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Probabilistic Planning with Clear Preferences on
Missing Information

Maxim Likhachev a and Anthony Stentz b

aComputer and Information Science, University of Pennsylvania, Philadelphia, PA, USA
bThe Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, USA

Abstract

For many real-world problems, environments at the time of planning are only partially-
known. For example, robots often have to navigate partially-known terrains, planes often
have to be scheduled under changing weather conditions, and car route-finders often have to
figure out paths with only partial knowledge of traffic congestions. While general decision-
theoretic planning that takes into account the uncertainty about the environment is hard
to scale to large problems, many such problems exhibit a special property: one can clearly
identify beforehand the best (called clearly preferred) values for the variables that represent
the unknowns in the environment. For example, in the robot navigation problem, it is always
preferred to find out that an initially unknown location is traversable rather than not, in the
plane scheduling problem, it is always preferred for the weather to remain a good flying
weather, and in route-finding problem, it is always preferred for the road of interest to
be clear of traffic. It turns out that the existence of the clear preferences can be used to
construct an efficient planner, called PPCP (Probabilistic Planning with Clear Preferences),
that solves these planning problems by running a series of deterministic low-dimensional
A*-like searches.

In this paper, we formally define the notion of clear preferences on missing information,
present the PPCP algorithm together with its extensive theoretical analysis, describe sev-
eral useful extensions and optimizations of the algorithm and demonstrate the usefulness
of PPCP on several applications in robotics. The theoretical analysis shows that once con-
verged, the plan returned by PPCP is guaranteed to be optimal under certain conditions. The
experimental analysis shows that running a series of fast low-dimensional searches turns
out to be much faster than solving the full problem at once since memory requirements
are much lower and deterministic searches are orders of magnitude faster than probabilistic
planning.

Keywords: planning with uncertainty, planning with missing information, Partially Ob-
servable Markov Decision Processes, planning, heuristic search
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1 Introduction

A common source of uncertainty in planning problems is lack of full information
about the environment. A robot may not know the traversability of the terrain it
has to traverse, an air traffic management system may not be able to forecast with
certainty future weather conditions, a car route-finder may not be able to predict
well future traffic congestions or even be sure about present traffic conditions, a
shopping planner may not know whether a particular item will be on sale at one of
the stores it considers. Ideally, in all of these situations, to produce a plan, a planner
needs to reason over the probability distribution over all the possible instances of
the environment. Such planning is known to be hard [1, 2].

For many of these problems, however, one can clearly name beforehand the “best”
values of the variables that represent the unknowns in the environment. We call
such values clearly preferred values. Thus, in the robot navigation problem, it is
always preferred to find out that an initially unknown location is traversable rather
than not. In the air traffic management problem it is always preferred to have a
good flying weather. In the problem of route planning under partially-known traffic
conditions, it is always preferred to find out that there is no traffic on the road of
interest. And finally, in the shopping planning example, it is always preferred for a
store to hold a sale on the item of interest. These are just few of what we believe
to be a large class of planning problems that exhibit clear preferences on missing
information. One of the reasons for this is that the knowledge of clear preferences
on missing information is not the same as the knowledge of a best action at a state
or the value of an optimal policy. Instead, we often know at intuitive level what
would be the best event for us (i.e., no traffic congestion, sale, etc), independently
of whether we choose to make use of this event or not. All the other outcomes, on
the other hand, are of less preference to us. This intuitive information can be used
in planning.

