Resource Recovery Plan for Bicknell's sedge *Carex bicknellii* Britton in Pennsylvania

Ann F. Rhoads
University of Pennsylvania

Timothy A. Block
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/morrisarboretum_botanyworks

Part of the Botany Commons

https://repository.upenn.edu/morrisarboretum_botanyworks/6

Funding for the preparation of this report was provided under contract WRCP-010386 from the Wild Resources Conservation Fund, Pennsylvania Department of Conservation and Natural Resources, Harrisburg, PA

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/morrisarboretum_botanyworks/6
For more information, please contact repository@pobox.upenn.edu.
Resource Recovery Plan for Bicknell’s sedge *Carex bicknellii* Britton in Pennsylvania

Disciplines
Botany

Comments
Funding for the preparation of this report was provided under contract WRCP-010386 from the Wild Resources Conservation Fund, Pennsylvania Department of Conservation and Natural Resources, Harrisburg, PA

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/morrisarboretum_botanyworks/
Resource Recovery Plan

for

Bicknell’s sedge

Carex bicknellii Britton

in Pennsylvania

Ann F. Rhoads, PhD and Timothy A. Block, PhD
Morris Arboretum of the University of Pennsylvania
100 Northwestern Ave., Philadelphia, PA 19118

December 2012
Cover: Fruiting inflorescence of *Carex bicknellii*
photographed at Campbells Ledge, Luzerne County, PA 7/11/2011
Acknowledgements
Funding for the preparation of this report was provided under contract WRCP-010386 from the Wild Resources Conservation Fund, Pennsylvania Department of Conservation and Natural Resources, Harrisburg, PA

The following individuals provided valuable information and insights:
Helen Delano, PA Bureau of Topographic and Geologic Survey
Carol DeWolf, Natural Lands Trust
Janet Ebert, Botanical Consultant
Stanley Galenty, Botanical Consultant
Steve Grund, PNHP
Rick Koval, Botanical Consultant
John Kunsman, PNHP
Roger Latham, Continental Conservation
Table of Contents

Acknowledgements .. iii

Classification ... 1

Description
- Morphology .. 3
- Chromosome Number ... 4

Reproduction
- Pollination .. 5
- Seed Dispersal .. 5
- Seed Germination and Seed-banking Potential .. 6

Ecology
- Range ... 7
- Habitat ... 7

Conservation Status .. 9

Carex bicknelli in Pennsylvania
- Herbarium Records .. 11
- Status of Current Occurrences in Pennsylvania .. 13
- Geological Affinities of *Carex bicknelli* in Pennsylvania 14

Status in Other Peripheral States .. 17

Critical Management Issues
- Habitat Loss .. 19
- Succession and the Role of Fire .. 19
- Herbivory ... 19
- Invasive Species ... 19
- Loss of Genetic Diversity ... 20

Conclusions
- Stabilization of Existing or Recent Populations .. 21
- Establishment of New Populations .. 21
- Survey Needs .. 21
- Measures of Success ... 21
- Research Needs ... 21

References Cited ... 23

Appendix A. Field Visits ... 27
List of Figures

Figure 1. Carex bicknellii, mature inflorescence..1
Figure 2. Perigynia and pistillate scales of Carex merritt-fernaldii, C. bicknellii, C. missouriensis, C. opaca, C. skinnersii, C. brevior..3
Figure 3. Flowering inflorescences of Carex bicknellii ..5
Figure 4. Range of Carex bicknellii...7
Figure 5. Serpentine grassland with Carex bicknellii...8
Figure 6. Conservation status of Carex bicknellii..9
Figure 7. Map of current and historical occurrences of Carex bicknellii in Pennsylvania...12
Figure 8. Carex bicknellii at Campbells Ledge..15

List of Tables

Table 1. Chromosome numbers of Carex bicknellii and related species.................4
Table 2. Carex bicknellii specimen records...11
Carex bicknellii Britton

Classification

Bicknell’s sedge (*Carex bicknellii*, Cyperaceae) is a member of the most speciose genus in the Pennsylvania flora. Within *Carex* it is placed in Section Ovales, the largest section in the genus.

