for a specific case of two potentials pointing in the σz

direction. The spinor polarization is φ = 0 resulting in V̂ (φ) = V σz. The reflection and transmission

coefficients for one barrier can be parametrized by a their magnitude and phase. The scattering

matrix for a σz polarized barrier is reduced to a simple form

S =









toe
−ikW roe

−i(2kx2+θk)

roe
i(2kx1+θk) toe

−ikW









, (H.9)

where to = τeiη, ro = i
√

1− τ2eiη, and the magnitude τ and phase η are defined in Eq. (3.12).

We calculate the force using the Hellmann-Feynman theorem as described in Chapter 3, using

the expectation values given Eq. (H.4) for φ = 0. A non-zero force arises from interactions between

two boundaries. The force mediated by massive electrons between two finite σz barriers separated

by z is given by

F = −V
π

∫ ∞

0

dkRe
{

ei(kz+θk)
[

R′ei2kW − T1R
∗
1 −R′

1T
∗
1

]

}

cos θk. (H.10)

The Casimir force between impenetrable wall boundaries is obtained in the zero width W → 0

and infinite potential strength Γ = VW →∞ limits. Inserting the two-barrier scattering coefficients

given in Appendix D into Eq. (H.10), we find an overall factor of Re(ro) multiplying all the terms in

the expression for the force. The factor of V in Eq. (H.10) is canceled since Re(ro) ∼ −k/V . Eval-

uating the Fabry-Perot resonant terms in the hard-wall limit, the expression for the force becomes

F =
1

π

∫ ∞

0

dk
k2

√
k2 + ∆2

[

1− π

z

∞
∑

n=0

δ(k − kn)
]

, (H.11)

where kn = π[n + 1/2]/z. The mass dependence has a simple form, and Eq. (3.22) for δφ = 0 is

recovered from Eq. (H.11) when ∆ = 0.

A finite force is obtained from the difference of an infinite sum and integral in Eq. (H.11) using

the Abel-Plana formula given in Eq. (2.1), by setting f(t) = t2/
√
t2 + ∆2 and β = 1/2. Since the
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sign of the square root term changes when going around the branch points, the relevant term for

β = 1/2 in the Abel-Plana formula is given by

Im[f(it)− f(−it)] =
2t2√
t2 −∆2

θ(t−∆), (H.12)

where θ(x) is a step function. We introduce a parameter ∆′ = z∆/π, make a change of variables,

and rewrite the hyperbolic function in Eq. (2.1) in a more compact way. Finally, the Casimir force

mediated by fermionic massive fields between two σz potentials becomes

F = −2π

z2

∫ ∞

∆′

dt
t2√

t2 −∆′2

(

1

1 + exp(2πt)

)

. (H.13)

The integral in Eq. (H.13) can be solved numerically. However, we can gain some insight about the

role of mass in Casimir forces by studying two limiting cases of ∆′.

First, we explore the ∆′ ≪ 1 limit. In carbon nanotubes, since the gap scales inversely with tube

radius, this limit refers to z ≪ R, distances much smaller than the tube radius R. Rewriting the

term in the brackets of Eq. (H.13) in terms of a geometric series, the force becomes

F =
2π

z2

∫ ∞

∆′

dt
t2

√

t2 −∆′2

∞
∑

n=1

(−1)ne−2πtn. (H.14)

In the small ∆′ limit, the expansion of the mass dependent term in the integrand is given by

t2
√

t2 −∆′2
∼ t+

∆′2

2t
+O(∆′4). (H.15)

Inserting the above expansion into Eq. (H.14) and Taylor expanding the result again (since the lower

limit of the integral is a function of ∆′), the force becomes

F =
π

z2

∞
∑

n=1

(−1)n
{ 1

2π2n2
−
[

1 + γ + ln(2π∆n)
]

∆′2
}

+O(∆′3), (H.16)

where γ is Euler’s constant. Evaluating the sum in Eq. (H.16) and inserting the definition for ∆′,

the force in the small distance limit is given by

F ≃ − π

24z2
+

∆2

2π

[

1 + γ − ln
(4∆z

π

)]

, ∆z ≪ 1. (H.17)

