1-8-2019

The St. Chad Gospels: Diachronic Manuscript Registration and Visualization

Stephen Parsons
University of Kentucky, stephen.r.parsons@gmail.com

C. Seth Parker
University of Kentucky, c.seth.parker@uky.edu

W. Brent Seales
University of Kentucky, seales@uky.edu

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/mss_sims/vol2/iss2/12
For more information, please contact repository@pobox.upenn.edu.
The St. Chad Gospels: Diachronic Manuscript Registration and Visualization

Abstract
This paper presents a software framework for the registration and visualization of layered image sets. To demonstrate the utility of these tools, we apply them to the St. Chad Gospels manuscript, relying on images of each page of the document as it appeared over time. An automated pipeline is used to perform non-rigid registration on each series of images. To visualize the differences between copies of the same page, a registered image viewer is constructed that enables direct comparisons of registered images. The registration pipeline and viewer for the resulting aligned images are generalized for use with other data sets.

Keywords
Manuscript studies; preservation; image registration; visualization

This article is available in Manuscript Studies: https://repository.upenn.edu/mss_sims/vol2/iss2/12
Manuscript Studies brings together scholarship from around the world and across disciplines related to the study of premodern manuscript books and documents, with a special emphasis on the role of digital technologies in advancing manuscript research. Articles for submission should be prepared according to the Chicago Manual of Style, 16th edition, and follow the style guidelines found at http://mss.pennpress.org.

None of the contents of this journal may be reproduced without prior written consent of the University of Pennsylvania Press. Authorization to photocopy is granted by the University of Pennsylvania Press for libraries or other users registered with Copyright Clearance Center (CCC) Transaction Reporting Service, provided that all required fees are verified with CCC and paid directly to CCC, 222 Rosewood Drive, Danvers, MA 01923. This consent does not extend to other kinds of copying for general distribution, for advertising or promotional purposes, for creating new collective works, for database retrieval, or for resale.

2018 Subscription Information:
Single issues: $30
Print and online subscriptions: Individuals: $40; Institutions: $90; Full-time Students: $30
International subscribers, please add $18 per year for shipping.
Online-only subscriptions: Individuals: $32; Institutions: $78

Please direct all subscription orders, inquiries, requests for single issues, address changes, and other business communications to Penn Press Journals, 3905 Spruce Street, Philadelphia, PA 19104. Phone: 215-573-1295. Fax: 215-746-3636. Email: journals@pobox.upenn.edu. Prepayment is required. Orders may be charged to MasterCard, Visa, and American Express credit cards. Checks and money orders should be made payable to “University of Pennsylvania Press” and sent to the address printed directly above.

One-year subscriptions are valid January 1 through December 31. Subscriptions received after October 31 in any year become effective the following January 1. Subscribers joining midyear receive immediately copies of all issues of Manuscript Studies already in print for that year.

Postmaster: send address changes to Penn Press Journals, 3905 Spruce Street, Philadelphia, PA 19104.

Visit Manuscript Studies on the web at mss.pennpress.org.
Articles

Statim Prosequi: An Index as a Product, Instrument, and Medium of the Medieval Franciscan Inquisition in Tuscany
Geoffrey W. Clement 267

A Tool for Exemplary Pastoral Care: Three Booklets of the Edwardes Manuscript in Context
Hannah Weaver 296

Conversational Lollardy: Reading the Margins of MS Bodley 978
Elizabeth Schirmer 328

“My Written Books of Surgery in the Englishe Tonge”: The London Company of Barber-Surgeons and the Llyye of Medicynes
Erin Connelly 369

The Two Yoḥannases of Santo Stefano degli Abissini, Rome: Reconstructing Biography and Cross-Cultural Encounter through Manuscript Evidence
Samantha Kelly and Denis Nosnitsin 392

Textual Contents of Pāli Samut Khois: In Connection with the Buddha’s Abhidhamma Teaching in Tāvatiṃsa Heaven
Toshiya Unebe 427

The Western Manuscript Collection of Alfred Chester Beatty (ca. 1915–1930)
Laura Cleaver 445
The St. Chad Gospels: Diachronic Manuscript Registration and Visualization
Stephen Parsons, C. Seth Parker, and W. Brent Seales 483

Annotations

An Investigation of the Relationship between Prince Shōtoku’s Shōmangyō-gishō and Two Dunhuang Buddhist Manuscripts: A Debate over Originality and Canonical Value
Mark Dennis 449

The Glossa Ordinaria Manuscripts of the Biblioteca Capitolare of Monza
E. Ann Matter 508

The Summula de Summa Raymundi in Gordan MS 95, Bryn Mawr College
Thomas Izbicki 524

A Newly Discovered Manuscript of the Historia de los Reyes Moros de Granada by Hernando de Baeza
María Mercedes Delgado Pérez 540

Reviews

Albert Derolez. The Making and Meaning of the Liber Floridus: A Study of the Original Manuscript, Ghent, University Library MS 92
Mary Franklin-Brown 569

