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Cyber-Physical Modeling of Implantable Cardiac
Medical Devices

Zhihao Jiang,Student Member, IEEE,Miroslav Pajic,Student Member, IEEE,
and Rahul Mangharam,Member, IEEE

Abstract—The design of bug-free and safe medical device
software is challenging, especially in complex implantable devices
that control and actuate organs in unanticipated contexts. Safety
recalls of pacemakers and implantable cardioverter defibrillators
between 1990 and 2000 affected over 600,000 devices. Of these,
200,000 or 41%, were due to firmware issues and their effect
continues to increase in frequency [1]. There is currently no
formal methodology or open experimental platform to test
and verify the correct operation of medical device software
within the closed-loop context of the patient. To this effect, a
real-time Virtual Heart Model (VHM) has been developed to
model the electrophysiological operation of the functioning and
malfunctioning (i.e., during arrhythmia) heart. By extracting the
timing properties of the heart and pacemaker device, we present a
methodology to construct a timed-automata model for functional
and formal testing and verification of the closed-loop system. The
VHM’s capability of generating clinically-relevant response has
been validated for a variety of common arrhythmias. Based on a
set of requirements, we describe a closed-loop testing environment
that allows for interactive and physiologically relevant model-
based test generation for basic pacemaker device operations such
as maintaining the heart rate, atrial-ventricle synchrony and
complex conditions such as pacemaker-mediated tachycardia.
This system is a step toward a testing and verification approach
for medical cyber-physical systems with the patient-in-the-loop.

Index Terms—Real-time systems, medical devices, validation,
cyber-physical systems

I. I NTRODUCTION

Over the course of the past four decades, cardiac rhythm
management devices such as pacemakers and implantable
cardioverter defibrillators (ICD) have grown in complexityand
now have more than 80,000 to 100,000 lines of code [2].
In 1996, 10% of all medical device recalls were caused by
software-related issues. In June of 2006, software errors in
medical devices made up 21% of recalls. During the first half
of 2010, the US Food and Drug Administration (FDA) issued
23 recalls of defective devices, all of which are categorized as
Class I, meaning there is a “reasonable probability that use of
these products will cause serious adverse health consequences
or death.” At least six of the recalls were caused by software
defects [3], [4]. There is currently no standard for testing,
validating and verifying the software for implantable medical
devices. Given the alarming rate at which medical device
software has become a safety concern, there is an urgent need
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{zhihaoj, pajic, rahulm}@seas.upenn.edu.

This research has been partially supported by the National Science Foun-
dation grants CNS-0834524, CNS-0930647 and CNS-1035715.

for new systematic approaches and tools to evaluate the safety
of software in such devices.

Software embedded in a medical device, unlike electrical
and mechanical components, does not fail due to corrosion,
fatigue or have statistical failures of subcomponents. Software
failures are uniquely sourced in the design and development
of the system. Unlike other industries such as consumer
electronics where product life cycles are measured in months,
software engineering for medical devices often spans a decade
and must prioritize safety and efficacy over time to market. The
medical device industry is a regulated industry. The regulatory
oversight reaches much further than a review of test resultsin a
manufacturer’s premarket submission and into every stage of
the development process. Regulatory oversight also governs
how the device was developed, not justwhat it turned out to
be. The belief is that a well-planned, systematic engineering
process produces more reliable devices, especially if software
is a component of the device [5].

In safety-critical industries such as automotive electronics,
avionics and nuclear systems, standards are enforced for safe
software development, evaluation, manufacturing and post-
market changes [6], [7]. This awareness is only beginning to
enter the medical device industry [8]. However, the medical
domain presents its own unique set of challenges:
1. Closed-loop context:Current evaluation of devices is open-
loop and is unable to ensure the device never drives the patient
into an unsafe state. Medical device testing and validation
must thus be within the closed-loop context of the patient
physiology. The context of the patient is a function of both
the environment and the input from the device controller and
must be captured by the device evaluation process.
2. Patient models: There is a scarcity of patient models
and clinically-relevant simulators for device design [9].High-
fidelity models of interaction between the patient and device
are needed to evaluate the safety and efficacy of device opera-
tion. Furthermore, these models must integrate the functional
and formal aspects so that testing and verification are evaluated
for the same patient states.
3. Adaptive patient-specific algorithms:The therapy offered
by the device must adapt to the environment and specific
patient’s condition. There is a need for validation algorithms
to ensure that device control and optimization can cover large
classes of patient conditions.

