
RetinalIL-6 expression was increased fourfold by the P2X7
receptor agonist BzATP in the absence of any changes in
IOP (Fig. 2f).

Involvement of purines in the response to elevated IOP
was further probed by examining expression of certain
receptors. Receptor genesP2RX7andADORA3,coding for
the adenosine A3 receptor, were elevated in many retinas

examined after 1 day, but considerable variation meant the
rises were not signi! cant (Figure S2). GenesP2RX4and
P2RY6for purinergic receptors were increased 1 day, but not
5 days after IOP elevation. While the precise contribution of
these receptors remains to be determined, their increased
expression is consistent for mechanosensitive purinergic
signaling.

Fig. 2 Involvement of ATP and P2X7 receptor inIL-6 elevation in vivo.

(a) Expression of ectoATPase geneENTPD1 was elevated 1 day after

increase in intraocular pressure (IOP) to 50 mmHg for 4 h (Pressure,

*p = 0.033, N = 10). ENTPD1 remained elevated 5 days after the

procedure (*p = 0.004, N = 8). (b) The distribution of P2X7 antagonist

Brilliant Blue G (BBG) in the retina 1 day after intravitreal injection. The

staining pattern suggests distribution of BBG through the vitreal cavity

to the retina was restricted. A similar staining pattern remained in

retinas examined 6 days after injection. (c) The pressure-dependent

rise in IL-6 mRNA was substantially decreased following injection of

BBG. Data are expressed as relative gene expression in the pressur-

ized versus non-pressurized retina for eyes injected with 0.8% BBG or

saline 1Ð3 days before the moderate elevation of IOP to 50 mmHg for

4 h. N = 6Ð9. *p < 0.004 saline pressurized versus non-pressurized;

*p < 0.013 saline pressurized versus BBG pressurized. (d)

Representative immunoblots from whole retina lysates probed for IL-

6 (22 kDa) and housekeeping protein GAPDH (GAP, 37 kDa).

Expression of IL-6 is greater in the eye subject to the moderate IOP

increase (Pr) treated with saline as compared to the contralateral non-

pressurized control eye, but this pressure-dependent increase is

reduced after injection with BBG. (e) Summary of relative protein

expression from experiments illustrated in C quanti! ed with densito-

metry; N = 4Ð5. *p < 0.001 saline pressurized versus non-pressur-

ized; *p < 0.035 saline pressurized versus BBG pressurized. (f)

P2X7R agonist BzATP was suf! cient to increase levels of IL-6 mRNA

in the retina 1 day after intravitreally injection (250 l M, 2 l L per eye),

N = 5, *p = 0.021. (g) In wild-type C57Bl6J mice, transient elevation of

IOP to 60 mmHg for 4 h (Pressure) raised retina levels ofIL-6 mRNA.

N = 7, *p < 0.001. (h) In P2X7 knockout mice, the same elevation in

IOP did not signi! cantly increase levels of IL-6. N = 6.
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Pressure-dependent up-regulation of IL-6 absent in P2X7
knockout mice
Further confirmation of the role of the P2X7 receptor in the
pressure-dependent rise in IL-6 was provided with P2X7
knockout mice. Elevating the IOP of wild-type C57Bl6J
mouse eyes to 60 mmHg for 4 h led to a rise in IL-6 levels
analogous to that observed in the rat eye (Fig. 2g). In mice
missing the P2X7 gene, however, this rise in IOP did not
significantly change IL-6 levels (Fig. 2h). This supported the
pharmacological identification, while also demonstrating the
response occurred in multiple species.

IL-6 up-regulation and release from optic nerve head
astrocytes
In vitro experiments from isolated cells were pursued to
enable identification of specific cell types and better control
of pharmacological manipulation. Optic nerve head astro-
cytes undergo multiple changes in response to the mechan-
ical strain in glaucoma (Hernandez 2000). As we have
previously found that stretch of these astrocytes leads to the
release of ATP through pannexin hemichannels and subse-
quent autostimulation of P2X7 receptors (Beckel et al.
2014), the mechanosensitive response of IL-6 in these
astrocytes and the contribution of the P2X7 receptor was
examined.
Isolated rat optic nerve head astrocytes expressed glial