Bent Lerbaek Pedersen. Catalogue of Yao Manuscripts
Adam Smith 573

T. L. Andrews and C. Macé, eds. Analysis of Ancient and Medieval Texts and Manuscripts: Digital Approaches
Alexandra Gillespie 577
Contents

Elizabeth Solopova. Manuscripts of the Wycliffite Bible in the Bodleian and Oxford College Libraries
KATHLEEN KENNEDY 581

Colour: The Art and Science of Illuminated Manuscripts
NICHOLAS HERMAN 584

List of Manuscripts Cited 589
Well-maintained manuscripts can appear to have always existed in their current, “perfectly preserved” archival state. The reality, however, is that no manuscript can be completely and permanently protected from alteration. All documents change with the passage of time. Left untouched, documents will suffer physical degradation—discoloration and fading, breakdown of fibers, flaking of pigment. Yet, conservation efforts designed to combat such degradation introduce physical changes of their own, such as crumbling, tearing, or staining.

A better understanding of the changes introduced by the conservation and degradation of manuscripts can provide more accurate knowledge of the documents’ histories as well as help improve conservation efforts. Yet, such understanding necessitates concrete identification of the physical changes that have occurred to manuscripts. This task proves quite challenging since...
these alterations are usually small or subtle and occur over extended periods of time. Recent digital methods like high-resolution imaging make it possible to capture the changes, as manuscripts are imaged multiple times and in multiple modalities. However, it remains difficult to discover and directly visualize those changes throughout the collections of images. Post-processing and visualization methods applied to sets of images over many instances are needed to allow scholars to “see” what exactly happens to manuscripts over time and to benefit from this knowledge.

The 2010 digitization of the St. Chad Gospels by the Seales research team offers a perfect opportunity to study how best to align and visualize layered image sets. The St. Chad Gospels is an eighth-century manuscript held in the Lichfield Cathedral’s library in Lichfield, England. It is historically and culturally significant and contains a wealth of information. Among its 236 surviving folios are four pages of framed text, eight illuminations, and marginalia that include some of the oldest surviving Old Welsh writing.\(^1\) The research team led by Seales in 2010 collected spectral data and 3D shape models of every page,\(^2\) as well as documentary photography, video, and historical image sets from earlier photographic sessions: 1912, 1929, 1962, and 2003.\(^3\) Although the number of pages imaged each time in the historical image sets varies (1912: 9; 1929: 240; 1962: 238; 2003: 181; and 2010: 264), the composite of all these acquisitions makes a rich collection for seeing change over time.

Viewing these images in the visual context of each other can add information beyond what a simple facsimile would provide.\(^4\) Each time the

\(^1\) John Davies, ed., *Encyclopaedia Wales* (Cardiff: University of Wales Press, 2008), 577.
manuscript is imaged, unique information is captured, but the value of that information increases when it is viewed in the context of other years’ photographs, because differences can then be observed. Since imaging conditions (for example, field of view, focal length, and image resolution) can vary dramatically across acquisitions, providing this context requires both an alignment of the images as well as a visualization tool that can enable meaningful comparison. The known problem of image registration is well-suited to aligning the images, and a viewer can be built to help make sense of the registered results.

Our objective, therefore, is to combine the data sources, creating a complete version of the manuscript that encompasses all known images. Specifically, we focus on the diachronic axis of the image sets (that is, their change over time) and attempt to organize them in a way that allows meticulous observation of the manuscript’s evolution over time. We also present a registered image viewer tool that enables direct comparison of the original images while maintaining their visual context.

Related Work

Image Registration

Image registration is a well-studied problem with a wide array of applications, largely in medical imaging. Image registration is the process of aligning two images by mapping a *sensed* or moving image into the coordinate system of a *reference* or fixed image R, yielding a registered image S_R.

In the case of the St. Chad Gospels, the 2010 photograph of each page is treated as the reference, and each additional image of that page is individually registered to the reference. The 2010 pages are chosen as the reference set because they are the most recent, most complete, and highest resolution of the image sets. The 2010 set is also multispectral and includes multimodal images captured simultaneously with the visible-spectrum photographs. Since these multimodal images were captured without moving the manuscript or the camera, they are already aligned or registered to the base 2010 images.

Registration of Manuscript Images

In 2008, the Archimedes Palimpsest project took a number of image sets, including Heiberg’s 1906 photography of the palimpsest, and registered them to high-resolution multispectral photos taken in 2007. The study similarly addressed a registration problem over a diachronic axis. This manual registration process involved scaling and warping, and presumably relied upon an affine transform, meaning it would not have accounted for any nonlinear warping that might have occurred between images.

In 2009, Baumann and Seales applied registration tools to manuscript pages in an effort to overcome a problematic camera sensor. While creating a set that included a photo and a 3D scan of each page (taken simultaneously), they discovered that a dirty sensor on the camera had produced some images of unacceptable quality. They re-photographed those pages, but, due to time constraints, they were unable to perform new 3D scans of the pages. Instead, they registered the high-quality sensed images to the “dirty” refer-

ence photos taken earlier. Doing so allowed them to texture the 3D scans with the high-quality images and then perform digital flattening techniques to remove imperfections in the images due to warped pages. They used warping with a triangulated mesh, which was an improvement over the affine transform used with the Archimedes Palimpsest.