A. The FDA and Medical Device Software

Before we delve into the current state of medical device soft-
ware, it is useful to understand the evolution of the regulatory



PROCEEDINGS OF THE IEEE 2

environment. The United States Food and Drug Administration
(FDA) is the primary regulatory authority responsible for
assuring the safety, efficacy and security of patients using
medical devices. The history of the FDA is a reactionary one,
where each stage of evolution was in response to a major
health-care tragedy.

Through the course of the 1980s, software began to play an
increasing role in medical devices. Software, as it turns out, is
one of those technologies not anticipated by prior regulation,
and was waiting for its disaster to prompt regulatory action. It
was not until the 1980s when a number of cancer patients
received massive X-ray overdoses during radiation therapy
with the Therac-25 linear accelerator. This lead to a numberof
investigations, perhaps the most thorough of which was that
of Leveson and Turner [10], which was rich with identified
ways software could go wrong. Inadequate testing, dangerous
code reuse, configuration management issues, inadequate man-
ufacturer response, and failure to get to the root cause of the
problem were among the leaders of the problems identified.
The Therac-25 was an eye-opener for the FDA and legislators,
and resulted in the Safe Medical Device Act of 1990. This
finally required closer medical device tracking, post-market
surveillance and recommendations on development, testing
and validation of medical device software.

The FDA currently does not request or review the medi-
cal device software during pre-market submission. While no
specific requirements or software verification standards are
issued, a set of general guidelines for software evaluation
are recommended [11], [12], [13]. The responsibility to test,
validate and verify the device software to demonstrate its
safety and efficacy is solely on the manufacturer. This is
currently satisfied by the documentation of code inspections,
static analysis, module-level testing and integration testing and
their purpose is to establish “reasonable assurance of safety
and effectiveness”. These tests however fail to check for the
correctness of the software and are largely open-loop teststhat
do not consider the context of the patient. Software is reviewed
by the FDA only in the incident of a device recall. Software-
related recalls are often issued in the form ofSafety Alertsby
the FDA such as “Safety alert - Pacemaker may revert to VVI
mode at 70 beats/min if programmed to one of several specific
ventricular pulse widths” [3].

B. Current Testing, Validation and Verification Approaches

In order to facilitate the early detection and correction ofany
software defects, the FDA has focused on infusion pumps due
to the large number of recalls. In April 2010, the FDA began
the “Infusion Pump Improvement Initiative” which offers
manufacturers the option of submitting the software code
used in their infusion pumps for analysis by agency experts
prior to premarket review of new or modified devices.” There
is however a broader need for systematic and standardized
testing, validation and verification of medical device software
both as means to finding defects and for building confidence
in the device’s safety.

An effective software verification methodology is therefore
needed for the risk analysis and certification of medical de-
vice software during the pre-market submission phase. While

formal methods of verification are used for medical device
software [14], [15], [16], testing continues to be required
because it can expose different kinds of problems (e.g., com-
piler bugs), can examine the program in its system context,
and increases the diversity of evidence available. Testingfor
medical device software currently is ad hoc, error prone,
and very expensive. Traditional methods of testing do not
suffice as the test generation cannot be done independently
of the current state of the patient and organ. The primary
approach for system-level testing of medical devices is unit
testing using a playback of pre-recorded electrogram and
electrocardiogram signals [17], [18]. This tests if the input
signal triggers a particular response by the pacemaker but has
no means to evaluate if the response was appropriate for the
patient condition. Furthermore, this approach of “tape testing”
is unable to check for safety violations due to inappropriate
stimulus by the pacemaker. Pacemaker Mediated Tachycardia
(PMT), a condition that is described later in this paper, is a
strong example of why we need a model of the heart such as
the one presented in this paper, which can be used for closed-
loop system analysis. PMT is a condition where the pacemaker
inappropriately drives the heart-rate toward the upper rate
limit. With a tape test, PMT would not occur and the response
of the pacemaker could be classified as appropriate therapy.

As the testing environment (i.e., patient condition) is not
entirely under the control of the tester, the problem changes
significantly as a degree of nondeterminism is introduced
in the process. Implantable medical devices are a primary
example of Medical Cyber-Physical Systems where the safety
and efficacy of the device and device software must be
evaluated within a closed-loop context of the patient. The key
challenge is in the generation of physiologically relevanttests
such that the device does not provide inappropriate therapy
and does not adversely affect the safety of the patient. In
addition, test generation must be interactive and adaptivesuch
that the previous test stimulus affects the current state ofthe
patient. The test generator must consider the current statewhen
generating the next input in a way that advances the purpose of
the test. The problem becomes one of the controller synthesis
problems and cannot be addressed by an off-the-shelf model
checker [19].