Carex bicknellii Britton was first recognized as a distinct species by Britton and Brown (1896-1898). It had previously been treated as *Carex straminea* Wildenow ex Schkuhr var. *crawei* Boott. Subsequent studies (Mackenzie 1931; Hermann 1972) resulted in recognition of *C. bicknellii* var. *opaca* F.J. Hermann in addition to the typical variety.

Additional work by Rothrock and Reznicek, which focused primarily on perigynium size, chromosome number, and habitat, resulted in the recognition of four distinct species within Britton’s *C. bicknellii*. *Carex bicknellii* var. *opaca* was raised to species status as *C. opaca*. In addition, two new species were recognized: *Carex shinnersii* and *Carex missouriensis* (Rothrock and Reznicek 2001). The result is a more narrowly defined and less ambiguous *C. bicknellii* than that originally described by Britton.

![Carex bicknellii inflorescence](image)

Figure 1. Carex bicknellii inflorescence. Photographed at Brintons Quarry, Chester Co., PA 6/11/2012
Description

Morphology

Carex bicknellii is an herbaceous, caespitose perennial with up to 100 culms per clump. Fruiting stems are 1—1.2 m tall, with 6—8 narrow, alternate leaves and a terminal inflorescence; few vegetative stems are produced. Leaf sheaths are concave or truncate at the summit, white hyaline on the adaxial side, and finely papillose at the apex.

Note: Although published descriptions of *C. bicknellii* specify fewer than 25 culms per clump, (FNA 2002, Rothrock and Reznicek 2001), some of the plants we documented at sites in Luzerne and Chester Counties have 50—100 culms. However, characteristics of the leaf sheaths and perigynia place these populations unquestionably in *C. bicknellii*.

An inflorescence consists of 5—6 spikes, each 0.8—1.5 cm long, clustered at the stem tip (Figure 1); both male and female flowers are present in each spike. Perigynia are strongly flattened, 5.1—6.7 mm long, broadly elliptic to orbicular with a prominent beak. The margins of the body of the perigynia are winged with irregularly toothed or erose margins; prominent veins are present over the face of the achene (Figure 2). Achenes are oblong and 1.6—2.2 mm long (Rothrock and Reznicek 2001; Flora of North America Editorial Committee 2002).

Chromosome number

Carex bicknellii has a higher chromosome number (n=38, n=39) than other similar species (Table 1).

Table 1. Chromosome numbers of *Carex bicknellii* and related species.

Source: Rothrock and Reznicek 2001

<table>
<thead>
<tr>
<th>species</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. bicknellii</td>
<td>38, 39</td>
</tr>
<tr>
<td>C. merritt-fernalddii</td>
<td>35, 37</td>
</tr>
<tr>
<td>C. opaca</td>
<td>32,33,34</td>
</tr>
<tr>
<td>C. shinnersii</td>
<td>29,30</td>
</tr>
<tr>
<td>C. missouriensis</td>
<td>23,24,25,26,27</td>
</tr>
</tbody>
</table>
Reproduction

Pollination
As in all Carex species, the flowers of C. bicknellii are unisexual; staminate flowers are at the base of each spike below the pistillate flowers (Figure 3). Flowering occurs in early May, with the female flowers in each inflorescence opening first followed by the males. The plants are wind-pollinated. Available evidence suggests that most Carex species are self-compatible and frequently autogamous (Catling et al. 1990).

Seed Dispersal
Mature perigynia of C. bicknellii are present by early to mid-June in Pennsylvania, by which time the fruiting stems are up to 1 m tall and overtop most surrounding herbaceous vegetation. Undisturbed spikes of mature perigynia remain intact for most of the summer. The actual means of seed dispersal of C. bicknellii is unknown. Considering the upper slope or ridge top locations in which they grow, and the lack of inflated perigynia, it seems unlikely that water is a major factor. However, it is possible that perigynia or achenes could be carried in surface runoff during heavy rains. Strong winds and gravity may also play a role in dispersal.