In this paper we present an algorithm called PPCP (Probabilistic Planning with
Clear Preferences) that is able to scale up to very large problems by exploiting the
fact that these preferences exist. PPCP constructs and refines a plan by running a
series of deterministic A*-like searches. Furthermore, by making an approximating
assumption that it is not necessary to retain information about the variables whose
values were discovered to be clearly preferred values, PPCP keeps the complexity
of each search low and independent of the amount of the missing information.
Each search is extremely fast, and running a series of fast low-dimensional searches
turns out to be much faster than solving the full problem at once since the memory
requirements are much lower and deterministic searches can often be many orders
of magnitude faster than probabilistic planning techniques. While the assumption
PPCP makes does not need to hold for the algorithm to converge, the returned plan
is guaranteed to be optimal if the assumption does hold.
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The paper is organized as follows. We first briefly go over A* search and explain
how it can be used to find least-cost paths in graphs. We then explain how a planning
problem changes when some of the information about the environment is missing.
In section 4, we introduce the notion of clear preferences on missing information
and briefly talk about the problems that exhibit them. In section 5, we explain the
PPCP algorithm and how it makes use of the clear preferences. The same section
gives an extensive theoretical analysis of PPCP that includes the correctness of
the algorithm, some complexity results as well as the conditions for the optimal-
ity of the plan returned by PPCP. In section 6 of the paper, we describe two useful
extensions of the algorithm such as how one can interleave PPCP planning and exe-
cution. In the same section, we also give two optimizations of the algorithm which
at least for some problems can speed it up by more than a factor of four. On the
experimental side, section 7 shows how PPCP enabled us to successfully solve the
path clearance problem, an important problem in defense robotics. The experimen-
tal results in section 8.1, on the other hand, evaluate the performance of PPCP on
the problem of robot navigation in partially-known terrains. They show that in the
environments small enough to be solved with methods guaranteed to converge to
an optimal solution (such as Real-Time Dynamic Programming [3]), PPCP always
returns an optimal policy while being much faster. The results also show that PPCP
is able to scale up to large (costmaps of size 500 by 500 cells) environments with
thousands of initially unknown locations. The experimental results in section 8.2,
on the other hand, show that PPCP can also solve large instances of path clearance
problem and results in substantial benefits over other alternatives. We finally con-
clude the paper with a short survey of related work, discussion, and conclusions.

2 Backward A* Search for Planning with Complete Information

Notations. Let us first consider a planning problem that can be represented as a
search for a path in a fully known deterministic graph G. The fact that the graph
G is completely known at the time of planning means that there is no missing
information about the domain (i.e., environment). We use S to denote a state (a
vertex, in the graph terminology) in the graph G. State Sstart refers to the state of
the agent at the time of planning, while state Sgoal refers to the desired state of
the agent. We use A(S) to represent a set of actions available to the agent at state
S ∈ G. Each action a ∈ A(S) corresponds to a transition (i.e., an edge) in the graph
G from state S to the successor state denoted by succ(S, a). Each such transition is
associated with the cost c(S, a, succ(S, a)). The costs need to be be bounded from
below by a (small) positive constant.

Backward A* Search. The goal of shortest path search algorithms such as A*
search [4] is to find a path from Sstart to Sgoal for which the cumulative cost of the
transitions along the path is minimal. The PPCP algorithm we present in this paper
is based on running a series of deterministic searches. Each of these searches is
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a modified backward A* search - the A* search that searches from Sgoal towards
Sstart by reversing all the edges in the graph. In the following, we therefore briefly
describe the operation of a backward A* search.

Suppose for every state S ∈ G we knew the cost of a least-cost path from S to
Sgoal. Let us denote such cost by g∗(S). Then a least-cost path from Sstart to Sgoal

can be easily followed by starting at Sstart and always executing such action a ∈
A(S) at any state S that a = arg mina∈A(S)(c(S, a, succ(S, a)) + g∗(succ(S, a)).
Consequently, A* search tries to compute g∗-values. In particular, A* maintains
g-values for each state it has visited so far. g(S) is always the cost of the best path
found so far from S to Sgoal. The pseudocode in Figure 1 gives a simple version
of backward A*. In this version, besta pointers are used to store the actions that
follow the found paths.