Formal methods have traditionally been used for verification
of time-critical and safety-critical embedded systems [20].
Until recently, these methods have not been used for medical
device certification. The authors in [21] presented the use
of Extended Finite State Machines for model checking of a
resuscitation device. Formal techniques have also been applied
to improve medical device protocols [22] and safety [23], but
the authors either used a simplified patient model or did not
model the patient at all.

C. Methodology for Closed-loop Medical Device Safety

The focus of this effort is three-fold: (a) We developed an
integrated functional (i.e., clinically-relevant) and formal (i.e.,
timed automata based) Virtual Heart Model (VHM) and a
pacemaker device model for interactive and clinically relevant
test generation. (b) We provide a set of general and patient
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Fig. 1. Closed-loop V&V of a pacemaker. For validation, the VHMalso serves as a test-generator for condition-specific testing. A similar approach is used
for device verification, in which case a timed automata model of the device should be composed with the VHM in UPPAAL.

condition-specific pacemaker software requirements to ensure
the safety of the patient is met under all cases, and (c) We
provide a means to test and verify the closed-loop system
over a variety of basic operation tests where the heart rate
must be maintained, the atrial-ventricle synchrony must be
enforced and complex closed-loop tests, where the pacemaker
must not initiate tachycardia or perform improperly during
lead displacement. With this approach of model-based testing,
an executable functional model of the pacemaker is created
at an early stage in the development process. This model-
based methodology is an early step in addressing the urgent
need for pre-market evaluation of medical device design and
certification.

The rest of the paper is organized thus: We begin with an
overview of model-based design for medical devices in Section
II. This is followed by background knowledge of the human
cardiac system in Section III, our integrated heart model and
its validation in Sections IV and V. We then present our model
for the pacemaker followed by a case study of the closed-loop
system in Sections VI and VII. We conclude with a description
of the physical implementation and a discussion.

II. M ODEL-BASED DESIGN FORMEDICAL DEVICES

Model-based design is a widely used and accepted approach
in the development of complex and distributed embedded
systems. With this approach, a model of the system plays
an essential role throughout the development process. It can
be used as an executable specification and virtual prototype
for system development. It enables continuous validation &
verification (V&V) from the early stage of development and
thus reduces cost by error detection and prevention. Automated
code generation can ensure faithful transformation from the
model. For example, in the automotive electronics industry,
AUTOSAR, the Automotive Open System Architecture [6],
has united more than 100 automobile manufacturers, suppli-
ers and tool vendors to develop a standard architecture for
electronic control units (ECU). The aviation industry has a
similar program called System Architecture Virtual Integration
(SAVI). Developers benefit from the “Virtual Integration” at
the model level to reduce cost in “Physical Integration” [7].

For medical devices, because of the strong coupling between
a patient and the device, model-based frameworks that explic-
itly model a device’s interaction with the environment and with
the patient would lead to safer, higher-confidence devices [24].
Such frameworks will facilitate algorithms for medical devices

that are certifiably safe for large classes of patients and can
adapt to custom patients and environments [25].

The focus of this work is on the development of a system
(both model-based and physical) and methods for integrated
system-level testing and verification for implantable cardiac
pacemakers (see Fig. 1). To address this, we model the heart
and a pacemaker to expose the correct type and level of
functionality and to be physiologically-relevant. In thissection
we provide an overview of our approach that is used for V&V
of pacemakers. In this context, we define verification as the
process of evaluating a system or component to determine
whether the products of a given development phase satisfy
the conditions imposed at the start of that phase (i.e., system
specifications). Validation is the process of evaluating a system
or component during or at the end of the development process
to determine whether it satisfies specified system requirements.
One way to keep the distinction clear is to think of it this way:
Verification is showing that you did what you intended to do.
Validation is showing that what you intended to do was the
right thing to do.

A. Previous Heart Modeling Efforts

The biggest challenge for modeling physiological systems
is that the model can be built at different scales. A good model
is built at the right level of abstraction for its application. To
interact with implantable cardiac devices, the model of the
heart should capture the electro-physiological (EP) properties
of the heart (i.e., conduction and timing signals) and generate
functional signals which are used as inputs to the device.

Computational and geometric heart models have been de-
veloped to study the heart functions from the electrical (e.g.,
signal propagation, distortion and attenuation) and mechan-
ical (e.g., cardiac output and valve mechanisms) aspects. A
high-order geometric model of human ventricles has been
developed from ultrasound imagery using the Finite Element
Method [26]. At the cellular level, models simulating or
mimicking the ion channels activities of heart cells have been
developed (e.g., [27]). These models can be used to study
the pharmacological effect on heart when composed into a
whole heart model. At the tissue level, the micro-structureof
heart tissue has been studied in [28]. For example, the cardiac
fiber direction from a canine heart has been researched in
[29]. As the electrical activities of the heart influence muscle
contraction, and thus control the flow dynamics of the blood,
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several studies have focused on the electrical-biomechanical
function of the whole heart ([30], [31]).

