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Adaptive Paired Comparison Design

Abstract

An important aspect of paired comparison experiments is the decision of how to form pairs in advance of
collecting data. A weakness of typical paired comparison experimental designs is the difficulty in
incorporating prior information, which can be particularly relevant for the design of tournament schedules
for players of games and sports. Pairing methods that make use of prior information are often ad hoc
algorithms with little or no formal basis. The problem of pairing objects can be formalized as a Bayesian
optimal design. Assuming a linear paired comparison model for outcomes, we develop a pairing method
that maximizes the expected gain in Kullback—Leibler information from the prior to the posterior
distribution. The optimal pairing is determined using a combinatorial optimization method commonly
used in graph-theoretic contexts. We discuss the properties of our optimal pairing criterion, and
demonstrate our method as an adaptive procedure for pairing objects multiple times. We compare the
performance of our method on simulated data against random pairings, and against a system that is
currently in use in tournament chess.
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1 Introduction

An important aspect of paired comparison experiments, in which objects are compared
in pairs to evaluate their relative merits, is the choice of comparisons to be made. An
overview of paired comparison design methods is discussed by David (1988, ch. 5) who
outlines pre-1990 work on complete and incomplete designs, including both balanced and
partially balanced designs. One feature of certain types of paired comparison experiments is
that prior knowledge may be available about the merits of the objects. This knowledge may
come, for example, from the outcomes of previous comparisons, or from prior beliefs about
the objects’ merits. A paired comparison situation where prior knowledge commonly exists
is in the design of tournament or league schedules for games and sports competition. At the
onset of a sports league, teams may be ranked through the results of previous competition
or expert judgment which would lead to the choice of a league schedule. In tournaments
for games such as chess and go, as well as many other games, game outcomes are used
to construct player ratings which are then used as a basis to pair players. We describe in
this paper a method for designing paired comparison experiments, particular to tournament
scheduling, that incorporates prior information in a principled manner and which results in

efficient inferences.

Most work on paired comparison designs that are used for tournament scheduling typ-
ically involve producing designs to infer the player/object with the highest merit. Two
common designs are the knockout or elimination tournament, which has been studied by
Hartigan (1968) and Hwang et al. (1991) among others, and the round-robin tournament,
which has been examined by Daniels (1969). A more commonly implemented design is where
each object is compared a number of times without being eliminated, and that the num-
ber of comparisons per object is typically far fewer than the number of objects. One such

design is the “Swiss system,” variants of which are in use in many gaming organizations.



A description of the Swiss system and its variants can be found in Kazi¢ (1980, chapters
6-10). This approach is based on a reasonable though ad hoc idea that it is preferable to
pair players who have similar cumulative results during a tournament. Among players with
similar cumulative results, the Swiss system pairs players whose estimated a priori strengths
are as different as possible, thereby avoiding having the best players compete early in a

tournament.

Our approach, which can be viewed as an alternative to the Swiss system pairing method,
relies on determining a set of pairings by maximizing the expected Kullback-Leibler distance
between the prior and posterior densities for merit parameters. We formulate the problem as
one of Bayesian optimal design in the sense of Lindley (1972, pp. 19-20), and describe how
our method can be applied adaptively to multi-round tournaments. While the application of
our method is general to paired comparison experiments where several sets of comparisons
are to take place in sequence, we adopt a terminology that is specific to a chess tournament
setting where the objects to be compared are players, and the merits are players’ strengths.
We describe the general framework for our approach, including the statistical model and
optimality criterion, in Section 2. In Section 3, we examine how our framework can be
applied to the Bradley-Terry model (Bradley and Terry, 1952) for paired comparisons. We
demonstrate the application of our method to simulated data in Section 4 where we compare

our approach to a variant of the Swiss system.

2 A method for optimal tournament design

Suppose that we want to make inferences about the playing strengths of N competitors, NV
assumed even, based on the results of games among the players. More generally, we may be

interested in making inferences about the merits of N objects that are to be compared in



pairs. Rather than consider tournaments/designs where each player competes against every
other (i.e., a round-robin tournament), or where only winners of games compete against other
winners and losers are eliminated (i.e., a knockout or elimination tournament), we consider
tournament designs where each player competes against  opponents (possibly multiple times
against the same opponent), where r is typically much less than N. Each round consists of
the N players distributed into N/2 pairs. The Swiss system is an example of such a design.
Furthermore, rather than determining the r opponents per player in advance, we seek to use

information from the game results after each round to pair players in the subsequent round.