The massless result in recovered when ∆→ 0, as seen by the first term in Eq. (H.17).
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We also explore the long distance ∆′ ≫ 1 limit, or z ≫ R for nanotubes, by expressing the

integral in Eq. (H.14) in terms of a Bessel function. This is achieved by making a change of variables

t = ∆′y and rewriting Eq. (H.14) in the following manner

F =
∆′2

2πz2

∞
∑

n=1

(−1)n

n2

∂2

∂∆′2

∫ ∞

1

dy
√

y2 − 1
e−2π∆′ny. (H.18)

The integral in Eq. (H.18) is a familiar integral representation of the modified Bessel function of the

second kind Ko(x). The Bessel function has a well-defined limit Ko(x) →
√

π/2xe−x for x ≫ 1.

Since the Bessel function decays exponentially with x in the large argument limit, the first n = 1

term of the series in Eq. (H.18) will dominate. Therefore, the force in the ∆′ ≫ 1 limit becomes

F ≃ ∆′2

4πz2

∂2

∂∆′2
e−2π∆′

√
∆′

. (H.19)

Differentiating the above equation twice with respect to ∆′ and keeping the dominant term in the

∆′ ≫ 1 limit, the force is given by

F ≃ (∆z)3/2

√
πz2

e−2∆z, ∆z ≫ 1. (H.20)

The Casimir interaction in the long distance limit decays exponentially. This exponential suppression

in the large mass or long distance limit is a universal result in all dimensions for Casimir forces

mediated by massive fields [60].
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Appendix I

Matrix Elements of a Non-Local

Potential

In this appendix we derive Eq. (5.20) starting from Eq. (5.18) given in Chapter 5. Eq. (5.20) is

the off-diagonal intravalley matrix element for a non-local potential up to the second order in the

gradient expansion of g(τj). This term is the dominant matrix element for a non-local potential, since

it’s the only non-vanishing term for zero momentum transfer. All other terms are parametrically

smaller for finite range potentials.

The following properties of the quantity z = exp(i2π/3) are used in this appendix:

eiKm·τj = zm−j

∑

α=0,±1

z±α = 0

z±α = z∓2α

∑

α=0,±1

z±3α = 3. (I.1)

Therefore, the sum over α = 0,±1 of z±α is non-zero only when α is a multiple of three.
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Eq. (5.18) for zero-momentum transfer (m = m′) is given by

〈Ψp
A(r)|V (r)|Ψp

B(r)〉 =
2zp

3
V

∑

m=0,±1

z−m
∑

j=0,±1

g(τj) cos(Km · τj)

=
2zp

3
V

∑

m=0,±1

z−m
∑

j=0,±1

g(τj)
[eiKm·τj + e−iKm·τj

2

]

=
2zp

3
V

∑

m=0,±1

∑

j=0,±1

g(τj)
[z−j + zj−2m

2

]

=zpV
∑

j=0,±1

g(τj)z
−j , (I.2)

where we have used the properties of z given in Eq. (I.1). The gradient expansion of g(τj) including

the scalar (go), vector (g1), and rank two tensor (←→g 2) terms is given

g(τj) ∼ go + τj · g1 +
1

2
τj · ←→g 2 · τj . (I.3)

We evaluate the sum
∑

j g(τj)z
−j in Eq. (I.2) term by term. Starting with the the scalar term

go we find

go

∑

j=0,±1

z−j = 0. (I.4)

Therefore, the scalar term vanishes. The next order vector term g1 is given by

∑

j=0,±1

τj · g1z
−j . (I.5)

We fix the orientation of g(τj) in the tube’s coordinate system and explore the dependence of the

matrix element in Eq. (I.2) on the chiral angle θ. Therefore, using Eq. (4.8) for τj ’s in the tube’s

coordinate system, the sum in Eq. (I.5) becomes

a√
3

∑

j=0,±1

(sin θj x̂‖ + cos θj x̂⊥) · (g‖x̂‖ + g⊥x̂⊥)z−j

=
a√
3

∑

j=0,±1

(g‖ sin θj + g⊥ cos θj)z
−j

=
a

2
√

3

∑

j=0,±1

[

ig‖(e
−iθzj − eiθz−j) + g⊥(e−iθzj + eiθz−j)

]

z−j

=
a

2
√

3

∑

j=0,±1

[

ig‖(e
−iθ − eiθz−2j) + g⊥(e−iθ + eiθz−2j)