While these high-fidelity functional models capture the
heart functions in great detail, the full electro-physiological
model of the heart derived from them is computationally too
expensive for implantable device V&V. Furthermore, during
test case generation, fitting patient data with the large number
of parameters (in the 100,000s) is nearly impossible and
unnecessary as the pacemaker has only two or three electrodes
to interface with the heart. Thus these models are thereforenot
at the right level of abstraction for V&V and do not interface
with implantable cardiac devices.

Medtronic’s Virtual Interactive Patient simulator can be used
in closed-loop operation with real medical devices, but thelack
of clinical relevance of this signal generator allows it to be only
used as a training tool and not during the testing of device
software itself [18]. In 1989, Malik et. al. [32] extracted the
timing properties of the cardiac conduction system to model
the heart. Their model was able to do close-loop simulation
with pacemaker software for several clinically-relevant cases
and produce template-based ECG signals. The VHM platform
builds upon this modeling technique and allows for cardiac
device testing and interaction with real devices.

B. Requirements for Model-Based Closed-loop V&V

For model-based V&V it is necessary to develop a frame-
work wherein the device itself, or a model of the device, is
verified or tested in closed-loop with a model of the patient or
the organ of concern. Thus, the main part of the framework is
the model of the patient or the organ of concern (i.e., in this
case the heart) that satisfies the following requirements:

A. Model Fidelity: The design of the heart model must
cover the functioning heart (i.e., normal sinus rhythm) and
improper heart function including the most common and
potent arrhythmias. Our Virtual Heart Model (VHM) covers
the following conditions that capture a majority of closed-loop
test cases: normal sinus rhythm, sinus bradycardia, Wencke-
bach type heat block, AV nodal reentry tachycardia (AVNRT)
for supraventricular tachycardia, pacemaker mode-switchop-
eration and pacemaker mediated tachycardia condition. In
addition, pacemaker lead related issues such as crosstalk,lead
dislodgement and lead displacement can be modeled in the
spatial-temporal VHM model (for details see [33], [34], [35],
[36], [37]. These conditions, while not exhaustive, sufficeto
demonstrate the closed-loop methodology for V&V.

B. Simplicity: A majority of the heart models currently
used are extremely high order with hundreds of thousands of
ordinary differential equations or millions of finite elements.
While these models are several orders of magnitude richer than
the one presented here, they are primarily concerned with the
mechanics of fluid flow and muscle contraction. Furthermore,
the simulation of the models are time-consuming and the
models do not interact with medical devices [38], [39], [40],
[41] and [42]. The VHM presents an abstraction of the timing
and electrical conduction only as these are the primary inputs
to the pacemaker.

C. Physical Test-bed:One of the potential problems with
medical device development is that the behavior of a man-

ufactured device might differ from the model used during
its development. Thus, it is necessary to provide a closed-
loop test-bed that can be used for testing of the physical
devices. In this case, the model of the organ of concern that
was used for model-based simulation and verification has to
be compatible with the device that mimics the organ during
physical testing. The VHM is implemented in Mathwork’s
Stateflow/Simulink models which allows extraction of VHDL
description of the heart. This enabled us to operate the heart
on VHDL-based FPGA platform for black-box closed-loop
testing, which complements the model-based V&V.

C. Overview of the VHM Approach

We developed Virtual Heart Model (VHM), an integrated
framework for implantable device validation and verification
(see Fig. 2). A formal model which captures the timing
properties of the electrical conduction system of the heartis
developed as a kernel. With a formal model of the device,
closed-loop verification can be done to evaluate device soft-
ware safety against safety requirements. Through a functional
interface, the heart model is able to perform closed-loop
device validation by generating synthetic electrogram signals
(detailed in the next section) to the devices and respond to a
functional pacing signal from the device. This combinationof
physiological model and environmental model within a formal
model framework will assist with device certification, which
is based on a validated and verified device model.

Fig. 3 presents a high-level description of the approach we
used to V&V a pacemaker design. We started by formally
specifying the behavior of the heart, using a network of ex-
tended timed-automata (see Section IV). Afterward, the formal
specification was manually mapped into two types of Simulink
designs, a counter-based design and a Simulink design that
uses Stateflow temporal logic operators. Both models utilize
discrete-time Stateflow charts and can be used for Simulink
simulation of the closed-loop scenarios, where the VHM is
composed with a Simulink model of the device. However, the
main difference between the models is the approach that was
used to control execution of a Stateflow chart in terms of time.
The former model utilizes a set of counters that count the
number of global, periodically generated clock events. On the
other hand, the latter model utilizes absolute-time temporal

Fig. 2. Functional and Formal interfaces of the Virtual HeartModel [33].