The approach we develop is intended to be applied adaptively. After each round of a
tournament, game outcome information is summarized as a prior distribution for the next
round, and, incorporating player-pairing restrictions (such as players cannot compete against
the same opponent more than once), the selection of the next set of pairings is treated no

differently than pairing players at the first round of the tournament.

2.1 A utility function for pairings

In a given round of a tournament, suppose players i, and j; are to compete in game k,

k=1,...,N/2. Let Y}, be 1if player i) defeats player j;, and 0 if player j; defeats i;. For
the development of our method, we assume no ties or other partial preferences. Then we

assume that the probability of a game outcome is given by

kJk

where F' is a specified probability distribution function monotonically increasing in its ar-
gument. This model, the linear paired comparison model, assumes that win probabilities
are functions of player strengths only through their difference. Two common special cases

of this model include the Bradley-Terry model (Bradley and Terry, 1952) when F is a stan-
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dard logistic distribution function, and the Thurstone-Mosteller model (Thurstone, 1927;
Mosteller, 1951) when F is a standard normal distribution function. For the development of
our optimality criterion, it is not necessary to commit to a particular choice of linear paired
comparison model, though we do assume that the F' takes support over the entire real line,
that larger values of #; denote greater probability of winning, and that the values of the 6,

are unrestricted.

Let @ = (fy,...,0x) be the collection of N player strength parameters. Prior to com-
petition, we assume that @ has a multivariate normal distribution with mean vector g and
covariance matrix X. Because the 6; are unrestricted over the real numbers, using a multi-
variate normal distribution is a natural approach to describing prior beliefs about players’
strengths. Before players compete, we would likely assume a multivariate normal prior den-

sity that factors into independent scalar densities for each player.

We adopt Lindley’s (1956) framework for Bayesian optimal design by selecting the set
of pairings that maximizes the expected Kullback-Leibler distance between the prior and
posterior distributions for 8. As noted by Chaloner and Verdinelli (1995), using the Kullback-
Leibler distance between prior and posterior densities as a utility function in a design context

is appropriate when the goal is to make efficient inferences on the model parameters.

To be particular to our problem, let s be a specific set of N/2 pairings among the N
players in the tournament. Henceforth, we refer to a set of pairings as a “design.” Let S be
the space of all designs for the N players, where the cardinality of S is at most N!/2V/2 if
there are no restrictions on pairings. For a specific design s, let ), be the collection of 2/V/2
binary vectors y of potentially observable game outcomes. Define the utility of a design, U,

to be the expected Kullback-Leibler information between the prior and posterior densities



of 0,
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where p(0) is the multivariate normal prior density for the strength parameters, p(@ | y) is
the posterior density given game outcomes y, and p(y | ) is the joint distribution for the
game outcomes y under design s. The goal of the optimal pairing problem is to find the

design s* such that U(s*) > U(s) for all s € S.

The expression for U(s) in (2) can be rewritten in a form that allows for tractable
computation. The summation over the 2"/ terms can be reduced to a sum over only N/2
terms,

N/2

U(s) = 2_: {E(plc Inpi) + E(qe Ingx) — E(pr) InE(pr) — E(gx) In E(Qk)} (3)

where py is given in (1), with g = 1 — pg, and E(-) is taken with respect to the multi-
variate normal prior distribution for (6;,,6;,). The derivation of this reduction is shown in
Appendix A. This important result implies that the utility of a design using the Kullback-

Leibler divergence is the sum of game-wise contributions.

It is worth noting that, while the A-th summand of (3) can rarely, if ever, be computed
analytically for most choices of linear paired comparison models, the means can be evaluated
numerically. In fact, each integral, which is a mean over a bivariate normal density, can be
transformed into an integral over a scalar normal variable. To see this, we first observe

that all of the means in (3) are functions of the @ only through the pg, which involve only

differences of two strength parameters. Letting A;, ;, = 6;, — 0;,, so that p, = F(4,,;,), the

mean of any function of py can be taken with respect to the (scalar) normal prior distribution

of A; ; , which has mean

kIR

Hig, = E(Aikjk) = E(Olk) - E(ejk)



and variance

or . = Var(A;, ;) = Var(6;,) + Var(6;,) — 2 Cov(6;,,6;,),

ikJk
both of which are trivially computed. Thus, for example,

E(pk In pk) = /(pk In pk)p(oilw ejk)deik dgjk
= /(pk lnpk)p(Aikjk)dAikjk

= / (F Qi) In F(A5, ) )p(Aiy i )dA

2
where Aikjk ~ N(/’Likjk’ Uikjk)'