1 g(Sstart) =∞, OPEN = ∅;
2 g(Sgoal) = 0, besta(Sgoal) = null;
3 insert Sgoal into OPEN with the priority equal to g(Sgoal) + heur(Sgoal);
4 while( g(Sstart) > minS∈OPEN(g(S) + heur(S)))
5 remove state S with minimum priority (g(S) + heur(S)) from OPEN;
6 for each action a and S′ such that S = succ(S′, a)

7 if search hasn’t seen S′ yet or g(S′) > c(S′, a, S) + g(S)

8 g(S′) = c(S′, a, S) + g(S), besta(S′) = a;
9 insert S′ into OPEN with the priority equal to g(S′) + heur(S′);

Fig. 1. Backward A* search

The code starts by setting g(Sgoal) to 0 and inserting Sgoal into OPEN. The code then
repeatedly selects states from OPEN and expands them - executes lines 6 through
9. At any point in time, OPEN is a set of states that are candidates for expansion.
These are also the states from which new paths to Sgoal have been found but have
not been propagated to their predecessors yet. As a result, the expansion of state S
involves checking if a path from any predecessor state S ′ of S can be improved by
using the found path from S to Sgoal, and if so then: (a) setting the g-value of S ′

to the cost of the new path found; (b) setting action besta(S ′) to the action a that
leads to state S; and (c) inserting S ′ into OPEN. The last operation makes sure that
S ′ will also be considered for expansion and, when expanded, the cost of the found
path S ′ to Sgoal will be propagated to the predecessors of S ′.

The goal of A* is to expand states in such order as to minimize the number of
expansions required to guarantee that the states on at least one of the least-cost
paths from Sstart to Sgoal are expanded. Backward A* expands states in the order
of g(S) + heur(S), where heur-values estimate the cost of a least-cost path from
Sstart to S. The heur-values must never overestimate (i.e., must be admissible),
or otherwise A* may return a suboptimal solution. In order for each state not to be
expanded more than once, heur-values need to be also consistent: heur(Sstart) = 0
and for any two states S, S ′ ∈ G such that S ∈ succ(S ′, a) for some a ∈ A(S ′),
heur(S ′) + c(S ′, a, S) ≥ heur(S). If heur-values are consistent then every time
the search expands a state S, a least-cost path from S to Sgoal has already been
found and therefore a better path will never show up later and the state will never
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be re-inserted into OPEN. Ordering expansions based on the summation of g- and
heur-values makes the search focus expansions on the states through which the
whole path from Sstart to Sgoal looks most promising.

The search terminates when g(Sstart) - the cost of the best path found so far from
Sstart to Sgoal - is at least as small as the smallest summation of g and heur values in
OPEN. Consequently, OPEN no longer contains states that belong to the paths with
smaller costs than g(Sstart). This means that A* can terminate and guarantee that
the found path is optimal. The proof of this guarantee relies in one way or another
on the fact that the g∗-values of the states on an optimal path are monotonically
decreasing: if an optimal path from Sstart to Sgoal contains a transition S → S ′

via some action a, then g∗(S) > g∗(S ′). This monotonicity property will show up
later in the paper. In particular, while in a general case optimal plans in domains
with missing information do not necessarily exhibit monotonicity of state values,
we will show that in case of clear preferences, the state values on optimal plans are
indeed monotonic in some sense. This will allow us to use a series of backward A*
searches to plan.

Example. To make later explanations clearer, let us consider a trivial planning prob-
lem shown in Figure 2 (a). Suppose an agent needs to buy wine and cheese, and
there are two stores, store A and store B. Both stores have both products but at
different prices as shown in the figure. Initially, the agent is at home and the cost
of traveling from home to each store and in between stores can also be translated
into money (all the costs are shown in Figure 2(a)). The planning problem is for
the agent to purchase wine and cheese with the minimal cost (including the cost of
travel) and return home.