]

=
a
√

3

2
e−iθ

[

g⊥ + ig‖

]

. (I.6)
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The tensor term ←→g 2 is

1

2

∑

j=0,±1

τj · ←→g 2 · τjz
−j . (I.7)

The tensor product explicitly is given by

τ · ←→g 2 · τ =

(

τ‖ τ⊥

)









G‖‖ G‖⊥

G⊥‖ G⊥⊥

















τ‖

τ⊥









(I.8)

Evaluating the matrix products in Eq. (I.8) and inserting back into Eq. (I.7) we obtain

1

2

∑

j=0,±1

τj · ←→g 2 · τjz
−j

=
1

2

∑

j=0,±1

[

G‖‖τ
2
j‖ + (G‖⊥ +G⊥‖)τj‖τj⊥ +G⊥⊥τ

2
j⊥

]

z−j

=
a2

6

∑

j=0,±1

[

G‖‖ sin2 θj + (G‖⊥ +G⊥‖) sin θj cos θj +G⊥⊥ cos2 θj

]

z−j

a2

24

∑

j=0,±1

{

e−2iθz2j
[

G⊥⊥ −G‖‖ + i(G‖⊥ +G⊥‖)
]

+ e2iθz−2j
[

G⊥⊥ −G‖‖ − i(G‖⊥ +G⊥‖)
]

+ 2
[

G⊥⊥ +G‖‖

]}

z−j

=
a2

8
e2iθ

[

G⊥⊥ −G‖‖ − i(G‖⊥ +G⊥‖)
]

. (I.9)

Combining the results of Eq. (I.4), Eq. (I.6), and Eq. (I.9) we obtain

∑

j=0,±1

g(τj)z
−j =

a
√

3

2
e−iθ

{

g⊥ + ig‖ +
a

4
√

3
e3iθ

[

G⊥⊥ −G‖‖ − i(G‖⊥ +G⊥‖)
]

}

. (I.10)

Eq. (I.10) agrees with Eq. (5.20) in Chapter 5.
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Appendix J

Force Integral

In this appendix we provide a derivation for the integrals that appear in the calculations of Casimir

forces in the infinity potential strength limit Γ ≫ 1. We show that the Abel-Plana formula can be

applied only to a limiting case of these integrals. Although, a cutoff function is introduced in order

to control divergences appearing in the integral, we show that the final result is cutoff independent.

The class of integrals found in Chapters 3 and 5 have a general form

F =
1

π

∫ ∞

0

kdk

[

1− ρ2

1 + ρ2 ± 2ρ cos(2kz + ϕ)

]

, (J.1)

where z is the distance between two boundaries. The integrand in Eq. (J.1) can be represented in

terms of a Poisson kernel

Psρ(q, ϕ) =
1− ρ2

1 + ρ2 + 2ρs cos(q + ϕ)
, (J.2)

where s = ±1, and q = 2kz. Introducing an exponential cutoff function, the integral in Eq. (J.1)

becomes

F = lim
µ→0

1

4πz2

∫ ∞

0

qe−µq
[

1− Psρ(q, ϕ)
]

dq. (J.3)

Since the Poisson kernel is 2π periodic in q, the integral can be expressed as an infinite sum times
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an integral over a region of [0, 2π]. Rewriting Eq. (J.3) we obtain

F = lim
µ→0

1

4πz2

∫ 2π

0

[1− Psρ(q, ϕ)
]

dq

( ∞
∑

n=0

(q + 2nπ)e−µ(q+2nπ)

)

. (J.4)

Expressing the sum in terms of a geometric series and separating terms constant in q, the series in

Eq. (J.4) to O(µ) is given by

∞
∑

n=0

(q + 2nπ)e−µ(q+2nπ) = − d

dµ

(

e−µq

1− e−2πµ

)

=
2π

(1− e−2πµ)2
− 2π

1− e−2πµ
+
q(2π − q)

4π
+O(µ). (J.5)

The first two terms on the RHS of Eq. (J.5) diverge in the limit µ→ 0, but vanish when integrated

over q since
∫ 2π

0

[

1− Psρ(q, ϕ)
]

dq = 0. (J.6)