Recognizing that the means in (3) are integrals over scalar normal densities, we can
evaluate the means numerically using Gauss-Hermite quadrature (see, for example, Davis
and Rabinowitz, 1975; Crouch and Spiegelman, 1990). This approach involves approximating
an integral by a weighted sum at n grid points, where the n points are chosen to be a linear
transformation of the zeroes of the n-th order Hermite polynomial. Fortran subroutines for
determining the grid points and weights for Gauss-Hermite quadrature can be obtained from
Press et al. (1997). Gauss-Hermite quadrature is particularly well-suited to our application
because the densities over which the integrals are evaluated are exactly normal, and the
functions multiplying the densities are, for conventional linear paired comparison models,
well-behaved and slowly varying, and reasonably approximated by moderately high-order

polynomials of A
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2.2 Determination of the optimal design

The utility function evaluated at a design is a sum of individual game contributions of the
form

Cij = E(pij Inpij) + E(gi; In ¢;5) — E(pij) InE(pi;) — E(gi;) In E(gy;), (4)
where p;; = F(6; — 60;) is the conditional probability that player i defeats player j given 6,
¢ij = 1—pij, and that C;; = C}; due to symmetry. Also, Cj; > 0, which is a direct consequence
of Jensen’s inequality (briefly justified in Appendix B) assuming no degeneracy in the prior
distribution of 8. Therefore, the problem of finding the optimal design reduces to evaluating
all (]; ) values of Cjj, and then determining the subset of N/2 of them corresponding to
distinct pairs that produces the largest sum. Determining the optimizing set of pairs in
our context is isomorphic to a well-known problem in graph theory called the “maximum-
weight perfect matching” problem (see, for example, Lovdsz and Plummer, 1986). Viewing
individual players as vertices in a graph, with incident edges corresponding to the game-wise
contributions of (4), the maximum-weight perfect matching problem involves finding a subset
of edges in the graph such that each vertex is met by only one edge (resulting in a “perfect
matching”), and that the sum of the weights of the edges in the perfect matching is maximal.
An efficient algorithm for determining the maximum-weight perfect matching was originally
developed by Edmonds (1965), and improvements have more recently been worked out by
Gabow and Tarjan (1991) and Cook and Rohe (1999) as well as others. An additional feature
of the weighted perfect matching algorithms that makes it useful for optimal tournament
pairing is that constraints on the inclusion of edges can be easily incorporated. For example,
in the context of tournament design, if we want to optimize only over designs where players
who have already competed do not compete again, then we apply the weighted matching

algorithm to a graph with the corresponding edges removed.

When the number of players, N, is odd, a simple modification can be applied to use the



maximum-weight perfect matching algorithm. An N+1-st fictitious player is added to the set
of N, with the requirement that C; y41 =0 forall¢=1,..., N. Setting C; y+1 = 0 ensures
that pairing player N + 1 with any other is less favorable than pairing two actual players.
The perfect matching algorithm is now applied to the augmented set of N + 1 players, and

the actual player who is paired with the fictitious player is left out of the pairing.

The adaptive procedure for pairing N players in round r can be summarized in the

following steps.

1. Determine the multivariate normal distribution of players’ strengths, 8, for round r.

o If r =1, use the pre-tournament multivariate normal prior distribution for 6.

e If » > 1, use a multivariate normal density to approximate the actual posterior
density computed from game results based on the first » — 1 rounds. The multi-
variate normal approximation depends on the choice of the specific linear paired

comparison model.

2. Calculate all (g’ ) values of C;; given in (4), using Gauss-Hermite quadrature of scalar

normal variables to evaluate the means.

3. Apply the maximum-weight perfect matching algorithm to determine the optimal pair-
ing.
e If N is even, apply the perfect matching algorithm to the collection of the Cj;.
o If N is odd, add an N + 1-st fictitious player with C; 41 = 0 for all ¢, and apply

the perfect matching algorithm to the augmented set of N + 1 players, dropping

the player that is paired with the fictitious player.