Figure 2(b) shows how this problem can be represented as a graph. Each state
encodes the position of the agent and what it has already bought. Thus, Sstart

is {Agent = Home,Bought = ∅} and Sgoal is {Agent = Home,Bought =
wine, cheese}. Figure 2(c) shows g-values, heuristics and priorities f = g + heur
of states as computed by backward A* search that was used to find a least-cost path.
The found path is shown by thicker lines. The states expanded by A* are shown in
grey. For each state S, the heuristic heur(S) is the cost of moving from home to the
store the agent is in at state S plus the cost of purchasing the items that are bought
at state S assuming the price is the minimum possible price across both stores (re-
member that the search is backward and therefore the heuristics estimate the cost
of a least-cost path from start state to state in question). Thus, an optimal plan for
the agent is to go to store A, buy cheese there, go to store B, buy wine there and
then return home.
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(a) shopping example

(b) corresponding graph

(c) state values after A* search and the path it finds

Fig. 2. Simple example of planning with complete information

3 Planning with Missing Information

In the example above, the graph G that represents the planning problem and all of
its edge costs were fully known. By planning with missing information, on the other6









(a) the first policy (b) the second policy

(c) after 5 secs (d) after 15 secs

(e) after 30 secs (PPCP converged) (f) actual path of the robot

Fig. 13. Solving path clearance problem with PPCP

the robot executes the plan, PPCP improves it relative to the current position of
the robot. Figure 13(d) shows the new position of the robot (the robot travels at
the speed of 1 meter per second) and the current policy generated by PPCP after
15 seconds since the robot was given its goal. Figure 13(e) shows the position of
the robot and the policy PPCP has generated after 30 seconds. At this point, PPCP
has converged and no more refinement is necessary. Note how the generated policy
makes the robot go through the area on its left since there are a number of ways to
get to the goal and therefore there is a high chance that one of them will be avail-
able. Unlike the plan generated by planning under freespace assumption, the plan
generated by PPCP avoids going through location A. Figure 13(f) shows the actual
path traversed by the robot. It is 4,123 meters long while the length of the trajectory
traversed by the robot that plans with freespace assumption (Figure 12(b)) is 4,922
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# of Percent Solved Time to Solution

unknowns Convergence (in secs) Cost

VI LAO* RTDP PPCP VI LAO* RTDP PPCP Same for All

6 92% 72% 100% 100% 7.7 43.9 0.4 0.1 112,284

10 — 36% 92% 100% — 123.1 19.7 0.2 117,221

14 — — 80% 100% — — 25.8 0.2 113,918

18 — — 48% 100% — — 52.3 0.7 112,884

(a) runs on small environments

# of unknowns Traversal Cost

PPCP Freespace

1,000 (0.4%) 1,368,388 1,394,455

2,500 (1.0%) 1,824,853 1,865,935

5,000 (2.0%) 1,521,572 1,616,697

10,000 (4.0%) 1,626,413 1,685,717

25,000 (10.0%) 1,393,694 1,484,018

v
(X

st
a
rt
)

planning time in secs (log-scale)

(b) rate of convergence (c) runs on large environments

Fig. 14. Experimental Results

meters.

8 Experimental Analysis

8.1 Navigation in a partially-known terrain

In this section, we use the problem of robot navigation in unknown terrain to eval-
uate the performance of PPCP algorithm (without optimizations). In all of the ex-
periments we used randomly generated fractal environments that are often used to
model outdoor environments [15]. A robot was allowed to move in eight directions,
and the cost of each move in between two traversable cells was defined as the dis-
tance between the centers of the corresponding cells times the cost of traversing the
target cell (according to its fractal value). The cost of sensing and discovering an
initially unknown cell to be untraversable was set to the cost of moving towards the
cell and then moving back into the source cell.
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In the first set of experiments we compared the performance of PPCP with three op-
timal algorithms: VI (value iteration), LAO* [16], and RTDP [3]. All three can be
used to plan in finite-size belief state-spaces, and the latter two have been shown to
be competitive with other planners in belief state-spaces [5]. To make VI more effi-
cient and scalable, we first performed a simple reachability analysis from the initial
belief state, and then ran VI only on the reachable portion of the belief state-space.
Both PPCP and LAO* used the following (admissible and consistent) heuristics to
estimate distances in between any two states with coordinates (x1, y1) and (x2, y2):

√
2 min(|x1 − x2|, |y1 − y2|) + (max(|x1 − x2|, |y1 − y2|)−min(|x1 − x2|, |y1 − y2|))

The same heuristics were also used to initialize the state values when running VI
and RTDP algorithms.