Figure 3. Flowering inflorescences of Carex bicknellii, left: female phase with stigmas visible; right male phase with conspicuous display of stamens. Photographed in Luzerne County, PA 5/12/2011.
Myrmecochory (dispersal by ants) has been documented for some Carex species. However, C. bicknelli does not exhibit the associated suite of characteristics which include fruiting stems that become decumbent with age, long capillary peduncles, basal lateral spikes, and achenes with elaiosomes (Handel 1976). The strongly flattened perigynia of C. bicknelli (typical of the Section Ovales) with sharp beaks and toothed margins (Figure 2) may catch in the fur of passing animals and be carried short distances, an example of epizoochory. Bird dispersal cannot be ruled out; Carex achenes have been shown to survive passage through the digestive tracts of birds (Catling et al. 1990). Other than that possibility, specific adaptations for long distance dispersal are not apparent.

Seed Germination and Seed Banking

Germination requirements of C. bicknelli seeds have not been studied, nor is information available on the seed banking potential of this species.
Ecology

Range
Carex bicknellii is primarily a Midwestern prairie species. It occurs from Ontario and Manitoba south to Kansas and Arkansas, and extends east to Pennsylvania, New Jersey, and Maine with an outlier in South Carolina (Rothrock and Reznicek 2001) (Figure 4). Eastern locations may be associated with the hypsithermal interval, a warmer and drier period that occurred from 7,000 to 2,500 years ago (Deevey and Flint 1957). With the return of a cooler, wetter climate, C. bicknellii could have persisted on specialized substrates that mimic prairie conditions, such as serpentine barrens and dry ridge-tops.

Habitat
Carex bicknellii grows in dry to mesic prairies, open woodlands, and rock or sand barrens (FNA 2002). In Illinois it is an occasional or common component of moist prairies and meadows in the northern three-quarters of the state (Mohlenbrock 1986). Swink and Wilhelm (1994) describe C. bicknellii as a frequent and characteristic plant of tallgrass prairies associated with Sporobolus heterolepis, Sorghastrum nutans, Andropogon gerardii, and Lilium philadelphicum. They assign a conservation coefficient of 10 to C. bicknellii, indicating a strong association with sites with high biological integrity.

In the east, C. bicknellii occurs in serpentine barrens grasslands (Figure 5) as well as non-serpentine ridgetop barrens.
Figure 5. Serpentine grassland with Carex bicknellii at Brinton’s Quarry, Chester County photographed June 11, 2012.
Conservation Status

Carex bicknellii is ranked as secure at the global (G5), and national (N5) levels (NatureServe 2011). It is unranked or considered common and secure in core Midwestern states including Illinois, Iowa, Missouri, Kansas, and Nebraska (Figure 6). However, *C. bicknellii* is of conservation concern in peripheral areas of its range, including Manitoba, Ontario, Arkansas, Ohio, Pennsylvania, New Jersey, and Maine (NatureServe 2011) (Figure 6). It is also included on the New York list of threatened species (New York Flora Assn. 2012).

![Figure 6. Conservation status of Carex bicknellii](image)

Source: NatureServe 2011
Carex bicknellii in Pennsylvania

Herbarium Records
The earliest Pennsylvania records of Carex bicknellii are from Lehigh County (1871), Delaware County (1890), Bucks County (1894), and Chester County (1900) (Table 2).

Table 2. Carex bicknellii specimen records from Pennsylvania
Source: Pennsylvania Flora Database 2012; Herbarium of the Academy of Natural Sciences of Philadelphia