2.3 Ordering within pairs

In many games, and paired comparison settings in general, an asymmetry can exist within
a pair that may be relevant for the outcome of a comparison. For example, in chess, one
player is assigned to play white, and the other black, while in many professional sports, an
asymmetry within a pair occurs through one team competing on its home field. In more
general paired comparison situations, objects to be compared may be presented one after
the other rather than simultaneously, so that the order in which the objects are presented

may be relevant to the preference probability.

For optimal tournament design with the goal of inferring player strengths, it is not usually
of interest to make inferences about order effects. Instead, the within-pair order is a nuisance
feature of the design. Rather than guide the choice of within-pair order through modeling its
effect in a probability model, we choose an approach that will minimize the confounding of
order effects with player strength. This can be done simply by balancing order by player. In
the context of chess, this involves assigning each player white and black the same number of
times for tournaments with an even number of rounds, and a difference of one for tournaments
with an odd number of rounds. David (1988, pg 143) argues that unless the order effects
are expected to be large, balancing order in the design without estimating its effect should

be sufficient.

To incorporate the balance of within-pair order into our optimal design approach, we
include a set of pairing restrictions in the following manner. For odd-numbered rounds in a
tournament, the algorithm proceeds without modification, and order is randomly assigned
within each formed pair. For even-numbered rounds, a restriction is added to the maximum-
weight perfect matching algorithm to ensure that players in the previous round who were

randomly assigned “first” in the ordering will be paired with players who were assigned
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“second” in the ordering. Once the optimal design is found under this restriction, the
ordering within pairs is then reversed compared to the previous round. Thus, after even-

numbered rounds, each player achieves exact balance in ordering.

3 Optimal design for the Bradley-Terry model

A commonly used linear paired comparison model is the Bradley-Terry model (Bradley
and Terry, 1952). This model has had a long tradition of being used to measure competi-
tor strength in tournaments. Recent work that incorporated the Bradley-Terry model for
measuring competitor strength includes Bradley (1984), Joe (1990), and Glickman (1999).
Letting 6; and @; be the strength parameters of players ¢ and j, and letting Y;; be 1 if ¢
defeats j, and 0 if j defeats ¢, the Bradley-Terry model asserts

exp(6;) _ 1
exp(0;) +exp(6;) 1+exp(—(0; —96;))

P(Yi; =116;,0;) = ()

The model in (5) is parameterized so that the merits take on an unrestricted range of real

values.

When applying our optimal design approach, we use game outcomes from previous rounds
to form a multivariate normal prior distribution for the current round. This can be ac-
complished using the Bayesian extension to the Bradley-Terry model proposed by Leonard
(1973). His approach assumes a multivariate normal prior distribution for the strength
parameters 0 in the Bradley-Terry model. Other Bayesian extensions to the Bradley-Terry
model include those by Davidson and Solomon (1973) and Chen and Smith (1984). Leonard’s
approach involves approximating the posterior density, which is proportional to the product
of a multivariate normal prior density and a product-binomial likelihood of logistic proba-

bilities, by another multivariate normal density by retaining the first two moments of the
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actual posterior density. In our setting, once game outcomes are observed, the approximat-
ing normal posterior distribution can be used as the prior distribution for the next round of

the tournament in order to determine pairings in an adaptive fashion.

For the Bradley-Terry model, the values of the C;; in (4) can be evaluated using Gauss-
Hermite quadrature as a function of the prior mean and variance of A;; = 0; — 6;. We
have found that using 30 grid points for Gauss-Hermite quadrature applied to functions of
Bradley-Terry probabilities is sufficiently accurate for the computations of means in (4). The
values of C; are summarized in a contour plot in Figure 1. The contour plot indicates the
types of pairings that are considered preferable when forming pairs. Because the greatest
values of Cj; occur in the upper left portion of the figure, the most preferred pairing occurs
between two players that have a mean difference near zero, and a large standard deviation of
a difference. This is intuitively reasonable because the greatest amount of information can
be learned about two players’ strengths when they are expected to be close in ability, and the
amount of uncertainty is large. Figure 1 also reveals that, for constant standard deviation in
strength difference, the value of C;; decreases as the mean difference increases. Thus, pairings
involving players with small mean differences are favored in the algorithm. Furthermore, for
constant mean difference, the value of Cj; increases as the standard deviation of strength
difference increases. Again, this makes sense intuitively because we should expect greater

gain in information when the variance of the difference in strength is large.