Figure 14(a) shows the time it takes to converge, the percent of solved environments
(the environments were declared to be unsolved when an algorithm ran for more
than 15 minutes), and the solution costs for the four algorithms for the environments
of size 17 by 17 cells. The number of unknown locations increases from 6 to 18 and
for each number the results are averaged over 25 environments.

The figure shows that PPCP converges faster than the other algorithms and the dif-
ferences in speeds grow large very fast with the increase in the number of unknown
locations. More importantly, PPCP was able to solve all environments in all cases.
(We do not give numbers for VI for more than 6 unknowns and LAO* for more
than 10 unknowns because they were running out of memory on almost all envi-
ronments. 2 ) Figure 14(a) also shows that in all the cases the solution returned by
PPCP turned out to be the same as the one returned by other algorithms, an optimal
solution. (An interesting and potentially important by-product of these results is an
implication that, at least in randomly generated environments, an optimal naviga-
tion in a partially-known environment does not really need to memorize the cells
that turn out to be free.) Finally, Figure 14(b) shows the rate of convergence (v-
value of start state) of the algorithms for one of the environments with 6 unknowns
(note the log scale of the time).

Besides the algorithms we compared PPCP against, there are other efficient algo-
rithms such as HDP [17], MCP [18], FF-replan [19] and FPG [20] that can be used
to plan in finite belief state-spaces. While we have not compared their performance,

2 In many domains, LAO* runs much better than VI. In our domain however, the perfor-
mance of LAO* was comparable to VI and much worse than that of RTDP. We believe that
the reason for this was the fact that the heuristics were not that informative since the costs
of cells were often much larger than ones. If the heuristics do not focus efforts well, then
VI with a reachability analysis may even become more efficient than LAO* due to its much
smaller overhead.
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(a) A typical group I environment (b) A typical group II environment
Fig. 15. The example of environments used in testing and the plans generated by PPCP for
each.

we believe they would show the performance similar to the one exhibited by RTDP
and LAO* since they all have to perform planning in the belief state-spaces that are
exponential in the number of unknowns.

The second set of experiments shows that PPCP can be applied to the problem of
robot navigation in environments of large size and with large number of unknown
locations. Figure 14(c) compares the performance of PPCP against a strategy of
planning with freespace assumption. The comparison is done on the environments
of size 500 by 500 cells with the number of unknown locations ranging from 1,000
(0.4% of overall size) to 25,000 (10%). (The size of the corresponding belief state-
spaces therefore ranges from 250, 000 · 31,000 to 250, 000 · 325,000.) Unlike in the
previous experiments, in these ones the robot was moving and was given only 1
second to plan during each of its moves (for both planning with PPCP and planning
with freespace assumption). This amount of time was always sufficient for planning
with freespace assumption to generate a path. The PPCP planning, however, was
interleaved with execution as described in section 6.2. In most experiments, PPCP
converged to a final policy after several tens of moves. Figure 14(c) summarizes
the execution costs of two approaches averaged over 25 randomly generated fractal
environments for each row in the table. The results show that the cost of the trajec-
tory traversed by the robot with PPCP planning is consistently smaller than the one
traversed by the robot with freespace assumption planning.

