9-1978

Growth Rates for Monotone Subsequence

A Del Junco

John M. Steele
University of Pennsylvania

Follow this and additional works at: http://repository.upenn.edu/oid_papers

Part of the Mathematics Commons

Recommended Citation

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/oid_papers/280
For more information, please contact repository@pobox.upenn.edu.
Growth Rates for Monotone Subsequence

Abstract
The growth rate of the largest monotone subsequence of a uniformly distributed sequence is obtained. For an $\alpha \mod 1$ with an algebraic irrational the exponent of growth is found to be precisely the same as for a random sequence.

Disciplines
Mathematics
Growth Rates for Monotone Subsequence
Author(s): A. Del Junco and J. Michael Steel
Published by: American Mathematical Society
Stable URL: http://www.jstor.org/stable/2042828
Accessed: 21-06-2016 14:19 UTC

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://about.jstor.org/terms

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

American Mathematical Society is collaborating with JSTOR to digitize, preserve and extend access to Proceedings of the American Mathematical Society.
GROWTH RATES FOR MONOTONE SUBSEQUENCES

A. DEL JUNCO AND J. MICHAEL STEELE

Abstract. The growth rate of the largest monotone subsequence of a uniformly distributed sequence is obtained. For $a_n = na \mod 1$ with a algebraic irrational the exponent of growth is found to be precisely the same as for a random sequence.

1. Introduction. A well-known result of Erdős and Szekeres [1] states that any sequence of n real numbers contains a monotone subsequence with at least $n^{1/2}$ elements. More recently, Hammersley [2] proved that if $I_n = I_n(a_1, a_2, \ldots, a_n)$ is the order of the largest increasing subsequence of a_1, a_2, \ldots, a_n, and the a_i are chosen independently with the uniform distribution on $[0, 1]$, then

$$\lim_{n \to \infty} n^{-1/2} I_n = C,$$ \hspace{1cm} (1)

where C denotes a constant and the convergence is in probability. This result was strengthened by Kesten [4] to provide almost sure convergence, and Logan and Shepp [6] proved that $C > 2$. Our objective here is to provide results like (1) for sequences which are uniformly distributed in $[0, 1]$, but which are not random. Of particular interest to us is the sequence $a_n = na \mod 1$ where a is an algebraic irrational.

2. Uniformly distributed sequences. We will denote by $1_{[a,b)}(x)$ the indicator function of the interval $[a, b)$ and will say a sequence (a_n) is uniformly distributed in $[0, 1]$ provided for all $0 \leq a < b \leq 1$,

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} 1_{[a,b)}(a_i) = b - a.$$

The best one can say about the growth rate of I_n for a general uniformly distributed sequence is the following:

Theorem 1. If (a_n) is uniformly distributed, then

$$\lim_{n \to \infty} n^{-1} I_n = 0.$$ \hspace{1cm} (2)

Proof. Let A and n be positive integers and for $0 \leq i < A - 1$ and
By \(|S_j|\) we denote the cardinality of \(S_j\) and we set \(g(n) = \max_{j,j'}|S_{j'}|\). If \(n\) tends to infinity along the subsequence \(n = \gamma n, \gamma = 1, 2, \ldots\), then \(g(n)/n\) is easily seen to converge to \(A^{-2}\) by the uniform distribution of \((a_n)\).

Next let \(S = \{i_1 < i_2 < \cdots < i_j\}\) be any subsequence of \(1, 2, \ldots, n\) such that \(a_{i_1} < a_{i_2} < \cdots < a_{i_j}\). We note that \(S\) intersects at most \(2A - 1\) of the \(S_{ij}\). (One can identify \(a_1, a_2, \ldots, a_n\) with its graph in \(\{1, 2, \ldots, n\} \times [0, 1]\) and view the \(S_{ij}\) as “boxes.”) This observation yields the inequality \(\sum_{j} |S_{ij}| < 2Ag(n)\), and since \(\sum_{j} |S_{ij}| < |S|\) we have \(\lim_{n \to \infty} l_j/n < 2/A\) provided the limit is taken along the subsequence \(n = kA\).

For \(kA < n < (k + 1)A\) we note that

\[
I(a_1, a_2, \ldots, a_n) \leq I(a_1, a_2, \ldots, a_{Ak}) + I(a_{Ak+1}, \ldots, a_n) \\
\leq I(a_1, a_2, \ldots, a_{Ak}) + A.
\]

This proves

\[
\lim_{n \to \infty} \frac{l_j}{n} \leq \lim_{k \to \infty} \frac{(kA + A)}{kA} \leq \frac{2}{A},
\]

which completes the proof of (1), since \(A\) was an arbitrary positive integer.

3. Results concerning \((na)\). To show that \(l_n = o(n)\) is best possible we do not have to go out of the class of sequences \(a_n = na \mod 1\).