fibrillary acidic protein, confirming the identity of the
cultured cells (Fig. 3a). Astrocytes were plated on a silicone
substrate and subjected to a 5% equilateral strain at 0.3 Hz
for 4 h, followed by a 20 h break before RNA was extracted
to increase parallels to in vivo experiments. Levels of IL-6
mRNA were increased twofold in stretched astrocytes as
compared to controls (Fig. 3b). Unstretched astrocytes
exposed to 50 lM BzATP for 4 h also demonstrated a
twofold rise in IL-6, suggesting the P2X7 receptor was
sufficient to trigger the rise in IL-6 mRNA expression
(Fig. 3c) as found in vivo. An analogous rise in IL-6 was
produced by swelling astrocytes with a 30% hypotonic
solution for 4 h (Fig. 3d); this rise in IL-6 mRNA was
prevented by P2X7 receptor antagonists BBG and A839977
(Fig. 3d).
To confirm the contribution of the P2X7 receptor, the rise

in IL-6 expression in optic nerve head astrocytes isolated
from C57Bl6J mice and P2X7 knockout mice was compared.
Swelling cells from wild-type mice induced a significant
increase in IL-6 expression (Fig. 3e). In contrast, astrocytes
isolated from P2X7!/! mice showed a drop in the IL-6
expression with swelling.

IL-6 released from optic nerve head astrocytes
While the ability of P2X7 receptors to trigger the up-
regulation of IL-6 mRNA in vivo and in vitro implied an
increased involvement of the cytokine, the ability of the
receptor to trigger release of IL-6 was also tested.

Measurement of IL-6 levels in the bath surrounding the
astrocytes using an ELISA assay demonstrated that the
cytokine was released into the bath after stretch (Fig. 3f).
Exposure of astrocytes to agonist BzATP also led to a
substantial release of IL-6 (Fig. 3g). Cytokine release in
many cell types is mediated by increases in intracellular
calcium; for example, the release of IL-6 from spinal cord
astrocytes is calcium dependent (Codeluppi et al. 2014). To
confirm optic nerve head astrocytes experience a rise in
calcium upon swelling, levels were monitored with indica-
tor Fura-2. The rise in calcium was rapid and reversible
(Fig. 3h). To determine whether this response was depen-
dent upon autostimulation of the P2X7 receptor, the ability
of BBG to antagonize this rise was examined. Pre-
treatment of astrocytes with blocker BBG eliminated the
rise in calcium, implicating autostimulation of the P2X7
receptor, and consistent with a role for calcium in the
release.

IL-6 released from isolated retinal ganglion cells
Although the above experiments clearly indicate that
mechanical strain and stimulation of the P2X7 receptor can
lead to release of IL-6 from optic nerve head astrocytes,
immunostaining indicated that retinal ganglion cells
expressed high levels of IL-6 (Fig. 4a). The staining pattern
was particulate, consistent with IL-6 stored in vesicles. As
such, the ability of retinal ganglion cells to release IL-6 was
tested. As ganglion cells in situ are intertwined with various
other cell types, a two-step immunopanning procedure was
used to isolate retinal ganglion cells (Fig. 4b); previous
analysis indicates that > 98% of cells obtained in this way
are ganglion cells (Zhang et al. 2006). The purified cells
were plated on a silicone substrate and, once attached, a 4.1%
deformation strain was applied to stretch the cells for 4 min.
Cells were then returned to baseline for 1 min, with the
stretch cycle repeated two more times. There was a
significant increase in extracellular levels of IL-6 released
into the bath after this stretch period (Fig. 4c). Analogous
trials indicate that stimulation of the P2X7 receptor with
BzATP also released IL-6 from isolated retinal ganglion cells
(Fig. 4d). Attempts to process RNA from these isolated
ganglion cells were unsuccessful, precluding examination of
IL-6 expression. However, application of BzATP led to a
rapid increase in intracellular calcium in isolated retinal
ganglion cells (Fig. 4e); the response was rapid, reversible,
and repeatable.