<table>
<thead>
<tr>
<th>year</th>
<th>county</th>
<th>location</th>
<th>collector</th>
<th>source</th>
<th>habitat</th>
</tr>
</thead>
<tbody>
<tr>
<td>1871</td>
<td>Lehigh</td>
<td>Seidersville</td>
<td>Porter, T.C.</td>
<td>PH</td>
<td>serpentine barrens</td>
</tr>
<tr>
<td>1890</td>
<td>Delaware</td>
<td>Elwyn (Pink Hill)</td>
<td>Brinton</td>
<td>PH</td>
<td>serpentine barrens</td>
</tr>
<tr>
<td>1894</td>
<td>Bucks</td>
<td>Penn Valley</td>
<td>Crawford, J</td>
<td>PH</td>
<td>serpentine barrens</td>
</tr>
<tr>
<td>1900</td>
<td>Chester</td>
<td>Fern Hill</td>
<td>Windle, Francis</td>
<td>PH</td>
<td>serpentine barrens</td>
</tr>
<tr>
<td>1908</td>
<td>Chester</td>
<td>Cedar Barrens</td>
<td>Pennell, F.W.</td>
<td>PH</td>
<td>serpentine barrens</td>
</tr>
<tr>
<td>1908</td>
<td>Delaware</td>
<td>Bear Hill</td>
<td>Pennell, F.W.</td>
<td>PH</td>
<td>serpentine barrens</td>
</tr>
<tr>
<td>1910</td>
<td>Delaware</td>
<td>Williamson School</td>
<td>Van Pelt, S.S.</td>
<td>PH</td>
<td>serpentine barrens</td>
</tr>
<tr>
<td>1911</td>
<td>Chester</td>
<td>Brinton’s Quarry</td>
<td>Pennell, F.W.</td>
<td>PH</td>
<td>serpentine barrens</td>
</tr>
<tr>
<td>1912</td>
<td>Chester</td>
<td>Cedar Barrens</td>
<td>Pennell, F.W.</td>
<td>PH</td>
<td>serpentine barrens</td>
</tr>
<tr>
<td>1912</td>
<td>Delaware</td>
<td>Bear Hill</td>
<td>Pennell, F.W.</td>
<td>PH</td>
<td>serpentine barrens</td>
</tr>
<tr>
<td>1912</td>
<td>Delaware</td>
<td>Glen Riddle (Pink Hill)</td>
<td>Pennell, F.W.</td>
<td>PH</td>
<td>serpentine barrens</td>
</tr>
<tr>
<td>1916</td>
<td>Delaware</td>
<td>Wawa (Pink Hill)</td>
<td>Pennell, F.W.</td>
<td>PH</td>
<td>dry serpentine</td>
</tr>
<tr>
<td>1923</td>
<td>Chester</td>
<td>Brinton’s Quarry</td>
<td>Long, B. 7330</td>
<td>PH</td>
<td>dry rock exposure</td>
</tr>
<tr>
<td>1924</td>
<td>Delaware</td>
<td>Williamson School</td>
<td>Pennell, F.W.</td>
<td>CM</td>
<td>grassy serpentine</td>
</tr>
<tr>
<td>1924</td>
<td>Delaware</td>
<td>Williamson School</td>
<td>Dreisbach 2267</td>
<td>PH</td>
<td>serpentine barrens</td>
</tr>
<tr>
<td>1925</td>
<td>Chester</td>
<td>Willistown Barrens</td>
<td>Stone</td>
<td>PH</td>
<td>dry wood slope</td>
</tr>
<tr>
<td>1927</td>
<td>Cumberland</td>
<td>Pine Grove Furnace</td>
<td>Bright, J.</td>
<td>CM</td>
<td>dry barrens</td>
</tr>
<tr>
<td>1929</td>
<td>Chester</td>
<td>Lees Bridge (Goat Hill)</td>
<td>Pennell, F.W.</td>
<td>PH</td>
<td>serpentine thickets</td>
</tr>
<tr>
<td>1930</td>
<td>Chester</td>
<td>Cedar Barrens</td>
<td>Stone, H.E.</td>
<td>PH</td>
<td>serpentine rock</td>
</tr>
<tr>
<td>1947</td>
<td>Monroe</td>
<td>Brodhead Creek</td>
<td>Glowenke, S.L.</td>
<td>PH</td>
<td>sandy field</td>
</tr>
<tr>
<td>1947</td>
<td>Northampton</td>
<td>Raubsville</td>
<td>Schaeffer, R.L.</td>
<td>PH</td>
<td>alluvium</td>
</tr>
<tr>
<td>1947</td>
<td>Northampton</td>
<td>Slateford</td>
<td>Schaeffer, R.L.</td>
<td>PH</td>
<td>dry woods</td>
</tr>
<tr>
<td>1962</td>
<td>Chester</td>
<td>Unionville Barrens</td>
<td>Henry, L.K.</td>
<td>CM</td>
<td></td>
</tr>
<tr>
<td>1965</td>
<td>Monroe</td>
<td>Anatomink</td>
<td>Buser, F.</td>
<td>ESU</td>
<td>dry shale outcrop</td>
</tr>
<tr>
<td>1972</td>
<td>Monroe</td>
<td>Ressaca</td>
<td>Buser, F.</td>
<td>ESU</td>
<td>rock outcrop</td>
</tr>
<tr>
<td>1983</td>
<td>Chester</td>
<td>Brinton’s Quarry</td>
<td>Newbold, A.</td>
<td>MOAR</td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>Chester</td>
<td>Mortonville (Unionville)</td>
<td>Ebert, J.; Holt, J.</td>
<td>PH</td>
<td>serpentine grassland</td>
</tr>
<tr>
<td>2001</td>
<td>Luzerne</td>
<td>Penobsco Mtn.</td>
<td>Kunzman, J.R.</td>
<td>PH</td>
<td>crest of ridge</td>
</tr>
<tr>
<td>2003</td>
<td>Chester</td>
<td>Unionville Barrens</td>
<td>Ebert, Janet</td>
<td>MOAR</td>
<td>serpentine grassland</td>
</tr>
<tr>
<td>2011</td>
<td>Chester</td>
<td>Brinton’s Quarry</td>
<td>Rhoads, Latham,</td>
<td>MOAR</td>
<td>serpentine grassland</td>
</tr>
<tr>
<td>2011</td>
<td>Chester</td>
<td>Unionville Barrens</td>
<td>Rhoads, A.; Latham,</td>
<td>MOAR</td>
<td>serpentine grassland</td>
</tr>
<tr>
<td>2011</td>
<td>Luzerne</td>
<td>Campbell’s Ledge</td>
<td>Rhoads, Burgess,</td>
<td>MOAR</td>
<td>grassy opening, upper slope</td>
</tr>
<tr>
<td>2012</td>
<td>Chester</td>
<td>Brinton’s Quarry</td>
<td>Rhoads & DeWolf</td>
<td>MOAR</td>
<td>serpentine grassland</td>
</tr>
<tr>
<td>2012</td>
<td>Luzerne</td>
<td>Plains Twp.</td>
<td>Ebert, J.; Holt, J.</td>
<td>MOAR</td>
<td>dry grassy glades</td>
</tr>
</tbody>
</table>
Carex bicknellii is known from nine counties in eastern Pennsylvania. The majority of sites are on serpentinite or Mauch Chunk formation. Additional scattered sites include several in alluvium along the Delaware and Lehigh Rivers. While a number of the early sites have disappeared or no longer support *Carex bicknellii*, several previously unknown populations in Luzerne County have been discovered recently (Table 2; Figure 7).