These projects show a marked improvement in the preservation and visualization of ancient manuscripts, but leave room for further work. To be most practical, a diachronic edition of a manuscript should be complete, well aligned with high-quality registration, and accessible via an interactive and useful interface.

Visualization of Registered Images

Making use of registered images requires a method for viewing the reference image R and the registered image S_R so that their differences are readily apparent. In many cases, an observer wants to see how a specific feature of the manuscript has changed over time. Such discoveries can be made by identifying a point on R and asking how the corresponding point appears on S_R.

The most obvious way to accomplish such comparison is to examine R and S_R side by side—for example, with each occupying half of the view area. While this method places both images directly in front of the observer at the same time, it remains difficult to directly compare the specific points of interest. In switching attention from one image to the other, the observer loses their visual context and position. This method does not take advantage of the images being registered to the same coordinate system, and an observer could just as well use R and the original sensed image S.

This limitation can be overcome by “flickering” R and S_R. The observer can view one image and then switch the display to show the other in its place. Since S_R is registered to R, a point of interest will occupy the same spot on the screen regardless of which image is being viewed. By focusing on one point and switching back and forth repeatedly, an observer is able to see how that area changes across the images. However, entirely switching out the images remains overwhelming to the observer, who is tasked with mentally tracking the points and trying to remember what they looked like.
on the other image. The result is a confusing visualization that does not clearly illustrate differences.

Another similar approach is to somewhat combine the side-by-side and flicker methods. Here, two images are stacked, and instead of switching completely between them, the user uses a sliding bar over the images to choose how much of each image to view. However, this process, like the others, allows comparison along only one axis at a time.

Composite images are one of the most common methods for visualizing registered image data, and they have been proven to overcome some of the above-mentioned challenges. This method combines the two images into a third image that contains information from both. One type of simple composite image is the difference $|R - S_R|$, or “diff” image, which is simply the absolute difference between the images at each pixel. Where the images are identical, meaning no change is revealed across registered images, the composite image is typically dark. Bright spots indicate a difference between the images that could then be examined on either original. More complex composite images exist that offer an enhanced visualization when compared with that of the absolute diff. However, no composite image can ever fully display the original data, since the combining process reduces the data of multiple images into one impression.

Approach

Image Registration

The registration task for the Chad Gospels dataset was to produce a set $P = \{R, S_{R1}, S_{R2}, \ldots, S_{Rn}\}$ of aligned images for each page of the manuscript, 8

where the 2010 image and $0 \leq n \leq 4$ is the number of sensed images for that page, with each S_{R_n} from 1912, 1929, 1962, or 2003. This set was produced by beginning with the 2010 image R for each page, and generating a pair (S, R) for each non-2010 image of the same page. Each pair (S, R) was then passed through the registration pipeline to produce an S_{R_i}, and these results were combined to produce P for each page.

The generalized registration process can be broken down into the following steps, each of which can be implemented in various ways: feature detection, feature matching, transform model estimation, and image resampling and transformation. In transform modeling, the transformation is typically either rigid-body (uniform affine transformations such as rotation, translation, and scaling) or non-rigid (also known as nonlinear, local, or deformable). The appropriate method depends on the data and how it has changed between the sensed and reference images.

Feature Detection and Matching

The nature of the Chad Gospels dataset makes it possible to manually select matching feature points for each pair of sensed and reference images. The data set is small enough to make this tractable, and the consistent image structure allows for a straightforward process.

The registration of each image pair (S, R) starts with the identification of at least five matching points between the two images. Using a visual interface makes it straightforward for a person to select five points on each image: each of the four corners, plus a more central point. In practice, we tried to select the corners to be the actual corners of the physical manuscript page, while the central point was chosen to be some identifiable feature, such as the tip of the serif on a central letter. This process resulted in a set of landmarks $L_{S,R}$, mapping pixel indices S on to their corresponding indices on R:

$$L_{S,R} = \{((x_i^S, y_i^S), (x_i^R, y_i^R)) \mid 0 \leq i < l\}, l = \text{no. of landmarks for pair (S, R)}$$

9 Zitová and Flusser, “Image Registration Methods.”
Occasionally after registration, particular images exhibited regions that did not converge to alignment. In these cases, it was possible to manually insert additional feature points in the problematic region, which proved adequate for improving the resulting registration.

The use of automated feature detection and matching, using an algorithm such as scale-invariant feature transform (SIFT), was explored but ultimately proved unnecessary for this particular set of images. However, should the same methods be applied to an image set of a larger scale or with more variation in content, an automated approach would be appropriate.