8.2 Path clearance

In this section, we study the performance of PPCP algorithm on the path clearance
problem. In all of the experiments we used the extended version of PPCP that al-
lowed it to remember k = 3 last preferred outcomes (described in section 6.1). In
all of our experiments we again used randomly generated fractal environments to
model outdoor environments. On top of these fractal environments, however, we
also superimposed a number of randomly generated paths in between randomly
generated pairs of points. The paths were meant to simulate roads through forests
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# of Time to Convergence Converged

Expansions (secs) within 15 minutes

unoptimized PPCP 59,759,717 281.83 64%

optimized PPCP 11,911,585 60.81 92%

Table 1
The comparison of unoptimized and optimized PPCP on Group I environments. The con-
vergence times are given for the environments on which both algorithms converged within
15 minutes.

and valleys and that are usually present in outdoor terrains. Figures 15(a,b) show
typical environments that were used in our experiments. The lighter colors repre-
sent more easily traversable areas. All environments were of size 500 by 500 cells,
with the size of each cell being 5 by 5 meters.

The test environments were split into two groups. Each group contained 25 envi-
ronments. For each environment in the group I we set up 30 possible adversary
locations at randomly chosen coordinates but in the areas that were traversable.
(The size of the corresponding belief state-space is 250, 000 · 330.) Figure 15(a)
shows a plan the PPCP algorithm with both optimizations (described in sections 6.3
and 6.4) has generated after full convergence for one of the environments in group
I. For each environment in the group II we set up 10 possible adversary locations.
(The size of the corresponding belief state-space is 250, 000 · 310.) The coordinates
of these locations, however, were chosen such as to maximize the length of detours.
This was meant to simulate the fact that an adversary may often be set at a point
that would make the robot take a long detour. In other words, an adversary is often
set at a place that the robot is likely to traverse. Thus, the environments in group II
are more challenging. Figure 15(b) shows a typical environment from the group II
together with the plan generated by PPCP with both optimizations. The shown plan
has about 95% probability of reaching the goal (in other words, the robot executing
the policy has at most 5% chance of encountering an outcome for which the plan
had not been generated yet). In contrast to the plan in Figure 15(a), the plan for the
environment in group II is more complex - the detours are much longer - and it is
therefore harder to compute. For each possible adversary location the probability
of containing an adversary was set at random to a value in between 0.1 and 0.9.

We have run two sets of experiments on these environments. In the first set we
compared the unoptimized PPCP algorithm to the PPCP algorithm with the two
optimizations we have described in sections 6.3 and 6.4. Table 1 shows the results
for the group I averaged over all of the environments in it. The algorithms were run
until full convergence in order to obtain the comparison results. According to them
the number of states expanded by the unoptimized PPCP is about five times more
and its run-time is also close to five times longer than for the optimized PPCP. The
unoptimized PPCP has also converged on less environments within 15 minutes.
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Overhead in Execution Cost

Group I Group II Group I Group II

no penalty no penalty with penalty with penalty

freespace 5.4% 5.2% 35.4% 21.6%

freespace2 0.5% 4.9% 4.8% 17.0%

freespace3 2.1% 4.3% 0.0% 12.7%

Table 2
The overhead in execution cost of navigating using planning with freespace assumption
over navigating using planning with PPCP

In the second set of experiments we compared the execution cost of the robot plan-
ning with our optimized PPCP versus the execution cost of the robot planning with
freespace assumption [14]. Unlike in the previous experiments, the robot was mov-
ing and had 5 seconds to plan while traversing 5 meter distance. This amount of
time was always sufficient for planning with freespace assumption to generate a
path. The PPCP planning, on the other hand, was interleaved with execution as we
have explained in section 6.2.

Table 2 shows the overhead in the execution cost incurred by the robot that plans
with the freespace assumption over the execution cost incurred by the robot that
uses PPCP for planning. The rows freespace2 and freespace3 correspond to mak-
ing a cost of going through a cell that belongs to a possible adversary location
twice and three times higher than what it really is, respectively. One may scale
costs in this way in order to bias the paths generated by the planner with freespace
assumption away from going through possible adversary locations. The results are
averaged over 8 runs for each of the 25 environments in each group. For each run
the true status of each adversary location was generated at random according to the
probability having an adversary in there.