Figure 7. Map of current and historical occurrences of *Carex bicknellii* in Pennsylvania

Serpentine Barrens Occurrences – Herbarium specimens document the fact that *C. bicknellii* once grew at ten sites on serpentinite geology in Chester and Delaware Counties (Table 2).

Carex bicknellii was described as “local on dry, open barrens” in Delaware and Chester Counties (Pennell 1910; Pennell 1912). Sites mentioned included in Delaware County: Bear Hill, Williamson School Barrens, and Glen Riddle Barrens (=Pink Hill); in Chester County: Cedar Barrens, West Chester (=Fern Hill), and Brinton’s Quarry. Wherry (1963) described *C. bicknellii* as “especially well developed on the barrens”.

12
Repeated attempts to relocate the species at all but two of these sites have failed. Habitat loss or degradation resulting from land use changes have clearly caused some of the losses, but in cases where serpentine barrens have been protected, such as Goat Hill, Pink Hill, and Willistown Barrens, the reasons for the disappearance of *C. bicknellii* are not as clear.

Historical Sites on Non-serpentine Geology - Historical collections of *C. bicknellii* are scattered from Cumberland County (dry barrens near Pine Grove Furnace) and a dry wooded slope along the Schuylkill River in Montgomery County to the coastal plain in Bucks County, and north along the Delaware and Lehigh Rivers in Northampton, Lehigh, and Monroe Counties (Table 2; Figure 7). Habitat descriptions include: dry rock outcrops, alluvium, sandy field, dry woods.