Registration

Registration methods vary considerably, and their utilization depends on the underlying data. For example, in some cases it may not be appropriate to introduce nonlinear transformations to a sensed image. In our study, however, such a transformation was considered acceptable due to the value of registering letterforms on the page to their counterparts in images of the same page taken at different times. The Chad Gospels photographs were taken with different camera sensors and lenses, from different distances and angles. In addition, each folio is physically warped from the effects of time and age, creating page topologies that are inconsistent across imaging sessions. These subtle differences in the resulting images combine to create a registration problem that not only allows, but actually requires, nonlinear transformations in order to achieve the desired effect.

Our registration framework uses the Insight Segmentation and Registration Toolkit (ITK) and consists of landmark and deformable registration stages. The process on the Chad Gospels began with the input images

S and R and the landmarks $L_{S,R}$. The pixel indices in $L_{S,R}$ were converted to points in the physical space used for registration in ITK.

The images were converted to grayscale for the registration process, which made it easier to compute a similarity metric at each iteration:

$$S' = \text{grayscale}(S), R' = \text{grayscale}(R)$$

For the landmark registration stage, an initial transformation was applied to S' that aligned each of its landmark points with its corresponding point on R. The remaining points on the images were interpolated using a displacement field built by a kernel-based spline function. This transformation T_1 creates S_{LW}', which is roughly aligned with the reference image R in size and space. While the landmark feature points for the Chad Gospels were all registered perfectly at this point, the rest of the page remained poorly aligned. Due to the nature of the deformation, different regions of the page were misaligned independently of each other.

Landmark registration stage: $T_1(S') \rightarrow S_{LW}'$

The deformable registration stage was then performed using a regular step gradient descent optimization with a relaxation factor of 0.85. The deformation was computed using a basis spline or B-spline transform with spline order 3. The alignment was evaluated using the Mattes mutual information metric12 with 50 histogram bins and the number of samples at each iteration being 1/80 the number of pixels in the reference image. This sampling volume can be increased for more accurate registration at the cost of registration program runtime.

There are multiple possible stop conditions in this configuration:

- The maximum number of iterations (default 100) is reached.
- The optimizer step size falls below the threshold value.

• The change in metric between successive iterations falls below the threshold value.

The deformable registration stage yielded the transformation T_2, which gave a grayscale registered image S_R' from S_{LW}':

$$\text{Deformable registration stage: } T_2(S_{LW}') \rightarrow S_R'$$

The full-color registered image was generated by applying the transformations to the original sensed image:

$$\text{Registration process: } T_2(T_1(S)) \rightarrow S_R$$

The composite transformation $T = T_2(T_1)$ was also recorded in a file. This eased development and experimentation, as one can reapply the resulting transformation to a source image without the computational expense of calculating the transformation again. Additionally, the transformations may themselves hold data worth investigating in future works.

Results

Registration

Results of the registration process for the alignment of Chad Gospels pages are shown in figure 1, with page 219 used as an example. Diachronic registration was successful for pages with text as well as for those containing illuminations. These registered images along with the layered image viewer allow researchers to quickly move through the document to identify and examine points of interest that reveal diachronic changes in the artifact. For example, figure 2 reveals pigment that chipped off between the years 1929 and 1962, and again from 1962 to 2003. The small spot of dark pigment in the middle can be seen reducing in size as it chips away from the lighter page.

In some cases, the registration process failed to yield perfect alignment because the original images were so severely out of alignment. Where a
misalignment was deemed unacceptable, it was corrected by manually adding landmark points in the offending region and then re-registering that image pair, such as with page 234 in figure 3. The text initially appears bright where it is not aligned, but as features are added to help correct this, the brightness decreases or disappears.
Visualization

A layered image viewer was built for the visualization of registered image sets. This tool represents an improvement over previous methods by allowing direct comparison of original images while maintaining their visual context. The viewer consists of a background image and a foreground image. The background image is featured prominently in the interface. A circular “flashlight” then allows a user to “shine” the foreground image onto the background, which is aligned with the foreground image. In figure 4, the “background” image is from 2010 and the “foreground” image seen with the flashlight is from 1962.

The viewer understands a data set as a set of pages, each page being composed of the aforementioned mutually registered set \(P \). The data set is described in a JavaScript Object Notation (JSON) file passed to the viewer.

Keyboard shortcuts allow quick switching of the foreground and background images. Other commands enable rotating through the various pages of the manuscript. The flashlight can also be resized and reshaped. These functions allow a user to quickly navigate the pages of the manuscript and pinpoint regions of interest. This tool is an improvement over the aforementioned methods of viewing registered images, which are not well suited for more than two layers.

The viewer uses the Deep Zoom Image (DZI)\(^{13}\) tiled image format so that the user can zoom in and achieve high resolution without needing to load the entire full-resolution images in the beginning. OpenSeadragon\(^{14}\) is used to display the DZIs. The JSON file describing the data set simply points the viewer to the appropriate DZI files and directories, which can be hosted locally or elsewhere.