PROCEEDINGS OF THE IEEE 5

��������	
����������

����
����

���
����������

��������

�����
�����
��

����������
����

 
�	�����!�����

���
�����������

�
����

���
�����
��

����
��!��	�

����������" 
������

�����������

#		�������
�

����
��
���

���!��
����	�����

����
��
���

���������

���
������
�

�
$��


����
��!��	�

 
����������%������

�
$��
�

����
��!��	�

�
�������������

#		���

��%������

�
$��


#		����

���
������
�

�
$��


Fig. 3. High-level overview of the VHM application in closed-loop
verification and validation of Implantable Cardiac Devices.The focus of our
current research is denoted with dotted lines.

logic that defines time periods based on the chart simulation
time [43]. Thus, this model can be translated into timed-
automata description compatible with UPPAAL verification
tool [44], [45].

For a particular VHM design, the behavior of the model
is determined by a set of model parameters. For example,
different clinical case-studies are obtained from the model
by assigning appropriate values to these parameters (see
Sections V and VII). Finally, given a VHM, we specify a
set of general and condition-specific requirements for the
closed-loop system [36]. These requirements are evaluatedby
constructing a set of monitors to check for violations of timing
and safety conditions for each case [36]. The aforementioned
setup allows utilization of the developed heart model for
both verification of the closed-loop system, and simulation
and testing of the system using a device model or an actual
physical device.

III. U NDERSTANDING THEHEART FUNCTION

The human heart is perhaps the most important natural
real-time system. The heart spontaneously generates electrical
impulses which organize the sequence of muscle contractions
during each heart beat. The underlying pattern and timing of
these impulses determine the heart’s rhythm and are the key
to proper heart function. Derangements in this rhythm impair
the heart’s ability to pump blood. Thus, the heart’s electrical
timing, also known as its electrophysiological operation,is
fundamental to proper cardiac function. Irregularities this
timing result in inefficient and unsafe function of the blood-
oxygen system and hence the heart rate must be maintained
by artificial means. The implantable cardiac pacemaker is
a rhythm management device that prevents the heart from
operating below a minimum rate and maintains synchrony
between the upper and lower chambers. Such devices have
significantly improved the condition of patients with cardiac
arrhythmias and in a majority of cases slowed down the
degradation of the heart function.
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A. Cellular-level Action Potential

The heart tissue can be activated by an external voltage ap-
plied to the cell. After the activation, a transmembrane voltage
change over time can be sensed due to ion channel activities,
which is referred to as an Action Potential (Fig. 4(a)). The
upstroke of the action potential is called depolarization,which
corresponds primarily to the inward flow ofNa+ ions into the
cell. During depolarization, the muscle will contract and the
voltage change caused by the depolarization will activate the
cells nearby, which causes an activation wave across the heart.
After the depolarization there is a refractory period when ions
flows out of the cell. The voltage is then dropped down to
resting potential. The refractory period can be divided into
Effective Refractory Period (ERP)and Relative Refractory
Period (RRP)(Fig. 4(b)). During ERP, the cell cannot be
activated due to the recovery process of the ion channels.
So the activation wave will get blocked at the tissue during
ERP (Fig. 4(c1)). During RRP, the ion channels are partially
recovered and the cell can be activated. However, the new
action potential generated by the depolarization will have
different shape, thus affecting the refractory periods of the
tissue and conduction delay of the activation wave (Fig. 4(c2)).
Fig. 4(c1)-(c3) show the action potential shape change and
corresponding timing change in refractory periods when the
cell is activated at time stampt1, t2, t3 after the initial
activation t0. The slope change of the action potential will
affect the time for the voltage to reach activation threshold of
nearby cells, thus increases conduction delay.

B. Electrical conduction system of the heart

The electrical conduction system of the heart (Fig. 5(a))
controls the coordinated contraction of the heart. First, the
specialized tissue at the Sinoatrial (SA) node periodically
and spontaneously self-depolarizes. This is controlled bythe
nervous system and the SA node is the primary and natural
pacemaker of the heart. The activation signal then travels
through both atria, causing contraction and pushes blood into
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the ventricles. Then the activation is delayed at the Atrioven-
tricular (AV) node which allows the ventricles to fill fully.
The fast-conducting His-Purkinje system then spreads the
activation signal within both the ventricles. The simultaneous
contraction of the ventricle muscles will push the blood out
of the heart.