Status of Current Occurrences

Brinton’s Quarry – A large population of *Carex bicknellii* has been known at Brinton’s Quarry Serpentine Barren in Chester County for at least 100 years (Table 2). A count of fruiting stems conducted on 6/11/2012 revealed a total of 1833 fruiting stems contained in 126 clumps (plants) scattered throughout the grassland. Most clumps also had several stems that had been grazed, presumably by deer. At this site *C. bicknellii* occupies a 2-acre open grassland (Figure 5) overlooking the quarry, where it is growing with *Arabis lyrata*, *Aristida dichotoma*, *Aristida purpurascens*, *Asclepias verticillata*, *Bouteloua curtipendula*, *Carex hirsutella*, *Dichanthelium villosissimum*, *Eragrostis spectabilis*, *Juncus secundus*, *Packera anonyma*, *Phlox subulata*, *Polygonum tenue*, *Rosa virginiana*, *Schizachyrium scoparium*, *Symphyotrichum depauperatum*, and scattered *Elaeagnus umbellata* (A. Rhoads field observations, 8/30/2011 & 6/11/2012).

Unionville Serpentine Barrens – Unionville Barrens, also in Chester County, where *C. bicknellii* was first documented in 1962, currently supports a small population. In 2011 it consisted of 13 plants containing 54 fruiting stems. At this site *C. bicknellii* was growing with *Anthoxanthum odoratum*, *Celastrus orbiculatus*, *Cerastium velutinum*, *Juniperus virginiana*, *Packera anonyma*, *Phlox subulata*, *Poa pratensis*, *Quercus velutina* hyb., *Rosa multiflora*, *Sassafras albidum*, *Sorghastrum nutans* (A. Rhoads, field notes 6/7/2011). Natural Lands Trust recently acquired the Unionville site and is in the early stages of implementing a restoration and management plan (Latham and McGeehin 2012).

Luzerne County sites – Of the non-serpentinite locations, only a cluster of sites in Luzerne County are known to contain extant populations of *C. bicknellii* today. All are upper slope grasslands or ridge-top barrens underlain by rocks of the Mauch Chunk Formation, red or grayish-red shale, siltstone, and limestone of Mississippian age (PA Bureau of Topographic and Geologic Survey 2001; USGS 2012). At these sites the soil in which *C. bicknellii* is growing is mapped as Oquaga and Lordstown extremely stony silt loam or Arnot-Rock outcrop complex (Soil Conservation Service 1981). These soils are described as occurring on mountain ridges, rolling mountaintops, and inter-mountain basins. They are of medium fertility, not suited for crops due to stoniness. We observed that *C. bicknellii* was rooted in a 4—5 inch thick, dark, strongly organic A-horizon at one of these sites (A. Rhoads field notes 6/27/2011).

In addition to *C. bicknellii*, associated plants of these ridge-top sites include *Ambrosia artemisifolia*, *Andropogon gerardii*, *Apocynum cannabinum*, *Asclepias tuberosa*, *Campanula*

Geological Affinities of Carex bicknellii in Pennsylvania
Carex bicknellii is a plant of the prairie region of North America (Rothrock and Reznicek 2001). Most of the locations where it is (or was) known to occur in Pennsylvania are serpentine grasslands or prairie-like openings on ridge tops underlain by rocks of the Mauch Chunk Formation (Figure 6).

A study of 43 species Pennsylvania plants, including C. bicknellii, whose major centers of distribution lie in the prairie and plains region of North America, revealed that 81 percent were collected on limestone, serpentinite, diabase, or shale (Barber 1995).

The Mauch Chunk Formation is described as red to reddish-brown shale, mudstone and siltstone or greenish-gray sandstone and conglomerate that was deposited in a shallow estuary associated with an extensive inland sea that covered much of the mid-continent during the Mississippian period 330—345 mya (Shultz 1999; USGS 2012).