Figure 5 demonstrates how the viewer can be used in tandem with registered imagery to identify and explore diachronic changes at a fine-grained level. The viewer clearly shows that sometime between 1912 and 1962, a

13 Deep Zoom Image format, developed by Microsoft as part of the Silverlight framework.
small patch applied to the edge of page 143 was removed and repatched with thread. This repair exactly matches the description of the repair process performed by Powell prior to his 1962 imaging.15

Preservation

The Internet Archive16 was chosen as the repository for our diachronically registered images of the St. Chad Gospels. As the name implies, the Internet

15 Powell, “The Lichfield St. Chad’s Gospels.”
Archive is designed for long-term preservation. It also provides a data ingestion pipeline that processes the images and makes them publicly available for download in various formats. Uploads were performed with a command line tool from archive.org that allows for batch transfer specified by a comma-separated values (CSV) file.

Conclusions and Future Work

High-resolution imaging of manuscript pages is an emerging method for improving document longevity and accessibility. In addition to providing facsimile resources, scans of these pages offer new opportunities for discovery about the original ancient manuscripts. Multimodal and diachronic image sets, for example, can reveal patterns or changes that were not visible to the naked eye working only with the physical manuscript or a digital facsimile.

We have presented a method for the organization, registration, and visualization of diachronic manuscript image sets. Registered images examined with the viewer allow researchers to quickly yet precisely navigate a manuscript, search for changes that have occurred over time, and then pinpoint those warranting a closer inspection. We believe these registration and visualization methods will prove to be powerful tools not only for the St. Chad Gospels, but for other manuscripts and, more generally, for data sets containing images showing some change, whether in time, modality, or other elements.

Several opportunities exist to enhance our methods. Fine-tuning the registration process can completely eliminate problematic areas that are not perfectly aligned. In this work, the alignment was considered successful in the context of comparing images of text over time, but for other applications, the registration may need improvement. Additionally, the feature detection and matching process can be automated, a step that was not necessary for this data but is worth pursuing with a larger or more varied set of images.

As 3D data exists for these pages, digital flattening techniques\(^\text{17}\) can also be applied to the 2010 images before using them as reference images in the

\(^{17}\) Michael S. Brown, Mingxuan Sun, Ruigang Yang, Lin Yun, and W. Brent Seales, “Restoring 2D Content from Distorted Documents,” *IEEE Transactions on Pattern Analysis and
registration process. This step can remove any imperfections or warps due to the physical deformation of the manuscript pages under the camera. By subsequently registering sensed images to a flattened reference image, the sensed images will have these deformations corrected as well.

The current implementation of the viewer allows the user to view two images at once, but future versions can have multiple flashlights, allowing any number of layers to be shown in the same view. Finally, the registration process and viewer can be extended to a variety of other datasets beyond the St. Chad Gospels or even manuscripts in general.

This project builds on and anticipates other work that goes beyond the simple advancement of the digital techniques used. Ultimately, the methods we describe lead to the improved preservation and understanding of ancient documents, adding to an old body of knowledge in ways that were not before possible.

Acknowledgments

All images of the St. Chad Gospels copyright The Chapter of Lichfield Cathedral, under a Creative Commons Non-Commercial License. Reproduced by kind permission of the Chapter of Lichfield Cathedral.

University of Kentucky, Center for Visualization and Virtual Environments; Furman University, Department of Classics.

This material is based upon work supported by the National Science Foundation under grant nos. IIS-0535003, 0916148, 0916421, and EAGER-1041949.

Supplemental Materials

The source code used to register the St. Chad Gospels datasets is archived and available on GitHub: https://github.com/viscenter/registration-toolkit.

The datasets presented in this paper are available for download through the Internet Archive: https://archive.org/details/@viscenter. Data will also be made available by request.

The registered image viewer is available at http://infoforest.vis.uky.edu/. The source code for the viewer is also available on GitHub: https://github.com/viscenter/layered-viewer.
List Of Manuscripts Cited

Baltimore, Walters Art Museum
W 751: 451, 470
W 759–62: 474
W 777: 473

Bangkok, Wat Hua Krabu
Manuscript: 431, 432 fig. 1

Berlin, Staatsbibliothek
HS 241: 480

Birmingham, Barber Institute
No. 397: 479

Boston, Boston Public Library
MS 1532: 473

Brussels, Bibliothèque Royale
MS IV 191: 481
MS IV 542: 478

Bryn Mawr, PA, Bryn Mawr College
Gordan MS 95: 527–28, 527 fig. 1, 528 nn. 15–16

Cambridge, MA, Harvard University,
Houghton Library
MS Richardson 17: 482
MS Richardson 26: 471
MS Typ 141: 476
MS Typ 143: 480
MS Typ 200: 472
MS Typ 201: 474
MS Typ 202: 472
MS Typ 213: 478
MS Typ 217: 482
MS Typ 228: 474
MS Typ 703: 476

Cambridge, UK, Corpus Christi College
MS 4: 585
MS 32: 338, 338 n. 25, 343 n. 34, 355 n. 61

Cambridge, UK, Fitzwilliam Museum
MS 251, fol. 15r: 585
MS 276: 586
MS 159: 587
MS 330: 472, 585
MS 375: 462, 478