C. Cardiac Arrhythmias

The coordination of the heart’s electrical activity can be
impaired by the anomalies of the conduction and refractory
properties in heart tissue. The disease is referred to asar-
rhythmia, which means rhythm disorder of the heart. It can
be categorized intoBradycardiaandTachycardia. Bradycardia
features slow heart rate which will result in insufficient blood
supply. Bradycardia maybe due to failure of impulse gener-
ation with anomalies in the SA node, or failure of impulse
propagation where the conduction from atria to the ventricles
is delayed or even blocked. Tachycardia features fast heart
rate which would impair hemodynamics. It can be caused by
anomalies in SA node orReentry circuit. Reentry circuit is
the most common cause for Tachycardia and is responsible for
the majority of arrhythmia-related fatalities. The basic idea of
reentry circuit is that additional conduction pathways form a
conduction loop with the primary conduction pathways. Since
the frequency for the activation signal going around the loop is
higher than the heart rate generated by the SA node, the circuit
will override the natural pacemaker function and results ina
fast and irregular heart rate.

D. Arrhythmia Diagnosis & Treatment

Arrhythmia can be diagnosed either invasively using Elec-
trophysiology (EP) testing or non-invasively using Electrocar-
diography (ECG). The EP study is used to precisely locate
timing anomalies within the heart. Catheters with multiple
electrodes on the tip are inserted from the groin into the
heart via the blood vessels. The local potential change can
be sensed by the electrodes, which generate Electrogram
signals (EGMs). The common catheter placement and example
EGMs are shown in Fig. 5(a) and Fig. 5(b). Using the spatial
information from catheter placement, as well as the temporal
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Fig. 5. (a) The electrical conduction system of the heart and basic
catheter placement for EP study; (b) Example ECG and EGM signals.

information inferred from the timing difference between the
pulses within one channel or among channels, the physician
can locate timing anomalies within the heart. Ablation surgery
can be performed to treat tachycardia if the tachycardia is
caused by reentry circuit. After the additional pathway of the
reentry circuit is located during EP testing, the physiciancan
deliver RF signal from the tip of the catheter. The tissue will
be killed and the pathway will be disabled.

The electrical activities of the heart can also be sensed
on body surface as ECG. The ECG signals provide a global
view of the electrical activities of the heart. Since it is non-
invasive and easy to operate, it is the most commonly used
technique for initial arrhythmia diagnosis. The contraction of
the atria will generate the P wave. The depolarization of the
two ventricles will generate high voltage QRS wave. The
refractory of the ventricles will generate the T wave. (Fig.5(b))

E. Rhythm management devices

Since the heart tissue can be activated by an external
voltage, devices like implantable pacemakers have been de-
veloped to deliver timely electrical pulses to the heart to treat
Bradycardia. The pacemaker has two leads inserted into the
heart, one in the right atrium and one in the right ventricle.
By doing timing analysis of the EGM signals sensed from the
two leads, the artificial pacemaker generates electrical pulses
when necessary that can maintain ventricular rate and enforce
atrial-ventricular synchronization.

IV. H EART MODEL

In this section, the formal specification of the VHM is
presented. The model has been manually translated into two
Simulink designs: a counter-based model (more details regard-
ing the model can be found in [33]), and a temporal logic based
model [46].

The electrical conduction system of the heart consists of
conduction pathways with different conduction delays and
refractory periods. Since refractory properties of a conduction
path are determined by the refractory properties of the tissue at
its two terminals [47], a conduction path can be modeled with
two “node” components that model refractory properties and
a “path” component modeling conduction properties between
the two nodes. Since the refractory and conduction properties
are all timing based, it is natural to model the electrical
conduction system as a network of timed-automata [48], which
are widely used for model verification. Several verification
tools based on timed automata have been developed, including
UPPAAL [44] and Kronos [49].

A. A Brief Overview of Extended Timed Automata

Timed automaton [48] is an extension of a finite automaton
with a finite set of real-valued clocks. The formal description
of the VHM uses an extended version of timed automata
semantics, which is similar to the semantic extension used
in UPPAAL [44], [45]. The value of all clocks increases
over time at the same rate. Each location (i.e., state) can be
assigned with a set ofclock invariantswhich are conditions
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Fig. 6. (a) Node automaton. Dotted transition is only valid for pacemaker tissue like SA node; (b) Path automaton; (c) Model of the electrical
conduction system of the heart using a network of node & path automata [33].

expressing constraints on the clock values for the location. In
most models, a state invariant defines an upper bound on the
values that a clock can have while the state is active.