Mapping of the Mauch Chunk formation includes, but does not differentiate, the Loyalhanna member, a sandy cross-bedded limestone and calcareous siltstone and mudstone deposited in an arm of the inland sea that extended northeastward to Luzerne County (Shultz 1999). Edmunds (1977) described the coloration of the Loyalhanna facies north of Pittston as gray to greenish-gray, in contrast with the reddish colors of much of the Mauch Chunk, citing outcrops at Campbells ledge.

Other prairie plants that we documented growing with C. bicknellii in ridgetop barrens on Mauch Chunk include little bluestem (Schizachyrium scoparium), Indian grass (Sorghastrum nutans), turkeyfoot (Andropogon gerardii), and purpletop (Tridens flavus).
Figure 8. *Carex bicknellii* (foreground) at Campbells Ledge, Luzerne County. Photographed 7/11/2011.
Status in Other Peripheral States

Arkansas
Carex bicknellii is classified as an inventory element (INV) in Arkansas (Arkansas Natural Heritage Commission 2012). It is ranked critically imperiled (S1) in the state by NatureServe (2011). The only confirmed occurrence of C. bicknellii in Arkansas is in a tallgrass prairie remnant in the north central region of the state where it was discovered in 2005 (Mackenzie et al. 2006).

Delaware
Carex bicknellii is classified presumed extirpated (SX) in Delaware. It was known from a single serpentine grassland site in New Castle County (McAvoy 2011).

Maine
Carex bicknellii is classified as endangered by the Maine Department of Conservation; and ranked critically imperiled (S1) in the state by NatureServe (2011). It is known from a single site in “disturbed ground” along a railroad track in Penobscot County (Maine Department of Conservation and Natural Areas Program 2012).

Massachusetts
Although NatureServe (2011) shows Carex bicknellii ranked S1S2 (critically imperiled or imperiled) in Massachusetts, the species is not included on the list of Endangered, Threatened, or Special Concern Species in Massachusetts (MA Division of Fisheries and Wildlife 2008). Rothrock and Reznicek (2011) cite two specimens from the early 1900’s from Middlesex and Norfolk Counties.

New Jersey
Carex bicknellii has HL status in New Jersey, indicating protection under the Highlands Water Protection and Planning Act (NJ DEP 2010). It is known from a 1977 specimen from Sussex County and earlier records from three additional counties in the northern half of the state (Hough 1983).

New York
Carex bicknellii is classified as threatened in New York (NY Flora Assn. 2012). It is ranked S3 (vulnerable) by NatureServe (2011). Documented occurrences are spread over ten counties in the southern half of the state; habitat is described as dry rocky or sandy soils, rocky summits, railroad rights-of-way, and other open habitat (NY Flora Assn. 2012).

Ohio
Carex bicknellii is classified as threatened in Ohio where its occurrence in four counties has been documented since 1980 (Ohio DRN 2012). It is ranked as S2 (imperiled) by NatureServe (2011). Habitat is described as dry to moist prairies, sandy open soil and dunes; the main threat is succession (Ohio DNR 2012). At the Daughmer Savannah in north central Ohio C. bicknellii occurs in a mesic prairie community with Andropogon gerardii, C. festucacea, C. normalis, C. radiata, Eleocharis compressa, Panicum virgatum, Schizachyrium scoparium, and Sorghastrum nutans (Mack and Boerner 2004).
Critical Management Issues

Habitat Loss
Carex bicknellii has disappeared from numerous sites where it grew in the past, both on and off serpentinite. Habitat loss due to incompatible land uses and habitat degradation through interference with normal disturbance regimes are probable causal factors.

Succession and the Role of Fire
Carex bicknellii is a grassland species; in eastern Pennsylvania natural grassland communities occur only on soils that are lacking in critical nutrients and subject to frequent drought or excessive moisture. On dry sites, wild fire was also an important contributing factor; however, in recent years fire suppression has decreased the size and frequency of burns. In the absence of fire, accumulation of organic material buffers the effects of geology and soil and allows invasion by woody plants.

A comparison of 1937 and 2010 aerial photography of Unionville Serpentine Barrens revealed that grassland habitat had decreased from 60 acres to 7 acres accompanied by a concomitant increase in woodland and forest cover (Latham and McGeehin 2012). With the decline of wild fires, prescribed burning has become an essential tool in the maintenance of serpentine grassland communities.