One interesting feature of our optimal design algorithm is that it automatically lowers the
utility of pairing players who have already competed against each other. When players ¢ and
j have competed in an earlier round, a positive correlation is induced on the distribution
of (6;,60;) which is reflected in a positive covariance in the approximate normal posterior
distribution. When the value of Cj; is computed for this player pair in a subsequent round,

the positive covariance between 6; and 6; will reduce the variance of the difference, so that,
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Figure 1: Contour plot of Cj; in (4) for the Bradley-Terry model as a function of the mean
difference in strength parameters, and the standard deviation of the difference in strength
parameters.



compared to pairs of players who have not yet competed, the value of C;; will be small. This
will lessen the likelihood that players ¢ and j will compete for a second time. One situation,
however, where players ¢ and j may be paired a second time is if their mean difference is
inferred to be small. This could occur, for example, if player ¢ is assumed stronger than
player j prior to competition, but player j defeats player ¢ in a game played between them,

at which point their strengths may be inferred to be nearly indistinguishable.

4 Comparison of design implementations

To examine the performance of our design approach, we evaluated our method along with
two other pairing methods on simulated data. For our pairing approach, we considered
a pairing scheme where no constraints were imposed in having players compete multiple
times, and a second scheme where players who already have competed could not compete
again. The first alternative to our method is pairing entirely at random. The second is a
modified version of the Swiss system for tournament pairings. The modified Swiss system
is due to Olafsson (1990) who implements a pairing scheme using the weighted matching
algorithm with a utility function that was optimized to mimic the Swiss system as closely as
possible. To implement weighted maximum-weight perfect matching in our method and in
that by Olafsson, we used publicly available C' code by Ed Rothberg (which can be obtained
at ftp://elib.zib-berlin.de in the /pub/mathprog/matching/weighted directory) that

implements Gabow’s (1973) weighted matching algorithm.

Our simulations assumed a tournament of at most 16 rounds, consisting of 50 players with
equally-spaced strength parameters from 6, = —2.5 to #59 = 2.5. Because game outcomes
depend on the pairing for any particular method, we carried out the following procedure

for generating simulated game outcomes. First, we note that if X; and X; are independent
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exponential random variables with means exp(6;) and exp(6;), respectively, then elementary
probability yields Pr(X; > X;) = exp(6;)/(exp(6;) + exp(f;)), the Bradley-Terry probability
for player i defeating player j. This suggests that if we randomly generate values from inde-
pendent exponential distributions with means exp(f;), ..., exp(fso), then player i is declared
the winner of a game against player j with the correct probability if the simulated value Xj is
greater than X;; otherwise player j is declared the winner. This approach can be understood
as each player displaying a “performance” for a game that varies from game to game, and
the comparison of performances will yield the desired binary game outcome. An important
feature of this approach is that generating game outcomes are separate and independent of
the pairing method in the sense that players are assumed to produce game performances
unrelated to the choice of their opponents. Thus, a single 16-round simulated tournament
consists of generating, for each of the 50 players, 16 exponential random variables (one cor-
responding to each round of the tournament). The game outcomes, once a pairing for a
round is determined, are the results of the comparisons of the simulated exponential random
variables. The process of creating 16-round tournaments for 50 players was repeated 500
times to create 500 simulated tournaments on which to evaluate and compare the pairing

methods.

Our simulation experiment consisted of varying three distinct factors for each pairing
method. The first factor was the duration of the tournament. We examined the results
after players completed simulated tournaments of 4 rounds, 8 rounds, and 16 rounds. The
data from the 4 round and 8 round tournaments were simply the first 4 and first 8 rounds
of the 16 round tournaments that were simulated. Secondly, we altered each of the pairing
methods due to color/order constraints. Specifically, to incorporate color/order constraints
within pairs, we altered our method in the manner described in Section 2.3. We carried
out an identical procedure for incorporating order constraints for random pairings; players

who were assigned “white” in an odd-numbered round could not compete against each other
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in the subsequent round. For the Olafsson approach, color balance is incorporated as a
separate term in the utility function. In the version of Olafsson pairing without color,
we set this term to 0 in computing pairwise utilities. The third factor in our simulations
was the assumed multivariate normal prior distribution for the strength parameters. We
considered two different cases. The first case assumed an informative prior distribution with
the means equal to the true values, a covariance matrix with variances equal to 0.3, and zero
correlations. A prior distribution of this sort, particularly one with small variances, might
be used in practice if a tournament involved players whose strengths were known to some
precision in advance. The second case assumed a vague prior distribution with the mean
vector set to a random permutation of 50 equally spaced values from —0.1 to 0.1, and a
covariance matrix with zero correlations and variances equal to 4. This assumption would

be appropriate for a tournament where no prior knowledge existed about players’ strengths.