Theorem 2. Let \(C_n\) be a sequence of real numbers such that \(C_n \to 0\) as \(n \to \infty\); then there is a transcendental \(\alpha\) such that for \(a_n = na \mod 1\) we have

\[
n^{-1}l_n > C_n \text{ for infinitely many } n.
\]

Proof. The proof depends on an elementary lower estimate for \(l_n\) in terms of the denominators \(q_k\) of the convergents \(p_k/q_k\) of \(\alpha\). First we assume \(n = q_{k+1}\) and that \(\{q_k\alpha\} > 0\), where \(\{x\} = x - \lfloor x + 1/2\rfloor\). For \(j = S_{q_k}\) the sequence \(ja\) with \(S = 1, 2, \ldots, [q_{k+1}/q_k]\) can be viewed as making small positive steps, so we have the lower bound

\[
l_n > \min(1/\{q_k\alpha\}, q_{k+1}/q_k).\]

By the standard theory of continued fractions (e.g., [3, p. 9]) we have \(|[a_{q_{k+1}}]| < 1/q_{k+1}\), so (4) implies \(l_n > q_{k+1}/q_k\). Since \(C_n \to 0\) we can choose \(q_k\) which go to infinity as rapidly as we like such that \(1/q_k > C_t\) for \(t = q_{k+1}\). In particular, we may require \(q_k\) to grow rapidly enough to ensure that \(\alpha\) is transcendental. Finally, we note that if the condition \(\{q_k\alpha\} > 0\) is not met by infinitely many \(k\), we need only replace \(\alpha\) by \(1 - \alpha\). This will then complete the proof.

There is a more precise result which can be proved if \(\alpha\) is algebraic. To state it succinctly, we let \(l'_n\) denote the order of the largest monotone
THEOREM 3. If \(a_n = n\alpha \mod 1 \) where \(\alpha \) is an algebraic irrational, then
\[
\lim \frac{(\log l'_n)}{(\log n)} = 1/2. \tag{5}
\]

PROOF. We must obtain quantitative versions of the estimates used in Theorem 1. To begin, for \(0 \leq i \leq n - 1 \) and \(0 \leq j \leq n - 1 \) we let
\[
S_y = \{a_k: i/n < a_k < (i+1)/n, jn+1 < k < (j+1)n\}
\]
and observe that
\[
\max_{i,j} |S_y| \leq \max_{0 \leq j \leq n-1} \{1 + 2nD'_j\}, \tag{6}
\]
where
\[
D'_j = \sup_{0 < x < 1} \left| n^{-1} \sum_{k = jn+1}^{(j+1)n} l_{(0,x)}(a_k) - x \right|.
\]
Also, if \(S = \{a_1, a_2, \ldots, a_n\} \) is any monotone subsequence of \(\{a_1, a_2, \ldots, a_n\} \), we know \(S \) intersects at most \(2n - 1 \) of the \(S_y \). Thus, we have
\[
n \leq l''_n \leq 2n \max_{i,j} |S_y|, \tag{7}
\]
where the first inequality follows from the Erdős-Szekeres theorem mentioned in the introduction.

Since the sets \(\{(jn+1)\alpha, (jn+2)\alpha, \ldots, (j+1)n\alpha\}, j = 0, 1, \ldots, n-1, \) are translates of \(\{\alpha, 2\alpha, \ldots, n\alpha\} \), we have
\[
\max_{0 < j < n-1} D'_j = O(D'_1). \tag{8}
\]
By the Thue-Siegel-Roth theorem [5, pp. 122-124] we know that \(D_n = D'_1 = O(n^{-1+\epsilon}) \) for all \(\epsilon > 0 \). This fact, with (7) and (8), yields
\[
\lim_{n \to \infty} \frac{(\log l''_n)}{(\log n)} = 1. \tag{9}
\]
For the final step choose \(n \) so that \(n^2 < j < (n + 1)^2 \) and note \(l''_n < l'_j < l''_n + 2n \). By the bounds on \(j \) and the limit in (9), one completes the proof with a brief computation.

There are two corollaries of the proof of Theorem 3.

COROLLARY 1. If \(\alpha \) is an irrational for which \(D_n = O(n^{-1+\epsilon}) \) for all \(\epsilon > 0 \), then (5) holds. In particular, this is the case if \(\alpha \) is of finite type 1.

COROLLARY 2. For all \(\alpha \) except a set of measure 0, one has (5).

The proof of Corollary 2 depends only on the fact that \(D_n = O(n^{-1+\epsilon}) \) for all \(\epsilon > 0 \) and almost every \(\alpha \). (For more precise results on \(D_n \), see Niederreiter [7].)

ACKNOWLEDGEMENT. We wish to thank Professors H. Kesten and H. Niederreiter for their comments on an earlier draft of this paper.
REFERENCES

DEPARTMENT OF MATHEMATICS, OHIO STATE UNIVERSITY, COLUMBUS, OHIO 43210

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF BRITISH COLUMBIA, VANCOUVER V6T 1W5, B. C., CANADA