A transition guard is a condition on the values of clocks.
A typical guard is of the formt ≥ T , which provides a lower
bound for the clock value. A transition between locations is
enabled when the guard of the transition is true. However, a
transition between locations can occur at each moment when
it is enabled. Thus, to model deterministic transitions at a
particular time, state invariants are usually defined as the
closure of the complement of the guard (e.g., if the guard
is defined ast ≥ 1, then an invariantt <= 1 is added to the
state). Finally, when a transition occurs, associatedactionsare
taken, which involve updating local variables and/or reseting
clocks.

The VHM is modeled as a network of extended timed-
automata that includes synchronization primitives and shared
variables. In addition, in the VHM each automaton has its own
clocks and all clocks progress synchronously. Automata syn-
chronize with each other using broadcast channels. A channel
c synchronizes between a senderc! and an arbitrary number
of receiversc?. A transition with receiverc? is taken ifc! is
available. Since shared variables are used, as with UPPAAL,
linear operations and conditions that include variables can be
used as a part of guards and reset actions. However, unlike
timed-automata semantics in UPPAAL, in our framework a
variable can be assigned with a value that is obtained using
a non-linear function of variables and clocks. This is done to
be able to model the refractory period and conduction delay
change. However, this aspect complicates the use of standard
verification tools based on the timed-automata framework.

B. Modeling the Electrical Conduction System of the Heart

Using the aforementioned semantics, we definenode au-
tomatonthat models the refractory properties of heart tissue,
andpath automatonthat models the propagation properties of
heart tissue. Heart tissue along a conduction path can then
be modeled using two node automata and one path automaton
connecting them. When one of the node automata is activated,
it will send an Act path! event to the path automaton. The
path automaton, which models a conduction delay, generates

an Act node! event after the conduction is completed. The
event will activate the node automaton at the other end of the
conduction path. The activation signal will keep propagating
if the node automaton is connected to other path automata.
In this manner, the electrical conduction system of the heart
can be modeled as a network of node and path automata (see
Fig. 6(c)).

1) Node automaton:The node automaton with indexi
(presented in Fig. 6(a)) is used to mimic the timing behavior
of cellular action potential from Fig. 4(a). The refractory
periods are modeled as three states. The automaton starts from
Reststate, which corresponds to the resting potential of the
action potential. For the specialized tissue like SA node, the
corresponding node automaton will be self-activated intoERP
state afterTrest. A broadcast eventAct path(i)! is sent out
to all path automata that are connected to node automaton
i. In this case the shared variableC(i) ∈ (0, 1], which is
shared among all paths connecting to nodei, is updated to 1,
indicating a normal conduction delay. All node automata can
be activated by receiving eventAct node(i)?after some path
connecting to it finishes conduction.

ERP state serves as a blocking period since the node does
not react to activation signals while the state is active. After
Terptime inERPstate, the transition toRRPstate occurs. If no
external stimuli occurs, the node will return toReststate after
Trrp time. If a node is activated duringRRPstate, the transition
to ERP state will occur, activating all paths connected to the
node. Before entering theERP state, the variable used for
the the clock invariant of the state is modified. This behavior
corresponds to the ERP change due to early activation. The
conduction delay of the paths connecting to the node will
also be updated by the value of shared variableC(i). The
physiological basis and clinical data of this behavior has been
studied in [50] and [51] and an exponential approximation
of the changing trend has been made to approximate similar
behavior.

The functionsf and g that are used to mimic the change
in Terp are defined as:

f(t) = 1− t/Trrp (1)

The AV node has a different profile than the other tissue.
The ERP period increases rather than decreases when activated
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during its RRP [47].

g(x) =

{

Tmin + (1− (1− x)3) · (Tmax − Tmin), i = AV
Tmin + (1− x3) · (Tmax − Tmin), i 6= AV

(2)
whereTmin andTmax are the minimum and maximum value
for Terp of the tissue.

2) Path automaton:The path automaton models the electri-
cal conduction between two nodes. Path automaton connecting
nodesa and b is designed as in Fig. 6(b). Its initial state is
Idle state, which corresponds to no conduction. It is worth
noting that the path automaton is able to conduct both ways.
The states corresponding to the two conduction directions are
named after the physiological terms: Antegrade (Ante) and
Retrograde (Retro). These states can be intuitively described
as forward and backward conductions. IfAct path event is
received from one of the nodes connected to it, the a transition
to Ante or Retro state correspondingly will occur in the path
automaton. At the same time the clock invariant of the state
is modified according to the shared variableC(a/b). This
corresponds to the change of the conduction delay that is
caused by the early activation. Similar to node automaton, the
changing trend is extracted from clinical data and the function
h is defined as:

h(c) =

{

path len/v · (1 + 3c), i = AV
path len/v · (1 + 3c2), i 6= AV

(3)

wherepath len denotes the length of the path andv is the
conduction velocity.