Discussion

The signaling pathways linking mechanical strain to inflam-
mation play an important role in the cellular response to
stress. This study implicates the P2X7 receptor for extracel-
lular ATP in the mechanosensitive up-regulation of cytokine
IL-6 in the retina. In vivo data demonstrate IL-6 mRNA was
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substantially up-regulated after a transient elevation of IOP in
the rat retina, with the P2X7 receptor antagonist BBG
preventing the up-regulation of both IL-6 mRNA and IL-6
protein in retinal tissue. The transient rise in IOP increased
IL-6 expression in the retina of wild-type mice but not in
P2X7 knockout mice, further implicating the P2X7 receptor
and demonstrating the effect was not species dependent. In
isolated optic nerve head astrocytes, IL-6 expression was

increased by stretch, swelling, and directly by the P2X7
agonist BzATP. The swelling induced rise in IL-6 in
astrocytes was prevented by two different P2X7 antagonists.
In addition, both astrocytes and retinal ganglion cell released
IL-6 in response to agonist BzATP or to mild stretch.
Together, these data identify a role for the P2X7 receptor in
the mechanosensitive IL-6 response of neurons and astro-
cytes in the retina.

Fig. 3 IL-6 response in astrocytes. (a) Cultured rat optic nerve head
astrocytes stained for glial fibrillary acidic protein (green) and DAPI
(blue). Bar = 20 lm. (b) Increased expression of IL-6 mRNA in
stretched astrocytes; cells were subject to a 5% equilateral strain at
0.3 Hz for 4 h, followed by a 20 h break before extraction of RNA.
N = 8–9, *p = 0.011. (c) IL-6 expression was increased in astrocytes
exposed to 50 lM BzATP for 4 h. N = 5, *p = 0.008. (d) Expression of
IL-6 was also increased in cells exposed to moderate swelling induced
by 30% hypotonicity for 4 h. However, this rise in expression was
inhibited by P2X7R antagonists Coomassie Brilliant Blue G (BBG)
(50 lM) or A839977 (A83; 10 lM). Cells were pre-treated with
antagonists in isotonic solution for 1 h before swelling. N = 4
*p < 0.001 Swell versus Control, *p < 0.001 Swell versus swell+BBG,

*p < 0.001 Swell versus swell+A839977. (e) Cell swelling in 30%
hypotonic solution-induced rise in IL-6 mRNA was observed in optic
nerve head astrocytes from C57Bl6J mice (N = 6, *p = 0.006), but
swelling in astrocytes isolated from P2X7!/! mice actually reduced IL-
6 expression (*p = 0.043, N = 6). (f) The concentration of IL-6 in the
bath surrounding astrocytes was higher after exposing cells to stretch
(*p = 0.036, N = 7). (g) Levels of IL-6 in the bath were also increased
after exposure of astrocytes to 50 lM BzATP for 30 min (*p = 0.011,
N = 6, paired t-test for f and g). (h) Swelling of astrocytes by hypotonic
solution rapidly raised intracellular calcium, as indicated by the ratio of
light excited at 340 nm versus 380 nm in cells loaded with indicator
Fura-2. In the presence of 100 lM BBG, no rise in cell calcium was
observed. Symbols represent mean " SEM, N = 16.
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Signaling pathways linking mechanical strain to IL-6
The intracellular signaling pathways linking mechanical
strain to the IL-6 response can be at least partially described

by integrating previous findings with the results of this study
(see also the Graphical Abstract). Increased pressure in the
whole retina, or mechanical strain to either optic nerve head
astrocytes or retinal ganglion cells leads to ATP release
through pannexin hemi-channels (Reigada et al. 2008; Xia
et al. 2012; Beckel et al. 2014). Release from astrocytes is
partially dependent on Rho kinase, consistent with a
mechanosensor-like TRPV4 as in other ocular cells
(Shahidullah et al. 2012; Jo et al. 2015). In both astrocytes
and retinal ganglion cells, the released ATP autostimulated
P2X7 receptors on the same cell type.
This study clearly implicates the P2X7 receptor in the IL-6

response to mechanical strain. The P2X7 antagonist BBG
prevented the rise in IL-6 expression in vivo, while BBG and
a second antagonist A839977 prevented the rise in astro-
cytes. In addition, agonist BzATP emulated the effects of
mechanical strain both in vivo and in vitro. Although BzATP
and BBG can act at other P2 receptors (Bo et al. 2003;
Wildman et al. 2003), A839977 is more selective (Honore
et al. 2009). In addition, the reduced IL-6 response in
P2X7!/! mice in vivo, and in optic nerve head astrocytes
isolated from the P2X7!/! mice, implicated the P2X7
receptor in linking the mechanical strain to the IL-6 response.
The retinal response resembles that in cultured microglia,
where the P2X7 receptor triggers IL-6 mRNA up-regulation
and release of the cytokine (Shieh et al. 2014).
While the use of agonists, antagonists, and knockout mice