We evaluated the pairing methods by computing two statistics for each tournament, and
reporting the mean and central 95% interval of each statistic across the 500 simulations. The
first is the log of the determinant of the posterior variance (under the Bradley-Terry model)
after the completion of a tournament. Larger values of this statistic indicate greater overall
uncertainty in the player strengths. The second statistic is the sum of squared deviations
between the ranks of the 50 players in order of the true strength parameters and the posterior
means. A value of 0 indicates that the rank order from the posterior mean matches exactly
the rank order of the true strengths. Values greater than 0 indicate a degree to which the
relative ranking is not captured by the posterior mean of the strength parameters. It should
be noted that our method is not optimized to produce rankings that are consistent with
the truth in small numbers of rounds, mainly because our approach tends to pair players
that are close in strength, so that the outcomes of games would tend to shuffle the means
compared to the pairings in other methods. The results of the simulations when no color

constraints are imposed are displayed in Tables 1 and 2. As we discuss below, the results for

16



the simulations with color constraints are similar. The statistic “log-variance” refers to the
log of the determinant of the posterior variance, and “SSDR” refers to the sum of squared
deviations in ranks. The column labeled “New” in the tables refers to our method with
unrestricted pairings, and “New-X” refers to our method where players are not allowed to

compete if they have played in an earlier round.

Table 1 shows the results for the simulations in which the prior distribution is informative
about the strengths. In all cases, the posterior variance of strength parameters using our
pairing method is substantially smaller than either random pairings, or Swiss system pairings.
The restriction in our approach that players cannot compete more than once against the
same opponent results in comparable variances to the unrestricted version. Random pairings
appear to produce more variable inferences than either of our methods or the Swiss system.
Furthermore, the magnitude of variance reduction in our method compared to the Swiss
system improves as the number of rounds increases. While not displayed on the tables, these

conclusions do not change whether color restrictions in the algorithms are incorporated.

The sum of squared difference in rankings reveal noteworthy features of the pairing
methods when the prior distribution is informative. For 4-game tournaments, both the
random and Swiss pairings outperform our approaches, as they both produce smaller sets of
sums of squared differences in rank. The outperformance of the random and Swiss pairings
decreases as the number of rounds increases. Our methods are slightly better on this statistic
than the Swiss system for the 16-game tournaments, and about the same as the random
pairings. Because our approach tends to pair players with similar inferred strength, players
who are close in rank will be paired, even in the early rounds of a tournament. This is in
contrast to the Swiss system where, in early rounds of a tournament, players further apart
in strength are paired. The net effect of this difference is that, in our method, players close

in strength will be further apart after they compete, and therefore early on the relative
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rankings will be unreliable. In the Swiss system, two players will be paired initially who are
already far apart in strength, and because the better player is likely to win, the posterior
mean strengths will still be far apart and the relative rankings will be retained. Again, these

conclusions persist in the analysis of simulations with color assignment restrictions.

It is also worth mentioning that the SSDR statistic increases with the number of rounds
regardless of the pairing method. Because the means are ordered correctly at the start, and
that game outcomes tend to shift the posterior distribution of the strength parameters, the
posterior means are continually shuffled somewhat by the different pairing schemes and the

randomness of the game results.

When a vague prior distribution on the strength parameters is assumed, with a ran-
dom order of the means, our methods again produce consistently smaller posterior variance
measures than random pairings or Swiss pairings. The results are shown in Table 2. The
variance reduction is more pronounced as the number of rounds increases. The SSDR cri-
terion appears worse for our method for 4-round and 8-round tournaments than the Swiss
pairings, but better in 16-round tournaments. Our approach is consistently better on the
SSDR criterion than random pairings. All of these conclusions persist when color allocation
restrictions are included. The magnitude of the SSDR statistics in Table 2 compared to
those in Table 1 indicate that even with as many as 16 games per player, the inferred ranks

are still substantially different from the true ranks, regardless of the pairing method used.