Collegeville, MN, Saint John’s University,
Ethiopian Manuscript Microfilm Library
MS no. 4553: 414 n. 69

Cologne, Historisches Archiv
Best. 7010–293: 585

Cologny, Fondation Martin Bodmer
Cod. Bodmer 14: 476
Cod. Bodmer 68: 470
Cod. Bodmer 104: 480
Cod. Bodmer 128: 481
Cod. Bodmer 139: 481
Cod. Bodmer 183: 474

Dublin, Chester Beatty Library
Thai MS 1341: 432
Thai MS 1343: 433
W 017: 471
W 029: 471
W 040: 472
W 043: 472
W 061: 474
W 066: 474
W 076: 457 fig. 3, 475
W 078: 475
<table>
<thead>
<tr>
<th>Reference</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>W 080: 475</td>
<td>Yah MS Var 11: 467 n. 96, 477</td>
</tr>
<tr>
<td>W 082: 453, 454 fig. 1, 458, 479</td>
<td>Yah MS Var 12: 467 n. 96, 482</td>
</tr>
<tr>
<td>W 089: 478</td>
<td>Yah MS Var 13: 475, 467 n. 96</td>
</tr>
<tr>
<td>W 094: 479</td>
<td>Yah MS Var 14–15: 476, 467 n. 96</td>
</tr>
<tr>
<td>W 099: 482</td>
<td>Yah MS Var 16: 467 n. 96, 481</td>
</tr>
<tr>
<td>W 107: 477</td>
<td>Kew, The National Archives</td>
</tr>
<tr>
<td>W 108: 477</td>
<td>PROB 11/49/251: 375 n. 15–16, 378 n. 31</td>
</tr>
<tr>
<td>W 122: 477</td>
<td>Lichfield, Cathedral Library</td>
</tr>
<tr>
<td>W 124: 476</td>
<td>MS 1: 483–98</td>
</tr>
<tr>
<td>W 127: 476</td>
<td>Lisbon, Museu Calouste Gulbenkian</td>
</tr>
<tr>
<td>W 188: 480</td>
<td>MS LA 210: 479</td>
</tr>
<tr>
<td>W MS 103 (formerly; now dismembered): 455 fig. 2, 456</td>
<td>London, British Library</td>
</tr>
<tr>
<td>Dunhuang</td>
<td>Add. 38662: 296–327, 296 n. 1, 299 fig. 1, 306 n. 26</td>
</tr>
<tr>
<td>Nai 93: 499, 502–7, 503 n. 8</td>
<td>Add. 38663: 296–327, 296 n. 1, 299 fig. 2, 306 n. 26</td>
</tr>
<tr>
<td>Tama 24: 499, 502–7, 503 n. 8</td>
<td>Add. 38664: 296 n. 1</td>
</tr>
<tr>
<td>Florence, Bibl. Medicea Laurenziana</td>
<td>Add. 40142: 296–327, 296 n. 1, 301 fig. 3, 306 n. 26</td>
</tr>
<tr>
<td>MS Or. 148: 423</td>
<td>Add. 40143: 296 n. 1</td>
</tr>
<tr>
<td>Geneva, Bibliothèque de Genève</td>
<td>Add. MS 43460: 469</td>
</tr>
<tr>
<td>Comites Latentes MS 15: 474</td>
<td>Add. MS 48985: 474</td>
</tr>
<tr>
<td>Comites Latentes MS 38: 479</td>
<td>Add. MS 52660: 452 n. 33–34, 462 n. 70, 466 n. 90–91</td>
</tr>
<tr>
<td>Ghent, Universiteitsbibliotheek</td>
<td>Add. MS 52653: 446 n. 6, 447 n. 7, 449 n. 16–17</td>
</tr>
<tr>
<td>MS 92: 569</td>
<td>Add. MS 52656: 458 n. 51</td>
</tr>
<tr>
<td>Göttingen, Niedersächsische Staats- und-Universitätsbibliothek</td>
<td>Add. MS 52657: 458 n. 49, 472 n. 99, 476 n. 106</td>
</tr>
<tr>
<td>MS Uffenb. 51 cim.: 585</td>
<td>Add. MS 52658: 452 n. 31</td>
</tr>
<tr>
<td>The Hague, Koninklijke Bibliotheek</td>
<td>Add. MS 52662: 459 n. 55, 461 n. 67, 462 n. 68</td>
</tr>
<tr>
<td>MS 135 E 23: 478</td>
<td>Add. MS 52670: 460 n. 58, 462 n. 72 and 75</td>
</tr>
<tr>
<td>MS 135 J 8: 477</td>
<td>Add. MS 52692: 462 n. 73</td>
</tr>
<tr>
<td>The Hague, Museum Meermanno-Westreenianum</td>
<td>Add. MS 53652: 445 n. 1</td>
</tr>
<tr>
<td>MS 10 B 23: 355 n. 61</td>
<td>Cotton MS Nero A XI: 311</td>
</tr>
<tr>
<td>Hildesheim, Dombibliothek</td>
<td>Egerton MS 3055: 472</td>
</tr>
<tr>
<td>MS St Godehard 1: 355 n. 61</td>
<td>Egerton MS 3088: 473</td>
</tr>
<tr>
<td>Jerusalem, National Library of Israel</td>
<td>Egerton MS 3089: 471</td>
</tr>
</tbody>
</table>
MS Harley 1862: 335 n. 23
MS. Harley 3698: 390 n. 63
MS Harley 3915: 585
MS Laud Misc. 511: 336 n. 24, 347
MS Royal 15 D 1: 355 n. 61
MS Royal 17: 328 n. 1
MS Royal 17 C.xxxiii (Royal C): 328 n. 1, 333, 335–36, 336 fig. 1, 346 n. 37, 365 n. 67
MS Royal 17 D.viii (Royal D): 333, 335–37, 337 fig. 2, 346 n. 37, 348 n. 46, 349 n. 47, 352 n. 50, 365 n. 67
MS. Sloane 334: 390 n. 63
MS. Sloane 512: 390 n. 63
OR. 13703: 433, 434 fig. 2
Or. 16552: 434
Yates Thompson MS 7: 450 n. 19