together imply the P2X7 receptor makes a substantial
contribution to the mechanosensitive IL-6 response, a
contribution from other P2 receptors cannot be ruled out in
this study, and other P2 receptors have been linked to IL-6
(Shigemoto-Mogami et al. 2001; Inoue et al. 2007; Kawano
et al. 2015). A study of the same P2X7!/! mice used here
found that while most of the peritoneal rise in IL-6
accompanying ATP injection was eliminated in the knockout
mice, the residual response may have reflected action of
additional receptors, with P2Y receptors suggested as a
possible source (Solle et al. 2001). The increased expression
of the P2Y6 receptor in retinas exposed to transient pressure
elevation in Figure S2 is interesting, but as the agonist for
this receptor is UDP, and ATP itself has little affinity,
activation of this receptor by ATP released after elevated
pressure is likely to be complex (Communi et al. 1996;
Satrawaha et al. 2011). It is also not clear whether the
response is direct or reflects a secondary response to IL-1b
release, as IL-1b can lead to up-regulation of IL-6 expression
(Cadman et al. 1994). Experiments are currently underway
to determine whether stimulation of the P2X7 receptor leads
to IL-1b release.
In addition to the up-regulation of IL-6 message and

protein levels, mechanical strain and the P2X7 receptor also
triggered a rapid release of IL-6 from astrocytes and retinal
ganglion cells. The P2X7 receptor is a ligand gated non-
selective cation channel, and its stimulation raises

Fig. 4 IL-6 release from isolated retinal ganglion cells. (a) Retinal
section stained for IL-6 indicating expression of the cytokine in the
ganglion cell layer (GCL). IPL: inner plexiform layer, OPL: outer
plexiform layer. Bar = 50 lm. (b) Retinal ganglion cells isolated with the
two-step immunopanning procedure. The comparison of the phase
contrast image (top) with the fluorescence image (ex 360 nM)
indicates that the cells are labeled with Fluorogold (FG) transported
from the superior colliculus, confirming their ganglion cell identity. Cells
used for cytokine measurements were unlabeled and plated at a much
higher density. (c) Application of a 4.1% deformation strain to stretch
isolated RGCs attached to a silicone substrate increased the level of
IL-6 detected in the bath. N = 8, *p = 0.022. (d) Levels of IL-6 in the
bath surrounding isolated RGCs increased in cells exposed to 50 lM
of P2X7R agonist BzATP. N = 8, *p = 0.006 paired t-test for (c) and
(d). (e) Application of 50 lM BzATP for 15 s led to a repeatable and
reversible rise in intracellular calcium in isolated retinal ganglion cells.
Each bar represents the time of BzATP application.
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intracellular calcium in both astrocytes and retinal ganglion
cells (Xia et al. 2012; Beckel et al. 2014). The vesicular
release of IL-6 from spinal cord is calcium dependent
(Codeluppi et al. 2014), and the time course of the IL-6
release above implies the signaling mechanisms are distinct
from those involved in transcriptional up-regulation. While
the increased expression of IL-6 would provide more IL-6 for
release upon later stimulation, this complex positive feed-
back pathway was not investigated in this study.

Separating mechanical strain from cell death and the P2X7
receptor
The data here indicate that P2X7 receptor was involved in the
increase in IL-6 after a transient non-ischemic elevation in
IOP. We used this model because it was reported to induce
little cell death (Morrison et al. 2010, 2014; Abbott et al.
2014; Crowston et al. 2015). This enabled us to distinguish
between responses resulting from mechanical strain and
those because of cell death; the lack of response in genes
ANAX3, BAX or CCND1, associated with apoptosis or
extreme stress, suggest this distinction was largely achieved.
In a variant of the rat model in which IOP was raised to
50 mmHg for 8 h, there was no substantial retinal ganglion
cell loss or decreases in axon transport (Abbott et al. 2014).
Elevation of mouse IOP to 50 mmHg for 30 min led to a
transient reduction in the photopic negative response
(PhNR), attributed largely to retinal ganglion cell function,
although the number of ganglion cells was not reduced when
examined 7 days later (Chrysostomou and Crowston 2013;
Crowston et al. 2015). Presumably, the maintenance of
retinal blood flow prevents the retinal ganglion cells loss
associated with more ischemic models (Zhi et al. 2012).
Overall this suggests that the robust IL-6 response, and the
stimulation of the P2X7 receptor which precedes it, are
distinct from cell death.