Non-serpentine sites such as upper slope and ridge-top barrens are also dependent on drought and periodic fire to suppress invasion by trees.

Herbivory
While deer browse does not appear to be a severe threat to C. bicknellii, nipped-off stems were observed in the population at Brinton’s Quarry in Chester County, PA. On the other hand, browsing of invading trees and shrubs may be helping to maintain open habitat on some ridge-top sites.

Invasive Species
Barrens habitats are not highly vulnerable to invasion by non-native invasive species, which generally require high resource availability. One exception is Rumex acetosella, an Eurasian plant which is a common on dry barrens and rock outcrops throughout Pennsylvania (Rhoads and Block 2007).

Changes brought on by the prolonged absence of fire may allow a build-up of organic matter that buffers the effects of the underlying geology. This allows establishment of non-native, invasive woody species such as Celastrus orbiculatus, Elaeagnus umbellata, Lonicera japonica, Rosa multiflora, and exotic grasses including Anthoxanthum odoratum, Microstegium vimineum, and Poa pratensis and in addition to native successional species.

On serpentine barrens the native species Smilax rotundifolia and S. glauca can create thickets that dominate openings that would otherwise support native grassland communities.
Loss of Genetic Diversity
Small, isolated populations such as the *C. bicknellii* at Unionville Serpentine Barrens may be vulnerable to loss of genetic diversity due to inbreeding depression.
Conclusions

Stabilization of Existing or Recent Populations
An effort should be made to augment the existing small population of *C. bicknelli* at Unionville Barrens. Seed collected from the existing plants should be propagated off site and the resulting plants transplanted to additional locations on the barrens.

Active management is needed to maintain the high quality serpentine grassland and its large population of *C. bicknelli* at Brinton’s Quarry Serpentine Barrens. The landowner, Quarry Swim Club, should be encouraged to commission and implement an appropriate management plan for the site.

Establishment of New Populations
An effort should be made to re-establish *C. bicknelli* at sites where it occurred in the past provided suitable habitat remains. Sites that should be evaluated include Goat Hill, Willistown, Fern Hill, and Pink Hill barrens. Off site propagation using seed from the closest natural population should be employed to produce plants for this purpose.

Survey Needs
A systematic search using GIS technology should be undertaken for additional high elevation grasslands, ridge top barrens, and utility rights-of-way underlain by Mauch Chunk Formation. Follow-up field surveys of promising areas should be carried out wherever possible. Sites that should be investigated include Wilkes Barre Mountain in Luzerne County; locations with Arnot and Oquaga soils should be a high priority.

All known serpentine barrens grasslands should be thoroughly searched for remnant populations of *C. bicknelli* (Chrome, Fern Hill, Goat Hill, Nottingham, Pink Hill, New Texas, Willistown).

Measures of Success
- Establishment of three additional sub-populations of *C. bicknelli* at Unionville Serpentine Barrens.
- Appropriate active management initiated at Brinton’s Quarry Serpentine Barrens.
- Location and protection of two additional ridge-top barrens populations of *C. bicknelli*.
- Completion of thorough searches for *C. bicknelli* at all known serpentine grasslands in Pennsylvania.
- Establishment (or re-establishment) of viable populations of *C. bicknelli* at 2 additional serpentine barrens.

Research Needs
- Characterize and compare soil characteristics of *C. bicknelli* sites located on serpentine and Mauch Chunk geology.
- Conduct trials of seed germination requirements, propagation methods, and seed bank longevity of *C. bicknelli*.

...
References Cited

Appendix A. Field Visits

Chester County
Brinton’s Quarry, 8/30/2011, A.F. Rhoads, R.E. Latham, C. DeWolf
Brinton’s Quarry, 6/11/2012, A.F. Rhoads and C. DeWolf
Unionville, 6/7/2011, A.F. Rhoads and R.E. Latham

Luzerne County
Campbells Ledge, 9/19/2011, A.F. Rhoads, M. Burgess, R.E. Latham, R. Koval, S. Galenty