The figure shows that planning with PPCP results in considerable execution cost
savings. The savings for group I environments were small only if biasing the
freespace planner was set to 2. The problem, however, is that the biasing factor
is dependent on the actual environment, the way the adversaries are set up and the
sensor range of an adversary. Thus, the overhead of planning with freespace for
the group II environments is considerable across all bias factors. In the last two
columns we have introduced penalty for discovering an adversary. It simulated the
fact that the robot runs the risk of being detected by an adversary when it tries to
sense it. In these experiments, the overhead of planning with freespace assumption
becomes very large. Also, note that the best bias factor for freespace assumption
has now shifted to 3 indicating that it does depend on the actual problem. Overall,
the results indicate that planning with PPCP can have significant benefits and do
not require any tuning.
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9 Related Work

In general, planning with missing (incomplete) information about the environment
and with sensing is a special class of planning for Partially Observable Markov De-
cision Processes (POMDPs) [5]. As a result, theoretically, algorithms for solving
POMDPs are also applicable to solving the problem of planning with missing infor-
mation. Unfortunately, however, planning optimally for POMDPs, in general, and
planning with missing information, in particular, is known to be intractable [1, 2].
Various approximations techniques have been proposed instead [21–28]. For ex-
ample, grid-based approaches such as [28–30] solve POMDPs by putting special-
ized grids over infinite belief state-spaces, thereby converting the planning prob-
lem into solving a finite-size but usually very large MDP. Point-based approaches
such as [24, 26, 27, 31] approximate the value function over the whole belief space
by computing it for a relatively small set of reachable points in the belief space.
Factorization-based approaches such as [21–23] use factored representation of be-
lief states. Baral and Son have developed approximation techniques for solving
planning with missing information problems [32].

A number of approaches capable of planning with missing information have also
been based on the idea of using heuristic searches in one way or another [3, 5, 16–
18, 31, 33–35]. For example, LAO* [16] - one of the algorithms that we used in
our experiments - is an efficient combination of dynamic programming and A*-
like extensions developed specifically for planning in MDPs. It has also be shown,
however, to be able to find policies in the belief state-spaces [5]. MCP [18] can also
efficiently find optimal policies by running a series of A*-like searches in the belief
state-spaces with sparse stochasticity. HSVI [31] and FSVI [35] incorporate some
of the ideas behind heuristic searches into the point-based approaches. MAA* [34]
is an algorithm for solving finite-horizon decentralized POMDPs optimally using
A*-like processing. Similarly to how we used it in our experiments, RTDP [3] can
also be used to find solutions to POMDP problems by planning in belief state-
spaces [5].

Many of the abovementioned algorithms are capable of solving general POMDP
problems. It is important to realize however, that the problem we are addressing
in this paper is a much narrower (and simpler) than solving a general POMDP.
For one, we assume that the underlying problem is deterministic and there is only
uncertainty about some actions due to missing information about the environment.
We also assume sensing is perfect which entails a finite size belief state-space with
an acyclic optimal policy. Most importantly, however, we concentrate on the class
of problems for which there are clear preferences on the missing information. The
most relevant to our work, perhaps, is the algorithm in [36], developed for the
problem of robot navigation in a partially-known terrain. Similarly to our definition
of clear preferences, their planner has taken advantage of the idea that the cost of the
plan if a cell is free can not be larger than the cost of the plan if the cell is occupied.
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Based on this idea, they proposed a clever planner that is capable of finding optimal
policies much faster than other optimal approaches.

The goal of our work, however, is to avoid dealing with the exponentially large
belief state-spaces altogether, which is required to guarantee the optimality of the
solution. This allows us to solve very efficiently and without running out of memory
large environments with a large amount of missing information. The cost is the
solution optimality guarantee, which can only be made under certain conditions.

