March 2007

Carbide-derived carbons designed for efficient hydrogen storage

Ranjan Dash
Drexel University

Gleb Yushin
Drexel University

G. Laudisio
University of Pennsylvania

T. Yildirim
National Institute of Standards and Technology

Jacek Jagiello
Quantachrome Instruments

See next page for additional authors

Follow this and additional works at: https://repository.upenn.edu/pennergy_posters

Dash, Ranjan; Yushin, Gleb; Laudisio, G.; Yildirim, T.; Jagiello, Jacek; Fischer, John E.; and Gogotsi, Yury, "Carbide-derived carbons designed for efficient hydrogen storage" (2007). Energy Research Group Posters. 2.
https://repository.upenn.edu/pennergy_posters/2

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/pennergy_posters/2
For more information, please contact repository@pobox.upenn.edu.
Carbide-derived carbons designed for efficient hydrogen storage

Abstract
Carbide-derived carbons (CDCs) with specific surface area (SSA) ~ 2000 m2/g and open pore volume up to 80% are produced by chlorine etching of metal carbides. Tuning the pore size distribution by carbide precursor selection and etching temperature yields enhanced hydrogen storage capacity at both ambient and elevated pressure. Our goal is to establish the fundamental relation between capacity and SSA, pore size and pore volume.

Comments

Author(s)
Ranjan Dash, Gleb Yushin, G. Laudisio, T. Yildirim, Jacek Jagiello, John E. Fischer, and Yury Gogotsi

This other is available at ScholarlyCommons: https://repository.upenn.edu/pennergy_posters/2
Carbide-derived carbons designed for efficient hydrogen storage

R. K. Dash¹, G. Yushin¹, G. Laudisio², T. Yildirim³, J. Jagiello⁴, J. E. Fischer² and Y. Gogotsi¹

¹Department of Materials Science and Engineering and A. J. Drexel Nanotechnology Institute, Drexel University, Philadelphia, PA 19104
²Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104
³National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
⁴Quantachrome Instruments, Boynton Beach, FL 33436, USA

1. **INTRODUCTION TO CARBIDE-DERIVED CARBONS**

 Carbide-derived carbons (CDCs) with specific surface area (SSA) > 2000 m²/g and open pore volume up to 86% are produced by chlorination etching of metal carbides. Tuning the pore size distribution by carbide precursor selection and conformational reaction allows for control of hydrogen storage capacity at both ambient and elevated pressures. Our goal is to establish the fundamental relation between capacity and SSA, pore size and pore volume.

2. **CDC’s with TUNEABLE PORE SIZE DISTRIBUTION**

 - **Precursor mineral carbide**
 - Binary, ternary, ...
 - Pore size distribution can be tuned by changing the structure of the metal carbide precursor as well as the synthesis temperature.
 - Metal carbides, which have a uniform carbon distribution such as ZrC, TiC and SiC, can yield CDC with narrowly distributed small pores, whereas carbide with a non-uniform carbon distribution, such as B₄C, yield CDC with widely distributed larger pores.

3. **EFFECT OF SURFACE AREA ON H₂ CAPACITY**

 - Reversible hydrogen storage capacity of CDC is 10 times that of multi-walled nanotubes, 3.5 times that of single-walled carbon nanotubes and 2 times than that of metal organic framework (MOF-5) at 1 atm pressure and 77K.
 - Nanoporous CDC’s with tunable pore size provide SSA up to 2000 m²/g, pore volume > 1 cc/g available for hydrogen storage. At 1 atm and 77K, gravimetric capacity > 3.0 wt.%, volumetric > 2.4 kg/m³.

4. **SMALL PORES ARE CRUCIAL FOR HIGH CAPACITY**

 - Specific surface area: only 2600 m²/g needed to achieve 6.1 wt.% at 77K, 1 atm, if all pores were 0.6 nm!

5. **CAPACITY CORRELATED W/VOL. OF SMALL PORES**

 - Hydrogen storage increases linearly with pore volume for pores < 1 nm.
 - No correlation between hydrogen storage and pore volume for pores > 1 nm.

6. **CONCLUSIONS AND REFERENCES**

 - Capacity of CDCs is higher than that of carbon nanotubes and other carbon nanomaterials.
 - The trend of capacity increase with surface area implies that 6000 m²/g will be required to 7 wt.%.
 - However, carbon nanomaterials with similar surface areas show large capacity variations.
 - Possibility: This traditional plot of wt.% vs SSA could be obscuring something important.

Conformal reaction: e.g. SiC whiskers retain their needle-like morphology. So how do pores evolve as the matrix C—C “bond” length collapses by a factor of 3??