To verify that the above statement is true in the case when ρ→ 1 we express the Poisson kernel

in terms of a delta function

lim
ρ→1

Psρ(q, ϕ) = 2π
∞
∑

n=0















δ(q − qn), s = 1

δ(q − q′n), s = −1

(J.7)

where qn = π(2n + 1) − ϕ and q′n = 2πn − ϕ. A derivation of a similar expression to Eq. (J.7) is

shown in Appendix E. Inserting Eq. (J.7) into Eq. (J.6), we find that there is either one δ-function in

the range of integration [0, 2π] or two δ-functions at the two limits of integration, each contributing

half the area. Therefore, in both cases the integral over the series of δ-functions yields a factor of

2π, which is consistent with the result in Eq. (J.6). Note, in the ρ→ 1 limit, Eq. (J.3) can be solved

using a generalized Abel-Plana formula which provides a finite expression for a difference between

an infinite integral and an infinite sum [37].

Combining the above results and noting that the third term in Eq. (J.5) is cutoff independent,

Eq. (J.4) becomes

F =
1

16πz2

∫ 2π

0

q(2π − q)
[

1− Psρ(q, ϕ)
]

dq. (J.8)
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We use the following identity to solve the integral in Eq. (J.8):

1

2π

∫ 2π

0

f(x)g(x)dx =

∞
∑

n=−∞
f̂(n)ĝ(−n), (J.9)

where the “hat” indicates the Fourier series of the original function. The Fourier series of the Poisson

kernel is given by

Psρ(q, ϕ) =
∞
∑

n=−∞















ein(q+ϕ)ρ|n|, s = −1

(−1)nein(q+ϕ)ρ|n|, s = 1

(J.10)

The Fourier series of the other term in Eq. (J.8) is given by

q(2π − q) =
2π2

3
− 2

∞
∑

n=−∞
n6=0

einq

n2
. (J.11)

Combining results from Eqns. (J.9)-(J.11), Eq. (J.8) becomes

F =
1

2πz2

∞
∑

n=1















cos(nϕ)ρn

n2 , s = −1

(−1)n cos(nϕ)ρn

n2 , s = 1

(J.12)

Eq. (J.12) is a general result which can be applied to all the integrals encountered in Chapters

3 and 5. The series above can be represented in terms of a dilogarithm functions. For example,

Li2(−sρ) =
∞
∑

n=1















ρn

n2 , s = −1

(−1)nρn

n2 , s = 1

(J.13)

and,

Re[Li2(−seiϕ)] =
∞
∑

n=1















cos(nϕ)
n2 , s = −1

(−1)n cos(nϕ)
n2 , s = 1

(J.14)

where Li2(x) is a dilogarithm function.

In Sec. 5.5.1 we calculate forces between two local sublattice centered impurities. The solution

of Eq. (5.34) for interaction between defects residing on equivalent sites is Eq. (J.13), where ϕ = 0,

with ρ = cos2(K · Ro) and s = −1. The result for the force integral in Eq. (5.36), applicable to

interactions between impurities centered on inequivalent site, is Eq. (J.13) with ρ = sin2(K · Ro)

and s = 1.
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The integral in Eq. (J.1) can also be related to integral in Eq. (5.39) for a force between two

local potentials where only intervalley scattering plays a role, and Eq. (5.42) for interactions between

non-local potentials. The limit of zero transmission τ → 0 is equivalent to ρ→ 1 in Eq. (J.1), where

ρ =
√

1− τ2. Writing Eq. (5.39) and Eq. (5.42) in a general form in terms of ρ we obtain

F =
1

π

∫ ∞

0

k

[

1− 2 lim
ρ→1

1− ρ2

|1 + sρ2ei(2kz+ϕ)|2

]

=
1

π

∫ ∞

0

k

[

1− lim
ρ→1

1− ρ4

1 + ρ4 + 2ρs cos(2kz + ϕ)

]

, (J.15)

where we have ignored the prefactors. The right-hand side of Eq. (J.15) is equivalent to Eq. (J.1)

in the limit ρ → 1. Therefore, the solution of Eq. (5.39) is given by Eq. (J.14) for ϕ = −2K ·Ro.

The solution to Eq. (5.42) is obtained by setting ϕ = 0 in Eq. (J.14).
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