London, London Metropolitan Archives, Guildhall Library
MS. 5265/1: 376 n. 17, 377 n. 25, 380 n. 36
MS. 9051/5: 378 n. 30, 385 n. 50
MS. 9171/15: 378 n. 28

London, Quaritch Archives
Commission Book for 1914–1917: 446 n. 2–3
Commission Book for 1917–1920: 450 n. 19 and 21
Commission Book for 1921–1926: 461 n. 62–63

London, Victoria and Albert Museum
MS 16: 472
MS Ludwig V 6: 475
MS Ludwig IX 3.: 474
P.159–1910: 585

Los Angeles, The J. Paul Getty Museum
MS 48: 478
MS Ludwig XI, 1: 480

Madrid, Biblioteca Nacional
MSS/11267/21: 542

Milan, Biblioteca Nazionale Braidense
AC IX 36: 473

Monza, Biblioteca Capitolare
Monza a-3/10: 514 n. 24
Monza a-3: 513 n. 18, 514, 514 n. 21, 515 n. 27
Monza a-4: 513 n. 18
Monza a-5: 513 n. 18, 515 n. 29
Monza a-6: 513 n. 19, 516 n. 30, 518–19
Monza a-7: 513 n. 19
Monza a-8: 513 n. 18
Monza a-9: 513 n. 19
Monza a-10: 513 n. 19, 514 n. 20, 516 n. 31, 517 fig. 2
Monza a-11: 513 n. 19, 516 n. 31
Monza a-12: 513 n. 18
Monza a-13: 513 n. 19, 516 n. 31
Monza a-14: 513 n. 18–19, 516 n. 31
Monza a-15: 513 n. 17
Monza a-16: 513 n. 19, 516 n. 32
Monza a-17: 513 n. 19, 516 n. 31
Monza a-18: 513 n. 19, 516 n. 32
Monza a-19: 513 n. 19
Monza a-20: 513 n. 18
Monza a-21: 513 n. 18
Monza a-22: 513 n. 18, 514 n. 24, 515 n. 27, 516 n. 30, 519
Monza a-23: 513 n. 19, 514 n. 24, 515 n. 27
Monza a-24: 513 n. 18
Monza a-25: 513 n. 18, 514 n. 24, 515 n. 27
Monza a-26: 513 n. 19
Monza a-27: 513 n. 16
Monza b-1: 513 n. 16
Monza b-2: 513 n. 19, 516 n. 31
Monza b-3: 513 n. 19, 515, 515 n. 25
Monza b-4: 513 n. 19, 515, 515 n. 28
Monza b-5: 513 n. 19, 514 n. 24, 515 n. 27
Monza b-7: 513 n. 16
Monza b-9: 514 n. 24, 515 n. 27
Monza e-4: 513 n. 18, 516 n. 31
<table>
<thead>
<tr>
<th>Manuscript</th>
<th>Year</th>
<th>Location</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS 389</td>
<td>470</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS 390</td>
<td>470</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS 437</td>
<td>477</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS 934/2708</td>
<td>471</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS 1036</td>
<td>473</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS 1092</td>
<td>472</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS 1347</td>
<td>452</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS 1798</td>
<td>456, 459, 475</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS 2164</td>
<td>458</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS 2165/21787</td>
<td>470</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS 2251</td>
<td>477</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS 2506</td>
<td>463, 476</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS 3009</td>
<td>482</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS 3010</td>
<td>451, 480</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS 3075</td>
<td>470</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS 3339</td>
<td>474</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS 3344</td>
<td>471</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS 3383</td>
<td>474</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS 3502</td>
<td>459, 477</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS 3535</td>
<td>471</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS 3633</td>
<td>452</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS 3674</td>
<td>471</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS 3897</td>
<td>474, 477</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS 3948</td>
<td>456</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS 4259</td>
<td>473</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS 4448</td>
<td>473</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS 4597</td>
<td>472</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS 4600</td>
<td>474</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS 4769</td>
<td>471</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS 4790</td>
<td>456</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS 6546</td>
<td>470</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS 6640</td>
<td>477</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS 6659</td>
<td>480</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS 6972</td>
<td>480</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS 7084</td>
<td>477</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS 10190</td>
<td>470</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS 12200</td>
<td>473</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS 12260</td>
<td>470</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS 12262</td>
<td>470</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS 12263</td>
<td>470</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS 12264</td>
<td>470</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS 12269</td>
<td>472</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS 12283</td>
<td>480</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS 12348</td>
<td>471</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS 14122</td>
<td>451, 470</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS 21948</td>
<td>471</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Private Archive of the Escalante family