In our pairing method in which players are allowed to compete against the same opponent
multiple times, we find that such occurrences are relatively rare. Our simulations reveal that,
for 4-round tournaments, players never compete more than once when the prior distribution
is vague, and only about 1% of the games when the prior distribution is informative. In

8-round tournaments, less than 1% of the games in simulated tournaments involve repeat
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opponents when the prior distribution is vague, and about 5% of the games when the prior
distribution is informative. The greatest fraction of repeat opponents occurs for 16-round
tournaments, in which 5.5% of the games involve opponents who play more than once when

the prior distribution is vague, and about 38% of the games when the prior distribution is

informative.
Informative prior distribution
Random Swiss New New-X
log-variance —67.71 —67.98 ~72.66 ~72.66
4 games || (—68.40, —66.99) | (-68.36, 67.53) | (—72.72, —72.60) | (-72.72, —72.59)
log-variance ~74.24 -76.80 -82.49 -82.34
8 games || (-75.12, -73.34) | (-77.21, -76.30) | (-82.58, -82.37) | (-82.51, -82.13)
log-variance -85.15 —91.24 -97.39 -95.54
16 games || (-86.23, -83.98) | (-91.71, -90.74) | (-97.53, —97.22) | (-96.01, —95.06)
SSDR 157.6 155.3 232.9 232.7
4 games (90.0, 258.1) (79.0, 244.0) (147.0, 336.0) (146.0, 336.0)
SSDR 243.3 265.7 295.0 291.9
8 games | (144.0, 366.0) (153.0, 402.0) (177.0, 440.0) (175.9, 428.0)
SSDR 312.8 346.6 311.6 316.3
16 games || (189.0, 481.2) (204.0, 514.0) (178.0, 476.2) (196.0, 466.1)

Table 1: Results of 500 simulations in which the prior mean of the merits were equal to the
true means, the prior variances were 0.3, and the prior correlations were zero. The mean
and 95% intervals of the two summary statistics across the 500 simulations are displayed.

5 Discussion

The adaptive paired comparison approach developed here has several appealing features.
First, the pairing method relies on maximizing the expected Kullback-Leibler information
from the prior distribution to the posterior distribution, which is a sensible utility in that
pairings will produce efficient and informative inferences. Secondly, the form of the utility

allows for a convenient reduction in computation so that the utility for a collection of games
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Non-informative prior distribution
Random Swiss New New-X
log-variance 13.13 8.69 8.28 8.28
4 games (9.34, 16.96) (7.28, 10.19) (7.35, 9.07) (7.35, 9.07)
log-variance -13.06 -21.84 -23.38 -23 41
8 games || (-17.17, -8.21) | (-23.21, —20.54) | (-24.32, —22.40) | (-24.48, —22.31)
log-variance -42.63 —-54.96 —97.73 —97.35
16 games || (-46.80, -38.24) | (-56.94, -52.78) | (-58.69, —56.78) | (-58.87, —55.29)
SSDR 5557 3714 5201 5201
4 games (3304, 8247) (1992, 5592) (3322, 7726) (3322, 7726)
SSDR 3128 2206 2612 2607
8 games (1905, 4565) (1314, 3417) (1548, 4018) (1506, 4023)
SSDR 1674 1316 1231 1265
16 games (1009, 2453) (775, 2002) (783, 1864) (784, 1929)

Table 2: Results of 500 simulations in which the prior mean of the merits was a random
permutation of the equally-spaced values from —0.1 to 0.1, the prior variances were 4, and
the prior correlations were zero. The mean and 95% intervals of the two summary statistics
across the 500 simulations are displayed.

is simply the sum of the game-wise contributions. Finally, the combinatorial optimization
of selecting pairs whose sum of game-wise utilities is maximal is isomorphic to a standard
problem in graph theory, the solution to which is implementable in a straightforward manner.
The method is adaptive so that the pairing scheme can be applied recursively after each
round of a tournament, or, more generally, after each set of pairings in a paired comparison

experiment.

Our design approach can be applied to paired comparison problems that involve ties
or partial preferences following an idea in Glickman (1999). The design assumes that no
partial preferences are observable, but when a tie or partial preference is actually observed,
its contribution to the likelihood is counted as a fraction of a win and a corresponding
fraction of a loss. For example, suppose p is the probability one player defeats another. If a

tie results, then the contribution to the likelihood for this outcome is p®3(1 — p)%®°. For our
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method, the multivariate normal prior distribution for a new round of a tournament may be

computed based on having observed ties and partial preferences in such a manner.

