Departmental Papers (CBE)

Document Type

Journal Article

Date of this Version

August 2007

Abstract

The properties of solid oxide fuel cell (SOFC) anode functional layers prepared by impregnation of ceria and catalytic metals into porous yttria-stabilized zirconia (YSZ) have been examined for operation at 973 K. By varying the thickness of the functional layer, the conductivity of the ceria-YSZ composite was determined to be only 0.015–0.02 S/cm. The initial performance of anodes made with ceria loadings of 40 or 60 wt % were similar but the anodes with lower loadings lost conductivity above 1073 K due to sintering of the ceria. The addition of dopant levels of catalytic metals was found to be critical. The addition of 1 wt % Pd or Ni decreased the anode impedances in humidified H2 dramatically, while the improvement with 5 wt % Cu was significant but more modest. Pd doping also decreased the anode impedance in dry CH4 much more than did Cu doping; however, addition of either Pd or Cu led to similar improvements for operation in n-butane. Based on these results, suggestions are made for ways to improve SOFC anode functional layers.

Comments

© The Electrochemical Society, Inc. 2007. All rights reserved. Except as provided under U.S. copyright law, this work may not be reproduced, resold, distributed, or modified without the express permission of The Electrochemical Society (ECS). The archival version of this work was published in Journal of the Electrochemical Society, Volume 154, Issue 7, 2007, pages B694-B699.
Publisher URL: http://dx.doi.org/10.1149/1.2736647

Keywords

solid oxide fuel cells, cerium compounds, yttrium compounds, zirconium compounds, catalysis, porous materials, ionic conductivity, sintering, palladium, nickel, copper, electric impedance, anodes, cermets

Share

COinS
 

Date Posted: 21 August 2007

This document has been peer reviewed.