Relevant cell types
Our in vivo experiments identified elevated IL-6 mRNA and
IL-6 protein using material from the entire retina. The optic
nerve head is the focus of the mechanical forces induced
upon elevation of IOP (Downs 2015), and the in vitro
experiments clearly demonstrate a rise in IL-6 expression in
optic nerve head astrocytes, consistent with previous
findings of a large rise in optic nerve head IL-6 in response
to IOP elevation (Johnson et al. 2011). However, the optic
nerve head tissue is a minor component of the retina and it
is likely that other cell types contribute to the rise in IL-6
expression found in the whole tissue. While the restricted
levels of cell material in panned retinal ganglion cells
precluded reliable molecular analysis of IL-6 levels in this
study, the cells are also likely to contribute. The increased
expression of IL-6 1 day after IOP elevation using the laser
photocoagulation model co-localized with amyloid precursor
protein, a marker of fast axonal transport, and suggested the

axonal transport of IL-6 synthesized in retinal ganglion cells
was impeded with increased IOP (Chidlow et al. 2012).
This may relate to a more recent study in which IL-6
increased with age in the proximal optic nerve of DBA
mice, and correlated with the loss of axonal transport
(Wilson et al. 2015). The predicted involvement of micro-
glial cells here is complex; cultured retinal microglia
released IL-6 when subjected to hydrostatic pressure in-
crease (Sappington et al. 2006), while activated microglial
cells were observed in vivo only 1 week after elevation of
IOP but not at earlier time points (Kezic et al. 2013). Future
experiments are needed to understand the role of microglial
cells given their responsiveness to extracellular ATP (Franke
et al. 2007).

Physiological implications
While the results from this study clearly demonstrate a role
for the P2X7 receptor in the up-regulation and release of IL-
6, the physiological implications will depend upon the cell
types involved, the conditions that lead to the response, and
whether the resulting IL-6 mediates protective or detrimental
effects. IL-6 signaling is complex; although IL-6 is tradi-
tionally described as a ‘pro-inflammatory’ cytokine, it can be
both protective and pathological in neural tissues (Spooren
et al. 2011). Expression of IL-6 in cortical astrocytes confers
protection from focal injury in neural tissue (Penkowa et al.
2003). In the retina, several groups have identified protective
actions by IL-6 and suggested it is an early protective
response. The death of retinal ganglion cells following
increased hydrostatic pressure was prevented by IL-6
(Sappington et al. 2006), and IL-6 enhanced neurogenesis
in retinal ganglion cells (Chidlow et al. 2012). If IL-6
represents an early response to protect neurons, then this
study suggests that the mechanosensitive release of ATP
through pannexin hemichannels and autostimulation of P2X7
receptors that lead to the increased IL-6 response may also be
protective, at least in young healthy tissue. This would add to
the increasing recognition of the P2X7 receptor as more than
just a ‘death receptor’ in neural tissues.

Conclusion

In conclusion, this study demonstrates a role for the P2X7
receptor in linking mechanical strain to up-regulation and
release of cytokine IL-6 in the retina. Involvement of the
P2X7 receptor was demonstrated both in vivo and in vitro in
astrocytes and neurons. As IL-6 has many protective effects
in the retina, this study may consequently identify a
beneficial role of the P2X7 receptor in neural tissues. Given
the emerging relationship between cytokines and mechanical
strain in TBI, this study suggests further investigation of the
P2X7 receptor in TBI is warranted.
Portions of this work have appeared in abstract form (Lim

et al. 2011; Lu et al. 2011, 2013).
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Figure S2. Changes in expression of purine genes 1 day and 5 days after CEI 
to 50 mm Hg for 4 hours.

A. Levels of purinergic genes P2RX4 (p=0.017) and P2RY6 (p=0.001) were
elevated 1 day after the moderate elevation of IOP
B. Neither remained elevated 5 days after the procedure .
N=9-10 for retinas examined 1 day after IOP elevation and 6-8 for 5 days.
It should ne noted that the response  of the P2Y6 receptor may be compli-
cated by the presence of multiple transcription sites.
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