After Tanteor Tretro time expires, the path automaton sends
out Act node(b) or Act node(a) repectively. A transition to
Conflict state occurs followed by the transition toIdle state.
The intermediate stateConflict is designed to prevent back-
flow, where the path is activated by the nodeb it has just
activated. If duringAnteor Retrostate anotherAct pathevent
is received from the other node connected to the path automa-
ton, a transition toDouble state will occur, corresponding to
the two-way conduction. In this case, the activation signals
eventually cancel each other and the transition toIdle state is
taken.

3) Geometric model of the heart:The node and path
automata are overlaid onto a 2D heart anatomy to provide
rough information about the model topology and relative path
length. A more detailed 3D anatomical model of the heart
is currently being developed. The new model will have more
geometric and anatomical details to allow simulation of more
complex clinical cases with high fidelity. It is also essential for
developing a patient-specific heart model. The 2D geometric
model also limits the flexibility to measure electrical activities
at precise locations of the heart and the morphology of EGM
signals have low fidelity. However, since the morphology of
EGM signals have little influence on pacemaker function and
the pacemaker leads are fixed, the interface is good enough
for our current application.

C. Functional interface

To test implantable cardiac devices like a pacemaker, the
VHM has to be able to generate EGM signals which are the

inputs to the devices. According to [52], during EP study,
a potential difference can be sensed when the activation
wavefront passes by the electrode on catheters. The same
mechanism applies to the pacemaker leads. Thus, a functional
interface has been developed and we useprobesto represent
electrodes on the a catheter. The probe is able to generate
synthetic EGM signals using temporal information of the
formal kernel and spatial information from the 2D geometric
model. The same idea can also be extended to the 3D model.
Fig. 7 shows the morphology of EGM signal changes with
different conduction velocity and probe configurations. Due
to space limitation, detailed description of the probe model
can be found in [35].

D. Parameter estimation

In order to model the heart in clinical cases, parameter esti-
mation from patient data is an essential step after the topology
of the model is defined. During EP study, refractory periods
and conduction delays of the heart tissue are estimated from
EGM signals by the physicians to identify potential anomalies.
These two features are similar to the model parameters of
interest. Ideally all model parameters can be extracted from
EGM data from EP studies. However, EGM signals contain
only partial information and some of the parameters cannot
be exactly extracted. The techniques used to extract timing
parameters in EP studies are introduced in the following
section.

V. HEART MODEL VALIDATION

By modeling actual clinical cases, the functional outputs of
the VHM were validated by the director of cardiac electro-
physiology in the Philadelphia VA Hospital and electrophysi-
ologists in the Hospital of the University of Pennsylvania [33].
In this section, we first explain how parameter estimation is
done during electrophysiological (EP) study. Then a VHM
model, using the parameters extracted from the clinical data,
is constructed and is able to generate similar data (i.e. similar
to an actual patient condition).

A. Electrophysiology Study

1) Catheter placement:During EP study, catheters, with
multiple electrodes on their tip, are inserted into the heart

Fig. 7. The influence of conduction velocity and probe configuration on the
EGM morphology. The left columns show the placement of probes inrelation
to the path; the right columns show the functional EGM.
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clinically-relevant and captures the complexities of interaction
with physiological components.

This effort describes early steps toward cyber-physical
model based testing, validation and verification of medical
cyber-physical systems. This is a challenging domain as
patient modeling is both complex, highly variable and non-
deterministic and the safety properties must include over-
approximated models for verification, abstract models for
simulation and be realizable in physical form for testing. We
envision several avenues for future work and discuss a few:
1. Test Generation: For the setup presented in Fig. 1 it is
necessary to create a relevant sequences of mode selection sig-
nals and model parameters which would guarantee appropriate
testing of the device. The procedure must take into account
the device model along with desired test-coverage approach.
2. Verification: For a specific VHM configuration it is possible
to automatically extract a formal, timed-automata descrip-
tion of the VHM compatible with the UPPAAL verification
tool [44]. This would allow a closed-loop system verification
using UPPAAL’s built-in verification procedures.
3. Combining the VHM with more complex devices:such as
ICDs which are rate-adaptive and operate with varying levels
of hysteresis. We plan to investigate a translation of the VHM
to Linear Hybrid Systems in order to use asymbolic analysis
frameworkproposed in [56].
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