10 Discussion and Future Work

Besides its efficiency and low memory requirements, the other important advan-
tages of the PPCP algorithm in our opinion are its simplicity and ease of implemen-
tation. PPCP is easy to implement because it is really just running a series of A*
searches on the instances of underlying problem, each of which is made determin-
istic by making the necessary assumptions about the pieces of missing information.
For example, in the path clearance problem, PPCP reduced to running a series of
A* searches (with the exception of how g-values are computed) to find paths in the
environments. Each environment had some adversaries present and some not, as
specified in Xp. Therefore, the implementation of the algorithm was rather trivial.

The main disadvantage of PPCP is that it can only provide optimality guarantees
under certain conditions (as described in section 5.4). It is our hope, however, that
it might be possible to derive general bounds on the sub-optimality of the solutions
returned by PPCP for the cases when these conditions are not satisfied. Interest-
ingly, in our experiments all of the solutions returned by PPCP were optimal when
compared on the environments small enough to be solved by algorithms that can
find provably optimal solutions.

Experimentally, PPCP works also for problems in which clear preferences are not
so clear. That is, even though a particular outcome of sensing is thought to be
a preferred outcome, it does not satisfy definition 1. In our opinion, it would be
valuable to analyze the behavior of PPCP for such problems from a theoretical
side. In particular, it would be interesting to derive a function that relates the sub-
optimality of PPCP to how much the clear preferences are not satisfied.

Finally, in this paper we concentrated on the notion of clear preferences on the
missing information. There are other common sources of uncertainty, however. One
direction for future research is therefore to explore whether the notion of clear
preferences can be extended to cover other types of uncertainty such as sensor noise
and uncertainty in actuation. For instance, in the latter case, one can also sometimes
name the preferred outcomes of actions. Thus, a robot moving along a cliff clearly
prefers not to slip. Sometimes, these preferences are clear and sometimes they can
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be “nearly” clear (i.e., sometimes a slip outcome may turn out to be a good outcome
at the end). In either case, however, it would be interesting to investigate whether
clear preferences could be assumed and used to construct a planner capable of
dealing in real-time with large-scale problems exhibiting both the uncertainty in
actuation and the uncertainty in the environment.

11 Conclusions

Most of us are not very good in planning under uncertainty. When faced with such
a task, we never try to derive a plan that minimizes the expected cost. Instead, we
will typically reason only about few contingencies and assume that in all the other
cases the fortune will look upon us. The key to being able to do this, however, is
the fact that we usually know (or assume) ahead of time what is good for us.

One of the goals of this paper was to formally define this notion of clear preferences
on missing information about the environment. A second goal of the paper was to
show how the existence of these clear preferences can be used to construct an effi-
cient planner PPCP. By making use of these preferences, PPCP solves the planning
problem by running a series of deterministic A*-like searches in the space of the
original (deterministic) planning problem (and not in the belief state-space that is
exponential in the number of unknowns). The complexity of each of these searches
is the same as the complexity of planning after making some assumptions about
all of the unknowns, which is a common way to make real-time planning possible.
This makes PPCP highly efficient and scalable to large-scale planning problems
with large amounts of uncertainty.

In our theoretical analysis, we have shown that once converged, the plan returned
by PPCP is guaranteed to be optimal under certain conditions. In our experimen-
tal analysis, we have shown that PPCP can be successfully used for planning in
partially-known terrains and for solving the path clearance problem, both impor-
tant problems in robotics. For both problems, PPCP could scale to much larger
environments and with much more uncertainty than previously possible. We are
also currently working on applying PPCP to several other planning problems in
robotics including navigation under uncertainty in the position of moving objects
such as humans and planning an autonomous landing for unmanned helicopters
under uncertainty in the safety of multiple landing sites. We therefore hope that
this paper will stimulate more research on the notion of clear preferences on uncer-
tainty, will make available to others an efficient algorithm for probabilistic planning
with missing information, and finally, will encourage a wider use of planning under
uncertainty for real-time robots operating in large-scale environments.
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