Historia de los reyes moros de Granada:

544–67, 548 fig. 1, 550 n. 18 and 22–23, 551 fig. 2, 551 n. 24, 553 fig. 3, 554 fig. 4, 555 fig. 5

Petchaburi, Thailand, Wat Lat
Manuscript: 433

Philadelphia, Philadelphia Museum of Art
1945–65–6: 480

Philadelphia, University of Pennsylvania
Rare Book and Manuscript Library

MS Codex 730: 528, 530 fig. 3, 531, 531

MS Codex 741: 528, 529 fig. 2, 531, 531
nn. 20–22, 532 nn. 23–30, 32 and 35, 533

Ms. Coll. 591: 509 n. 4, 510 fig. 1

Princeton, Princeton University Library

Kane MS 31: 476
Kane MS 33: 482
Kane MS 43: 480
Kane MS 48: 482
MS Garrett 143: 296 n. 1

Rome, Biblioteca Casanatense

MS 969: 269
MS 1730: 267–95, 267 n. 1, 267–68 n. 3, 268 n. 4, 269 n. 6, 270 fig. 1, 272 figs. 2–3, 273 fig. 4, 277 fig. 5, 277 nn. 17–21, 278 figs. 6–7, 279 n. 22, 280 figs. 8–9, 280 n. 23, 281 figs. 10–11, 281 n. 24, 282 nn. 25–27, 283 figs. 12–14, 284 n. 28, 285 figs. 15–16, 285 n. 29, 286 n. 30, 287 figs. 17–18, 288 fig. 19, 288 n. 31, 289 fig. 20, 290 figs. 21–22, 291 fig. 23, 291 n. 32, 292 fig. 24, 293 fig. 25
MS 2206: 421 n. 75

Rome, Biblioteca Nazionale Centrale
VE 1006: 470
VE 1190: 469
VE 1347: 470
VE 1348: 470
VE 1357: 470
VE Sessor 590: 470

San Lorenzo de El Escorial, Real Biblioteca del Monasterio de El Escorial
Y/III/6: 542, 558 n. 31

San Marino, Huntington Library
HM 31151: 471

Siena, Biblioteca Comunale degli Intronati
MS D V 13: 405 n. 37, 418, 420 fig. 2

Stockholm, Nationalmuseum
NMB 1960: 479

Stuttgart, Landesbibliothek
Theol. & Phil. Fol. 341: 472

Tokyo, Senshu University
MS 7: 467, 467 n. 95, 482

Vatican City, Biblioteca Apostolica Vaticana
Stamp. Barb. A VIII 18.: 403, 408 n. 51, 420
Var. et. 1: 400, 400 n. 25, 409–10, 410 n. 59, 421 n. 75, 422, 424 fig. 5, 425, 425 n. 81, 426
Var. et. 2: 400, 400 n. 25, 401, 409, 425–26
Var. et. 5: 407
Var. et. 10: 425 n. 82
Var. et. 15: 406, 406 n. 39, 425
Var. et. 16–18: 425 n. 82
Var. et. 25: 406–7 n. 44, 407
Var. et. 35: 400, 406, 406 nn. 39–40, 409, 409 n. 53, 421, 422 fig. 3, 425 n. 82, 426
Var. et. 40: 426
Var. et. 42, 49, 52, and 57: 425 n. 82
Var. et. 66: 400, 402–6, 406 n. 39, 407 n. 45, 408 n. 51, 409, 411, 418, 419 fig. 1, 423 n. 80, 425 n. 82, 426
Var. lat. Ms. 2648: 269
Var. lat. Ms. 3978: 269
Var. lat. Ms. 5092: 269
Var. lat. Ms. 6177: 398 n. 15, 401 n. 29
Var. lat. Ms. 6178: 398 n. 16
Vaticano Rossiano 865 MS Var. Ross 865: 400, 400 n. 25, 409, 422, 423 fig. 4, 426

Vatican City, Archivio Segreto Vaticano
AA., Arm. I–XVIII, no. 2953: 395 nn. 7–8, 396 nn. 9–10, 397 nn. 13–14, 398 nn. 17–18, 404 n. 34, 416 n. 72