The simulations in Section 4 demonstrate that our approach produces inferences that
are more precise than other methods in terms of total variance of the posterior distribution,
regardless of using a vague prior distribution or an informative prior distribution. However,
because players that are paired tend to be similar in strength using our approach, the gain in
precision is related to the movement in the means after a round of games is played. Because
most tournaments, even for large numbers of players, typically schedule at most six to eight
rounds, this is a potential concern of the application of our method. Unlike the Swiss system,
which tends to pair players of similar strength (by virtue of having similar cumulative game
results) in later rounds of a tournament, our approach pairs players of similar strength as soon
as possible, assuming little to no correlation in the strength parameters. Even though our
pairing scheme produces inferences that are generally less variable than the other methods
for the types of simulation sets we analyzed, our pairing approach must be applied for a
substantial number of rounds if the prior variances of the strength parameters are large. If
the number of comparisons is not as limited, as is the case in conventional tournaments, then
the efficiency gain using our approach per game makes it an attractive alternative to other

pairing methods.

Extensions to our approach are possible, including ones that address the issue of the infe-
riority of our method in producing reliable rankings for a small number of rounds compared
to the Swiss system. For example, rather than assuming a prior distribution with uncorre-
lated strength parameters, one could assume a correlation structure that where correlations
are large for players whose prior means are close, and small for players whose prior means
are far apart. The justification for assuming such a correlation structure is that it mimics

the effect of players already competing several rounds using our pairing method. This might
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be desirable if it is known that players are going to be competing in a small number of
rounds because assuming correlated parameters acts as if players close in ability have al-
ready competed (which they would have in our method) and players different in ability have
not competed. Computationally, this correlation structure forces players further apart in
strength to be paired because the variance of the difference, accounting for the prior corre-
lation, will be larger than for players with mean strengths that are close. The net result is a
pairing that is closer to the Swiss system for initial rounds. Such extensions to our approach

highlight the flexibility of our general framework for paired comparison design.

A Simplification of utility

Let

9= [ 3 w{"8 sy | oo

Yeys
as in (2). Noting that p(6 | y)/p(6) = p(y | 0)/p(y), where p(y) = [p(y|0)p(6)do, we

obtain

Yeys

= /(Z p(y|0) lnp(y|0> 0)d6 — > p(y)Inp(y (6)

yeys yeys

vis) = [ [ > {70 0y |0>] p(6)d0

The sum inside the integrand of the first term in (6) can be simplified by collapsing terms

through a marginalization strategy, as follows.

1 1 1 N/2 N/2
> p(yl@)Inpyle) = > > -0 > (Hp(yk\O)Zlnp(yk|0)>

Yels y1=0y2=0 yn/2=0 \k=1 k=1
N/2 1 1 1 N/2
= > { Yo > lp(yile) 1 p(ym|0)}
k=1 (y1=0y2=0 Yny/2=0 m=1

22



N/2 1 1 1 1 1
> { > p(ykl60) Inp(yl6) > - > 11 p(ymIO)}
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N/2 1

Z Z p(yx|6) Inp(yx|0)

k=1 yr=0

N/2 1
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k=1y,=0

The subtracted term in (6) can be simplified by recognizing, first, that p(yl|s) factors into

independent densities, and then applying the same marginalization strategy as above. To

show the factorization,

p(y)

N/2

/p(yIB)p(O)do = / { 11 p(yel6s,, 9jk)}p(0)d9

k=1
N/2

N/2
11 (/ plunltu, 03000, 0305003, ) = 1T o)

The simplification of the subtracted term in (6) proceeds analogously to (7) in the following

manner.

Z p(y) Inp(y

Yyeys

Therefore, we have
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=2

/2
= {E(pk Inpy) + E(gx Ing) — E(pr) nE(p) — E(gx) In E(qk)}

B
Il
—_

where py =1—¢q, =P(Y, =116;,,0,,), and E(-) is taken with respect to the multivariate
normal prior distribution for (6;,,6;,). Thus the sum over 2N/2 terms can be collapsed into

a sum over only N/2 terms.

B Positivity of game-wise utility contribution

Let
f(p) =plnp

Noting that f(p) is strictly convex over 0 < p < 1, Jensen’s inequality (which itself, therefore,

is strict for this function) yields
E(f(X)) > f(E(X)) <= E(plnp) > E(p) InE(p).

Applying this result separately to p;; and ¢;; in (4) proves that C;; > 0.
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